
Remote Sens. 2011, 3, 378-397; doi:10.3390/rs3020378 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Alaskan Permafrost Groundwater Storage Changes Derived 

from GRACE and Ground Measurements 

Reginald R. Muskett * and Vladimir E. Romanovsky 

Geophysical Institute, University of Alaska Fairbanks, P.O. Box 757230, 903 Koyukuk Drive, 

Fairbanks, AK 99775, USA; E-Mail: veromanovsky@alaska.edu 

* Author to whom correspondence should be addressed; E-Mail: reginald.muskett@gmail.com;  

Tel.: +1-907-474-1925; Fax: +1-907-474-7290. 

Received: 1 December 2010; in revised form: 20 February 2011 / Accepted: 21 February 2011 /  

Published: 22 February 2011  

 

Abstract: The Arctic is in transition from climate-driven thawing of permafrost. We 

investigate satellite-derived water equivalent mass changes, snow water equivalent with 

in situ measurements of runoff and ground-survey derived geoid models from 1999 through 

2009. The Alaskan Arctic coastal plain groundwater storage (including wetland bog, thaw 

pond and lake) is increasing by 1.15 ± 0.65 km
3
/a (area-average 1.10 ± 0.62 cm/a), and 

Yukon River watershed groundwater storage is decreasing by 7.44 ± 3.76 km
3
/a 

(area-average 0.79 ± 0.40 cm/a). Geoid changes show increases within the Arctic coastal 

region and decreases within the Yukon River watershed. We hypothesize these changes are 

linked to the development of new predominately closed- and possibly open-talik in the 

continuous permafrost zone under large thaw lakes with increases of lakes and new 

predominately open-talik and reduction of permafrost extent in the discontinuous and 

sporadic zones with decreases of thaw lakes. 
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1. Introduction 

Arctic geomorphology, ecosystems, surface and groundwater are undergoing changes from 

permafrost thawing as a response to changing climate [1]. Permafrost is the largest component of the 

cryosphere [2]. Degradation of ice-rich permafrost can lead to significant surface subsidence affecting 
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changes in ecosystem, landscape, and where human habitats are established, significant infrastructure 

damage if not adequately considered in design [3,4]. The processes of freezing and thawing of the 

active layer, growth and degradation of permafrost affects the land surface energy and moisture fluxes 

(balances) which in turn impact biogeochemical cycles, climate and hydrologic systems [3,5,6].  

Hydrologic processes in Arctic watersheds are controlled by permafrost distribution, talik 

configuration and the thickness of the active layer [3,4,7]. Talik is unfrozen earth material formed by 

hydrothermal and thermal processes near and beneath the ground surface and within permafrost [8]. 

Wildfires in boreal forest and tundra can alter the ground thermal regime resulting in warming and 

thawing of permafrost, active layer deepening and leading to talik formation [9]. Closed and open talik 

can be laterally extensive within permafrost. It can occur beneath lakes and rivers crossing the 

continuous and discontinuous permafrost zones. Open talik within permafrost connects the ground 

surface to the unfrozen material beneath permafrost allowing for recruitment of surface water into 

groundwater storage and loss of groundwater storage into surface water. In wintertime, base flow of 

rivers in permafrost watersheds, while reduced relative to non-permafrost watersheds, is maintained by 

water leaving groundwater storage [5,10,11]. Liquid water residing within cold and warm permafrost 

affects the ground thermal state [12]. The effect is largest near the ground surface and active layer after 

freeze-up, with stronger thermal gradients at the ground surface and increased heat flux. 

Diverse observations across the high-latitude northern hemisphere indicate permafrost temperatures 

down to about 20 meters depth have increased over the twentieth century [13-15]. These are correlated 

to surface air temperature changes on decadal time scales [6]. Permafrost temperatures in northern 

Siberia, northern Alaska and northwest Canada have shown the largest magnitude of increases of a few 

degrees Celsius. Increased surface air temperatures from climate warming over the same period often 

cannot fully account for increased permafrost temperatures, suggesting that variability in snow cover 

may be a contributing factor [16]. Satellite data suggest that the total area of thermokarst lakes 

increased up to 12% in the northern continuous permafrost zone in western Siberia through processes 

of permafrost degradation, and the number of all lakes increased by 4% over the last 30 years [17]. 

