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Abstract: In this paper, two main approaches for automatic building detection and 

localization using high spatial resolution imagery and LiDAR data are compared and 

evaluated: thresholding-based and object-based classification. The thresholding-based 

approach is founded on the establishment of two threshold values: one refers to the 

minimum height to be considered as building, defined using the LiDAR data, and the other 

refers to the presence of vegetation, which is defined according to the spectral response. The 

other approach follows the standard scheme of object-based image classification: 

segmentation, feature extraction and selection, and classification, here performed using 

decision trees. In addition, the effect of the inclusion in the building detection process of 

contextual relations with the shadows is evaluated. Quality assessment is performed at two 

different levels: area and object. Area-level evaluates the building delineation performance, 

whereas object-level assesses the accuracy in the spatial location of individual buildings. 

The results obtained show a high efficiency of the evaluated methods for building detection 

techniques, in particular the thresholding-based approach, when the parameters are properly 

adjusted and adapted to the type of urban landscape considered. 

Keywords: building detection; LiDAR; high spatial resolution imagery; object-based image 

classification 
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1. Introduction  

The evolution and dynamism of the landscape and land uses is particularly noticeable in urban and 

peri-urban environments, due to the construction of new infrastructures, houses and buildings. 

Maintenance of urban cartographic databases requires a reliable and systematic methodology for 

building detection. Traditionally, this specific task has been carried out by photointerpretation, which is 

expensive and time consuming. The abundance of high resolution multi-spectral imagery and the 

increasing availability of LiDAR data have influenced combining these data sources and the 

development of digital image processing methods for automatic building detection and delineation. 

Several approaches have been reported in a large number of studies, yielding different degrees of 

accuracy. Main problematic aspects related to the early building detection methodologies were deeply 

analyzed by Mayer [1], who quoted several relevant factors that need to be considered when designing 

an object detection model. After the examination of a large number of methodologies, the main 

problems pointed out by this author were: a lack of a deep analysis of the contextual relations, an 

inadequate treatment of data variability, and an absence of a critical statistical evaluation of the results 

obtained. Dependent on the data source employed, building detection techniques can be classified in 

three groups: (i) using airborne or satellite imagery; (ii) using three-dimensional information; and 

(iii)  combining both data sources. 

Aerial images have traditionally been used to extract buildings for mapping applications. With the 

successive launching of high spatial resolution commercial satellites, high-resolution satellite imagery 

has become a cost-effective alternative to aerial photography for several applications [2]. Automatic 

building detection by means of high resolution imagery presents difficulties due to geometric reasons, 

buildings can constitute complex structures that create abrupt height discontinuities, occlusions, 

shadows [3], and radiometric reasons, as different material combinations can create a variety of 

intensity values in the spectral bands employed [4]. Two main groups of building detection techniques 

using high resolution imagery can be considered [3]: low-level and high-level vision techniques.  

Low-level vision techniques are mainly based on edge detection and extraction from images, followed 

by processes of definition of rules and hypothesis in order to identify the buildings. High-level vision 

techniques try to imitate the human cognition process and decision making skills which are based on 

the analysis of the information. Pattern and object recognition, and image classification are common 

high-level vision techniques. 

Since buildings grouped in high-density urban or industrial areas usually have regular patterns and 

directionality, rather than a random distribution, low-level vision techniques have been initially 

considered as more adequate and straightforward to face the problem of building detection [5]. 

However, many of the low-level vision techniques are strongly restricted, making a priori assumptions 

such as that buildings have rectangular shape, flat roofs or specific spectral responses, or that they are 

arranged following a particular orientation. Previous research defined a series of rules that buildings 

should accomplish [6]. Similar approaches were used by [3,7-9], who detected edges and analyzed 

their mutual relationships to define building existence hypothesis. Some authors proposed the use of 

transforms between image representation spaces, such as Fourier [5] or Hough [10,11]. In general,  

low-level vision techniques have the advantage of presenting a relatively simple design and low 

computational cost, but they lack robustness due to their inherent methodological restrictions. 
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A group of interim approaches could be placed between low and high-level vision techniques, such 

as those based on the employment of active contour models. Thus, Mayunga et al. [12] present a 

semiautomatic system that requires the manual definition of a seed point inside each building. 

Afterwards, Theng [13] fully automates the system by adding an automatic corner detector that 

initializes the active contour model. Ahmady et al. [14] and Ge et al. [15] initialize the contours using 

regularly distributed circumferences that progressively merge after some repetition. Ok [16] applies the 

active contours technique specifically to simplify and merge the detected edges. 

Most building detection high-level vision techniques are based on image classification. Although 

some methodologies have been proposed to detect buildings using pixel-based classifications [17-20], 

in the majority of the studies the buildings are considered as objects, and automatic segmentation 

methods based on image homogeneity are used to create the image-objects. Regarding the 

classification process, image-objects are mainly characterized using descriptive features based on the 

spectral response, the image texture, or the shape of the objects [2,21-28], or even using features 

derived from the wavelet transform [29,30]. Some authors establish contextual relationships between 

objects and sub-objects by using multi-scale segmentation techniques [31,32]. Others include ancillary 

data such as road maps [21]. In many cases, standard morphological filtering techniques, or even the 

Hough transform, are applied at the end of the process to generalize and smooth the shape of those objects 

classified as buildings [2,33-35]. Other different high-level vision techniques have been used to detect 

buildings, but generally offer less satisfactory results than those based on classification, being usually 

focused on solving uncommon or particular cases. Thus, LôHomme et al. [36] propose a 

methodologically simple method based on the extraction of the central positions of the buildings using 

the variance of the Grey Level Co-occurrence Matrix (GLCM). In the same sense, the methodology 

presented by [37-40] assumes that buildings are regularly arranged following a unique orientation, 

having higher intensity values than the background. 

Building detection techniques based on images are generally improved by adding some contextual 

information, such as shadows. According to [38], the height is a common feature of buildings, and the 

projected shadows allow defining a context for building detection. In general, authors condition the 

existence of a building to the proximity or contiguity to shadows, following the direction defined by 

the solar incidence angle [2,6,21,25,37-41]. In spite of the fact that shadows may have different origins 

and propertiesðwhich makes their detection more difficult [42]ðit is frequently easier to extract them 

than to directly analyze the buildings that cast shadows [6]. In practice, most of the authors use 

thresholding methods with very positive results, using the panchromatic band [6,26,43,44] or the 

intensity channel [25]. Some attempts have been made to automatically define the optimum 

thresholding value. Thus, Scanlan et al. [42] established the threshold value dividing the image in tiles 

and comparing the mean value from each tile with the median value of the whole image. Tsai [45] 

recursively divided the image up to each tile presents a bi-modal histogram of grey levels. Other more 

complex approaches were applied, based on pixel classification [31], differential morphological profile 

method [37-40], color spaces transformation [46] or digital models analysis [35]. 

The problem of automated building detection using only three-dimensional data sources has been  

the focus of a large number of researches. Two main data sources have usually been employed: 

photogrammetric restitution and, more recently, airborne laser scanning (ALS). In general, the 
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methodologies proposed are less complex than when only images are used, and very often they are not 

statistically evaluated, since they constitute a transitional step for the representation of virtual 3D 

environments. The methodological approaches are dependent on the type of data sources used. Thus, 

most of the studies that use digital surface models (DSM) obtained from photogrammetric techniques 

are based on thresholding the normalized DSM (nDSM) to differentiate between buildings and 

vegetation [47-52]. However, when the source of data is ALS, automatic segmentation techniques are 

normally used, being the resultant objects classified according to their size, shape, height or 

rugosity [53-57]. Many of the errors produced using this approach are due to the misclassification of 

vegetation as buildings, and are partially corrected by the application of morphological filters and 

height or size thresholds. A similar approach is used by [58-60]. Other methodologies can be found 

in [61-64]. 