However, in the southern discontinuous, sporadic and isolated permafrost zones the lake area showed 

losses up to 13% and the number of lakes decreased up to 9%. This suggests a linkage of permafrost 

and lake disappearance with extensive talik development.  

Our investigation focuses on the trends of water equivalent mass changes within the Alaskan Arctic 

coastal plain and foothills, and the Yukon River watershed in Alaska and Yukon Territory using 

satellite geodesy and in situ measured runoff (Figure 1). This is one of our ongoing investigations of 

GRACE-derived terrestrial water storage changes on the Arctic watersheds of the northern hemisphere 

(Figure 2) [18]. We examine the regionalized trends and variations in water equivalent mass changes 

derived from geoid models and from the Gravity Recovery And Clime Experiment (GRACE) relative 

to the character and distribution of permafrost in these regions. We use data on snow water equivalent 

derived from the Special Scanning Microwave/Imager (SSM/I) sensor to provide us with wintertime 

water mass changes. Runoff data come from river gauge stations (ArcticRIMS, Arctic Freshwater 

Systems, and the US Geological Survey) are used for monthly water mass changes. 
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Figure 1. ESA Altimetry Corrected Elevation version-2 Global Digital Elevation Model 

shaded relief showing Alaska, USA, and western Canada. The Yukon River watershed 

(YRW) extent, Arctic Foothills (AF) and Arctic Coastal Plain (ACP) are delineated 

(white). Permafrost zone extents of the Isolated-Sporadic (yellow), Discontinuous (brown), 

and Continuous (red) are based on Jorgenson et al. (2008). 

 

Figure 2. GRACE water equivalent mass changes on the northern hemisphere (top) and 

Alaska-western Canada (bottom) during May 2008 (left) and September 2008 (right) are 

shown. The Yukon River watershed and the Arctic foothills-coastal plain are delineated. 

Other important permafrost watersheds in Eurasia (Lena, Yenisei and Ob’) and North 

America (Mackenzie) are shown [18]. The seasonal maximum and seasonal minimum 

water equivalent mass change occur in May and September, respectively. 
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Figure 2. Cont. 

 

2. Regions of Interest for Permafrost Zone Water Mass Changes 

The Alaskan Arctic coastal plain (Figure 1), an area of about 104,000 km
2
, is noted for its near-flat 

topography of tundra-wetland ecosystems, numerous thaw lakes and thick, up to 600 m, permafrost in 

the continuous permafrost zone [19-21]. The Barrow Peninsula area is noted for its large and numerous 

thaw lakes with their distinctive elliptic-shape and orientation [22]. Patterned ground formed by 

seasonal freeze-thaw and ice-wedge growing processes are common throughout this region. The Arctic 

coastal foothills (Figure 1), an area of about 120,000 km
2
 forms a low-relief rolling topography incised 

by numerous rivers. Some of the rivers crossing the central and eastern foothills have a glacial 

melt-water component in their summer-time discharge [23].  

The Brooks Range forms the meteorological-climatologic boundary of the Arctic in Alaska [24]. 

Permafrost in this area is much thinner and may be less than 200 m in many locations [19]. 

Precipitation within the Alaskan Arctic coastal plain and foothills is on the order of 100 mm in 

summer. Over the twentieth century, the number of days below freezing has been on the order of 300. 

Winter snowfall has been on the order of 80 cm with snow depths on the order of 20 to 50 cm [25,26]. 

Annual air temperatures recorded at Barrow, Alaska, from 1949 through 2005 had increases on the 

order of 2 °C [24]. Seasonal air temperature had increases of 0.8 °C in autumn and 3.2 °C in winter. 

Annual precipitation had decreases on the order of 2 cm. Seasonal precipitation had decreases of 1.3 cm 

in winter with summer unchanged, over the same period. Interannual and decadal variability affects the 

long-term trends, causing short interim periods of rapid changes or periods of neither increasing nor 

decreasing trend. On a monthly basis, peak precipitation of about 2 cm occurs in August. 