A different group of building detection and location techniques are those based on the combination of 

imagery and three-dimensional data. The use of two complementary sources of data usually improves the 

results. Most of these studies are based on two main approaches: object-based classification and 

thresholding-based detection. In the first approach, image-objects are created using automatic 

segmentation techniques. Then, the objects are characterized by means of spectral, shape and height 

features [65-72]. Approaches based on thresholding consist of the application of a threshold value to the 

nDSM to discriminate buildings and vegetation, combined with a threshold applied to the normalized 

difference vegetation index (NDVI) image in order to mask the vegetation. Then, buildings can be 

accepted or rejected according to different conditions, such as size and shape [73-76], spectral values [77] 

or texture features [78-80]. In addition to these two main approaches, some other specific methods have 

been reported. Cheng et al. [81] propose a single threshold applied to the nDSM, and then a correction of 

the shape of the detected building based on alignments extracted from the imagery. Paparoditis [82] 

offered a low-level vision solution that effectively integrates bi-dimensional and three-dimensional 

information by detecting and analyzing edges in both data sources. Guo and Yasuoka [83] used height 

data to initialize active contours, and spectral information to extract the buildings. 

In this paper, two adapted versions of the two main approaches to detect and localize buildings 

based on images and 3D LiDAR data are compared and evaluated. The main objectives of this study 

are: to critically compare the performance of two building detection approaches, those based on 

thresholding and those based on object-based classification; and to evaluate the effect of the inclusion 

of some contextual relations with the shadows on building detection. The evaluation tests are carried 

out over different urban scenarios, and not only detection, but also location of buildings is considered. 

2. Data and Study Area 

Three study areas were defined, all in the province of Valencia (Spain), corresponding to the 

municipalities of Moncada, Oliva and Sagunto (see locations in Figure 1). Moncada is characterized by 

an urban center surrounded by large areas of suburban neighborhoods occupied by detached and  

semi-detached houses, together with some industrial areas. Oliva is a coastal touristic town presenting 

a residential strip with high apartment buildings, detached and semi-detached houses, and traditional 

village houses. The Sagunto area is divided in two main dense urban centers and several large  

industrial areas. 
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Figure 1. Location of the province of Valencia in Spain (left) and distribution of the three 

study areas (right). 

 
 

Table 1 shows some technical specifications of the data used in the tests. QuickBird satellite images 

were used for Moncada, and aerial orthophotographs acquired as part of the Spanish Programme of 

Aerial Orthophotography (PNOA) were used for Oliva and Sagunto. LiDAR data were collected using 

different flights and sensors, and they have a variety of nominal density values ranging from 0.5 to  

2 points/m
2
. 

Table 1. Data technical details. 

Study area Imagery LiDAR  

Moncada 

QuickBird 

Acquired: February 2004 

Spatial resolution: 0.6 m/pixel 

Spectral bands: IR, R, G, B 

Sensor: Optech ALTM 2033 

Acquired: December 2003 

Density: 1 point/m
2
 

Oliva 

Aerial orthophoto 

Acquired: June 2006 

Spatial resolution: 0.5 m/pixel 

Spectral bands: IR, R, G 

Sensor: Optech ALTM 3025 

Acquired: September 2009 

Density: 2 points/m
2
 

Sagunto 

Aerial orthophoto 

Acquired: June 2006 

Spatial resolution: 0.5 m/pixel 

Spectral bands: IR, R, G 

Sensor: RIEGL LMS-Q680 

Acquired: August 2009 

Density: 0.5 points/m
2
 

A digital terrain model (DTM) was created from the LiDAR data by eliminating points belonging to 

aboveground objects, such as vegetation or buildings. An iterative algorithm consisting of selecting 

minimum height points in a series of progressively smaller windows was used. First, a coarse DTM is 

computed using large window size. Afterwards it is refined adding new minimum height points chosen 

by using smaller windows. These are compared to the initial DTM and the use of a height threshold 

allows for removing the non-ground points in each iteration. The methodology used is fully described 

in [84]. In addition, a DSM was calculated considering the highest points. The difference between 

DSM and DTM produces the nDSM, which describes the height of the objects aboveground. 
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3. Methodology 

This section describes two adapted approaches for building detection and location when imagery 

and three-dimensional information is available: thresholding-based and object-based classification. In 

addition, a shadow detection methodology followed by the definition of contextual relationships is 

described. This method is used in order to improve the building detection process. At the end of this 

section, the evaluation metrics employed are described. Quality assessment has been performed at two 

different levels: area and object. Area-level evaluates the building delineation performance; 

object-level evaluation assesses accuracy in the spatial location of individual buildings. 

3.1. Thresholding-Based Approach 

The adapted thresholding-based building detection approach is founded on the establishment of two 

threshold values: one refers to the minimum height to be considered as a building, applied over the 

nDSM, and the other refers to the presence of vegetation, which is defined as a minimum value of 

NDVI obtained from the image bands (Figure 2). The NDVI threshold value can be determined using 

the trial and error method, or in a semi-automatic manner by collecting samples of the classes: 

vegetation and non-vegetation. Both classes are parameterized using the mean and standard deviation 

values, considering a normal distribution of their histograms. The threshold value is defined as the 

point where the normal curves of both classes are intersected. The binary images produced in the 

thresholding step are smoothed by means of morphological opening and closing filters, and small 

objects are eliminated in order to remove noise. As a last step, intersecting the vegetation and height 

binary images, a mask of detected buildings is produced. Working with the thresholding-based 

approach, several different variations have been presented in the literature as a last step for building 

definition, including spectral or texture analysis techniques. For comparison purposes, only the size is 

considered as final condition for building definition. 

Figure 2. Scheme of the thresholding-based building detection approach. 
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3.2. Object-Based Classification Approach 

The object-based classification approach follows the standard scheme of object-based image 

classification (Figure 3): segmentation, feature extraction and selection, and classification. In order to 

create meaningful image objects for building detection purposes, a region growing segmentation 

method is performed over the nDSM. As a building can present different spectral responses, the 

addition of spectral information for segmentation would produce an over-segmentation of the image, 

making the classification difficult , so they were not included for segmentation. 

Figure 3. Scheme of the object-based classification building detection approach. 

 

The produced objects were characterized for classification using four different groups of descriptive 

features: spectral, texture, shape and height; computed by means of the object-based image analysis 

software, FETEX 2.0 [85]. Spectral features provide information about the intensity values of the 

objects in the different spectral bands. Texture features provide information about the spatial distribution 

of the intensity values in the object analyzed. Histogram-based features (kurtosis and skewness) and 

texture features from the grey level co-occurrence matrix (GLCM) [86] were extracted, as well as the 

mean and the standard deviation of the edgeness factor [87], representing the density of edges in the 

neighborhood of a pixel. Shape features provide information about the dimensions of the objects and 

their contour complexity. These have been described by means of area, perimeter, compactness, shape 

index and fractal dimension features. Height features provide three-dimensional information about the 
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parcel: the average, maximum and standard deviation values of the height, derived from the nDSM, 

were computed. Due to the large number of parameters defined (27), some features may be redundant 

in terms of efficient description of the objects, and the inclusion of these parameters can introduce 

noise in the classification. Therefore, as a first step, the study of the relationships between the features 

and their contribution to the classification accuracy is essential. A pre-selection was made to discard 

the use of correlated variables, by analyzing the correlation values and by grouping the variables using 

principal components analysis, helping to understand the links between variables in terms of 

redundancies. Then, stepwise linear discriminant analysis was used to determine the significance of the 

remaining features for the particular classification problem. This was done independently for each 

study area. 

Classification was performed using decision trees built using C5.0 algorithm [88] and the boosting 

multi-classifier method [89]. This algorithm searches the features that best separate one class from the 

others by dividing data using mutually exclusive conditions, until the new generated subgroups are 

homogeneous, i.e., all the elements in a subgroup belong to the same class, or a stopping condition is 

satisfied. Different classes were defined in each study area, considering their respective variety in the 

typologies of buildings. Then, contiguous objects classified as buildings were merged and very small 

objects eliminated. 