The Yukon watershed (Figure 1) covers an area of 853,300 km
2
 [27]. It is noted for its lowland 

wetland boreal ecosystems and high-elevation Alpine tundra, and is underlain by the discontinuous and 

sporadic permafrost zones [21]. Permafrost, where present, thickness ranges from about 15 m and less 

in the lowland western portions to about 180 m in the northeastern portions [28]. Headwaters of the 

tributaries of the Yukon River originate in the high-elevations of the Alaska and Brooks Ranges, in 

Alaska, and the Coast Mountains in Yukon Territory, Canada. Many are fed by summertime glacial-melt 

and wintertime base flow from groundwater [23,27]. It discharges its freshwater, suspended sediment, 

and dissolved carbon load at the Yukon Delta on the shores of the Bering Sea [29,30]. Freshwater from 

the Yukon watershed flowing northward through the Bering Strait contributes to the freshwater budget 

of the Arctic Ocean [31]. 
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Precipitation in the Yukon River watershed, in Alaska, is relatively light and irregular on an annual 

basis and summer being peak season [24]. Annual temperatures recorded at Fairbanks, Alaska, from 

1949 through 2005 had increases on the order of 2 °C. Autumn temperatures had decreases of 0.5 °C, 

and winter had increases of 4.6 °C. Annual precipitation had increases on the order of 0.3 cm. Summer 

precipitation had decreases of 0.5 cm and winter had decreases of 1 cm over the same period. 

Interannual and decadal variability strongly affects the long-term trends with the largest increase in 

precipitation occurred during 1976/77. Before and after this shift, neither increasing nor decreasing 

trends are apparent. On a monthly basis, peak precipitation of about 3 cm occurs in July. 

3. Data 

3.1. NOAA National Geodetic Service Geoid Models 

Since the early 1990s the NOAA National Geodetic Survey (NGS) have been working on 

developments of high-spatial resolution and high-accuracy geoid models as part of the US national 

mapping and geodetic control network modernization programs [32,33]. The efforts centered on 

producing geoid models using ground-based gravimetric geoid observations (within the US and 

territorial coastal waters) at the US High-Accuracy Reference Network sites with Global Position 

System station coordinate determinations with long-wavelength undulations from the Earth Gravity 

Model 1996 (EGM96) a 360-degree and -order 15-arc-minute model and realization with respect to the 

International Terrestrial Reference Frame (ITRF) in the non-tide geodetic reference convention [34]. 

The first model was GEOID 1996 (GEOID96) a 2-arc-minute grid. It was followed in 1999 by the 

1-arc-minute model GEOID99. Models GEOID03 and GEOID06 followed this. The latest efforts have 

produced GEOID09 that incorporates EGM2008, a 2,159-degree and -order 1-arc-minute model. 

GEOID99 and GEOID09 are the principle geoid models we use. The geoid models are relative to the 

WGS84 reference ellipsoid non-tide system in the convention of the International Terrestrial Reference 

Frame 2005. 

3.2. Adjustment from GPS Stations 

Adjustment for post-glacial and neotectonic (isostatic) changes were implemented by using Global 

Positioning System station position velocities at sites operated by US and Canada agencies for the 

International Terrestrial Reference System and the Earthscope Plate Boundary Observatory 

(http://pboweb.unavco.org) in Alaska and western Canada [35]. Realization of the station vertical 

velocities was in respect to the International Terrestrial Reference Frame 2005. GPS vertical velocities 

at fifty stations were fitted with a biharmonic spline surface satisfying minimum curvature using the 

technique of Sandwell [36]. This technique has become widely available and is incorporated in MatLab 

and Generic Mapping Tools programming packages [37]. 

3.3. GRACE 

The joint US-German (NASA-GFZ) Gravity Recovery and Climate Experiment (GRACE) provide 

nominal-monthly near-surface water equivalent mass changes [38,39]. The tandem satellites measure 

variations in gravity/mass indirectly through changes of the inter-satellite range and range rate from an 



Remote Sens. 2011, 3              

 

383 

initial orbit altitude of 485 km, in a controlled free-fall (down to about 200 km) non-repeating ground 

track mode. The mass changes are coupled to high accuracy onboard GPS and star-tracking 

instruments to reference them to the International Terrestrial Reference Frame 2005.  