3.3. Shadow Detection and Contextual Relationships Definition 

A common characteristic of urban areas in images is the presence of shadows, which depend on the 

height of the buildings and on the illumination conditions. This fact, that initially is a limitation for 

spectral characterization of buildings, could become an additional source of information if the shadows 

are properly detected and related to their respective buildings. Many authors assume a bimodal 

behavior of the histogram of images containing shadows, and as a result they try to automatically find 

the valley (lowest histogram frequency values) that divides the shadowed areas from the illuminated 

areas. The amount of shadows in a high resolution image depends on the azimuth and solar elevation 

angles, and the sensor observation angle [37], but also on the proportion of objects able to project these 

shadows. However, even when some shadows are present in the image, the histogram may not be 

clearly bimodal, making their detection quite difficult by only analyzing this frequency graph. 

Consequently, we used a semi-automatic methodology that requires manual sample selection. It 

consists of the definition of the threshold value on the first principal component of the original bands, 

by selecting samples of shadowed and illuminated areas. Both intensity values are then modeled by 

Gaussian curves, and the threshold value is determined as the intersection of both curves. The binary 

image obtained is cleaned and smoothed by means of morphological filters. Shadows are used to 

contextualize the adjacent buildings in the direction of the solar incidence angle on each image. This is 

used as a restrictive condition, so that every object detected as building but with no shadow projected 

in the solar incidence direction, will not be considered as building, i.e., it will be excluded. 

3.4. Quality Assessment 

The evaluation of the described approaches for building detection was carried out on two levels: 

area or pixel level; and object level. Reference buildings were manually delineated by direct 
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photointerpretation of the images. Due to the different acquisition dates of LiDAR data and imagery, 

the selection of the reference areas for evaluation purposes was done ensuring that those areas were not 

affected by changes. 

In urban areas, diverse types of buildings with different uses and characteristics coexist. In order to 

evaluate the performance of the building detection approaches on different building scenarios, three 

building types were defined for the study areas of Moncada and Sagunto: urban, suburban and 

industrial; and two for the study area of Oliva: urban and suburban. Urban buildings (Figure 4, left) are 

located at city and town centers and they are designed for residential and commercial purposes. These 

are diverse structures located in blocks and surrounded by urban elements like roads, artificial green 

areas or car parks. Suburban areas (Figure 4, center) are normally composed of abundant vegetation 

zones and detached and semi-detached buildings to accommodate single families. Industrial buildings 

(Figure 4, right) are characterized for presenting large dimensions, and they are aimed to manufacture, 

transform, repair, store and distribute products. 

Figure 4. Examples of the building types defined: urban (left), suburban (center), and 

industrial (right). All the images belong to the study area of Sagunto. 

   

The evaluation at area level has been performed using a series of statistical parameters defined by 

McGlone and Shufelt [90] that have been repeatedly referred to in the literature 

[8,10,19,25,27,38,40,69,91,92]. Detected and reference buildings are spatially compared, and areas are 

categorized in four cases (see Figure 5): true positive (TP), true negative (TN), false positive (FP) and 

false negative (FN). TP represents those areas containing both detected and reference buildings. TN 

represents areas without reference or detected buildings. FP represents areas containing detected 

buildings but without reference buildings. FN represents undetected building areas. 

Figure 5. Cases for evaluation of building detection at area level. 

 

(a) Detection example 

 

(b) True positive 
 

(c) True negative 

 

(d) False positive 

 

(e) False negative 

Legend:    Reference building    Detected as building    Cases 
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Using these cases, the following area level quality metrics are defined: The branching factor 

(Equation (1)) is a measure of the degree to which a system over-detects as buildings non-built areas. 

The more accurate the detection, the closer the value is to zero. The miss factor (Equation (2)) 

indicates the omission error committed on the detection of built areas. These quality metrics are closely 

related to the boundary delineation performance of the building extraction system. The building 

detection percentage (Equation (3)) represents the percentage of reference built areas that is 

automatically detected. The quality percentage (Equation (4)) measures the absolute quality of the 

detection model by combining aspects of both boundary delineation accuracy and building detection 

rate to summarize the system performance. 

TP

FP
factorBranching =  (1)  

TP

FN
factorMiss =  (2)  

FNTP

TP
percentageDetection

+
Ö=100  (3)  

FNFPTP

TP
percentageQuality

++
Ö=100  (4)  

The object level assessment approach estimates the spatial correspondence between reference and 

detected buildings, and has been employed in several studies [17,26,54,70,93]. Building detection 

methodologies with low performance at pixel-level and high performance at object-level are 

inappropriate for automatic building delineation. However, these procedures may be suitable for the 

identification and spatial location of buildings, considering a subsequent manual delineation by means 

of photointerpretation techniques. Two metrics were considered for object-level evaluation: correctness 

and completeness, which reveal the errors of commission and omission, respectively. The correctness 

value indicates the percentage of the detected building objects that are at least partially overlapped with 

the reference buildings. Completeness value refers to the percentage of reference buildings overlapping 

the detected buildings. 

4. Results and Discussion 

4.1. Evaluation of Building Detection Methods 

The results of the statistical assessment of the building detection using the thresholding-based 

approach are shown in Table 2. In general, the results show a high performance for the different 

building types analyzed. 

Detection results obtained for type industrial building show very low values of branching and miss 

factors, meaning that buildings are precisely delineated. Quality percentage values are higher than 90% 

in both study areas. At object-level, completeness values show that all reference buildings are 

overlapped by detected buildings. On the other hand, correctness values are lower, showing that several 

small objects have been erroneously detected as buildings. Their very small size barely affects the 

area-level metrics, but it acts as noise in the object-level parameters. Figure 6(a) shows an image detail 

illustrating the detection results for industrial type buildings. Generally, these buildings appear properly 

defined and delimited; meanwhile little objects are erroneously detected as buildings due to the 
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presence of characteristic elements of industrial areas, such as trucks or pallets, during the LiDAR data 

acquisition process. 

Table 2. Evaluation results for the thresholding-based approach. 
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Branching factor 0.06 0.09 0.12 0.08 0.11 0.37 0.11 0.15 

Miss factor 0.02 0.02 0.04 0.03 0.02 0.14 0.12 0.16 

Detection 

percentage 
97.7 98.2 96.5 97.2 98.1 87.8 89.1 86.3 

Quality percentage 92 90.3 86.6 90.6 88.3 66.1 81.1 76.6 

O
bj

e
c
t-
le

v
e

l 

Correctness 72.4 73.3 74.3 71.9 87.2 89.8 100 99.2 

Completeness 100 100 100 100 100 98.4 99.3 95 

Figure 6. Detection examples of industrial buildings in Sagunto (a), urban buildings in 

Oliva (b) and suburban buildings in Moncada (c) using the thresholding-based approach. 

     

(a)     (b)     (c) 

Regarding the urban building type, the branching factor values are slightly higher than those 

obtained for industrial buildings, and the miss factor values are very close to zero. As a result, the 

quality percentage presents high values for the three studied areas. At object-level, the quality 

assessment shows similar results to the industrial building type, obtaining values for correctness 

markedly lower than for completeness. Figure 6(b) also shows some small objects erroneously detected 

as buildings due to the slight positional differences between LiDAR and image data. 

Detection of suburban buildings presents more difficulties, which is reflected on the branching and 

miss factor results obtained for this urban type. In general, quality percentages vary from 66% to 78%, 

comparable to results reported by other authors in similar scenarios using LiDAR data and 

multispectral imagery [69]. Correctness and completeness values are more balanced than those 
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obtained for industrial and urban building types. As shown in the example of Figure 6(c), most of the 

buildings are individually detected, but their shape is strongly conditioned by the effect of 

tree occlusions. 

Table 3 shows the overall classification accuracy values for the three study areas, obtained by the 

cross-validation method. Since the main objective is to evaluate building detection, only two classes 

were considered: buildings and non-built areas. 

Table 3. Overall classification accuracies obtained in the three study areas. 

Study area Overall accuracy 

Moncada 97% 

Oliva 95% 

Sagunto 98% 

Table 4 shows the results of the statistical assessment of building detection using the object-based 

classification approach. Area-level assessment results obtained for industrial and urban types present 

low branching and miss factors, and quality percentage values ranging from 80% to 90%. This suggests 

that this method is suitable for building delineation. At object-level, the completeness factor is very 

high, but the correctness quality metric values range from 50% to 60%. These results reveal high 

commission errors due to the incorrect detection of many small objects, especially vegetation with low 

infrared response, and other urban elements, as shown in Figure 7(a,b). However, at  

area-level there is a poor performance of the object-based classification method for the suburban 

building type. Although the results are adequate attending to the miss factor, the branching factor 

values are significantly higher. This means that this method produces an important over-detection of 

small buildings. At object-level, assessment results are more balanced than those obtained for 

industrial and urban buildings. 

Table 4. Results of building detection applying the object-based classification method. 

  Industrial Urban Suburban 
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Branching factor 0.08 0.11 0.17 0.06 0.15 0.70 0.20 0.49 

Miss factor 0.04 0.04 0.05 0.10 0.03 0.17 0.16 0.17 

Detection 

percentage 
96.5 96.1 95.1 90.9 97.5 85.6 86.3 85.5 

Quality percentage 89.6 86.8 81.7 86 85.5 53.6 73.9 60.4 

O
b

je
c
t-l

e
v
e

l 

Correctness 59.5 50 59.5 51.6 53.8 86.6 93.1 84.1 

Completeness 100 96.4 96.3 100 100 93 99.3 95.7 
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Figure 7. Detection examples of industrial buildings in Sagunto (a), urban buildings in 

Oliva (b) and suburban buildings in Moncada (c) using the object-based classification 

approach. 

     

(a)     (b)     (c) 

The comparison of the performance of object-based classification and thresholding-based 

approaches is presented in Table 5, showing the mean and the standard deviation values of the 

accuracy metrics, grouped by building types. At area-level, branching and miss factor mean values are 

similar for industrial and urban buildings. However, the mean quality percentage values are slightly 

higher when using the thresholding-based approach. The branching factor mean and standard deviation 

values obtained with the object-based classification approach for suburban buildings doubles those 

obtained using the thresholding-based approach. Detected objects, using object-based classification 

approach, frequently contain several actual buildings due to the difficulty of independently framing 

suburban buildings in the segmentation step. The quality percentage is also significantly higher in the 

case of the thresholding-based approach. Object-level metrics show a similar completeness value for 

both methods, but higher correctness mean value for the method based on thresholding; also presenting 

a lower standard deviation value. The better mean value performance indicates that the thresholding-

based approach is more suitable for building detection in all the analyzed scenarios, meanwhile the 

lower standard deviation value suggests a better robustness for this approach. 

Table 5. Comparison of mean (Õ) and standard deviation (ů) of building detection metrics 

for the thresholding-based (Thresh) and object-based classification (Object). 

  Industrial Urban Suburban 

  Thresh. Object Thresh. Object Thresh. Object 

  µ ů µ ů µ ů µ ů µ ů µ ů 

A
re

a-
le

v
e

l 

Branching factor 0.08 0.02 0.10 0.02 0.10 0.02 0.13 0.06 0.21 0.13 0.46 0.30 

Miss factor 0.02 0 0.04 0 0.03 0.01 0.06 0.04 0.14 0.06 0.17 0.08 

Detection 

percentage 
98 0.4 96.3 0.3 97.2 0.8 94.5 3.3 87.7 5.2 85.8 6.7 

Quality percentage 91.2 1.2 88.2 2 88.5 2 84.4 2.4 74.6 11.1 62.6 16.1 

O
b

je
c
t-

le
v
e

l Correctness 72.9 0.6 54.8 6.7 77.8 8.2 55.0 4.1 96.3 5.6 87.9 21.1 

Completeness 100 0 98.2 2.5 100 0 98.8 2.1 97.6 2.3 96.0 3.9 