In our study we used the Release-04 (R4) Level-3 grids provided by the GRACE Science Team 

centers. The global grids are 1-arc-degree water equivalent mass change complete to degree and order 

40 (ftp://podaac.jpl.nasa.gov/pub/tellus/monthly_mass_grids/). The GRACE solution to the gravity 

potential formulated as an equivalent water mass change (length scale) is given by 

 



h(,,t) 
aee
3w l0

40


(2l 1)

1 klm0

l

 WlPlm sin()[Clm(t)cos(m) Slm(t)sin(m)] 



W l  exp[
(lr /ae )

2

4 ln(2)
] 

(1)  

Plm: Normalized Legendre polynomials,  

Clm(t), and Slm(t): Normalized time-varying Stokes spherical harmonic geopotential coefficients,  

ae: Earth mean radius,  

r: spatial radius,  

kl: Love numbers,  

e: Earth mean density,  

w: water density,  

t: time, and ,  are latitude and longitude [38]. 

Beyond degree (order) 40 to 70, the inherent noise level in the mass change signal becomes 

significant [40]. Processing includes downward propagation and adjustments to remove the 

time-variable mass change effects from tides and atmosphere and mean variation (GRACE geoid 

model). A normalized Gaussian smoother filter removes striping artifacts produced by the orbit 

non-crossing and control-descent geometry [38-40]. Differences in processing (de-aliasing) and error 

sources and products are attributable to differences in assumed zero-degree and order Stokes 

harmonics, tide (liquid and solid) models and the modeled atmosphere mass change removal, 

respectively in decreasing order of magnitude [41,42]. 

The GRACE R4 Level-3 (300 km smoothing kernel) land and ocean monthly grids from August 

2002 through December 2008 were combined to give global coverage. Glacial isostatic adjustment 

(GIA), solid mass flow within the Earth’s mantle following the decay of the Pleistocene Laurentide and 

Cordilleran ice sheets in North America and Euro-Scandinavia is an adjustment we applied to the 

GRACE grids. We implemented this adjustment using a GIA grid that uses the ICE-5G (VM2) 

provided by the GRACE science team [43,44]. 

3.4. Snow Water Equivalent 

Global snow water equivalent estimates were derived from the NOAA Defense Meteorological 

Satellite Program by the Special Scanning Microwave/Imager (SSM/I) sensor [45]. We use data 

provided by the National Snow and Ice Data Center (NSIDC, http://nsidc.org/data/nsidc-0271.html). 

Snow water equivalent estimates in units of millimeters were derived using the horizontally polarized 
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difference algorithm for the 19 and 37 GHz channels from daily orbit swath acquisitions [46]. Missing 

retrievals due to swath coverage gaps are interpolated from neighboring swaths. Nominal spatial 

resolution is about 69 and 43 km
2
 of the principal retrieval channels. Retrievals are obtained from a 

field of view of up to 625 km
2
. Retrievals contain a mixed signal from terrain and vegetation types. 

Under-estimations can occur on extreme elevation mountains of complex geometry, along 

marine-coastlines where signals from ocean bodies are partly convolved, and the beginning and ending 

of the snow season when snow depths are thin and moist [47,48]. Noise from transitory atmosphere 

conditions is removed using a five-day filter. Monthly composite climatology is processed from daily 

passed-retrievals by averaging. Processed data are gridded in the equal-area scalable Earth (EASE) 

projection system at 25-km grid intervals. 

3.5. Watershed Runoff 

Measurements of surface water discharge (runoff) at gauge stations in the watersheds are provided 

by ArcticRIMS (http://rims.unh.edu), Arctic Freshwater Systems (http://nhg.unbc.ca/ipy/), in 

association with the US Geological Survey (http://waterdata.usgs.gov/ak/nwis). Over the 1950–2000 

period of the data bases (Arctic Eurasian rivers) the error level as a percentage of total annual discharge 

is about 1.5 to 3.5% [49]. On our shorter time period and fewer rivers stream-gauge measurements 

typically have an uncertainty in the 10% to 20% range [50]. Monthly discharge from 2002 through 

2008 at Pilot Station near the mouth of the Yukon watershed, gauge stations on the Colville River at 

Umiat, Kuparuk River and Sagavanirktok River near Deadhorse and Prudhoe Bay were used. Colville, 

Kuparuk and Sagavanirktok discharges were summed to give a single monthly time series for the 

Arctic coastal plain and foothills. We then derived annual time series of runoff by summing the 

monthly runoff from August through July periods. August through July was chosen as this period 

coincided with the GRACE time series instead of the typical water-year calendar convention. 

4. Method 

We derive area longitude-latitude extents of the Arctic coastal plain, foothills and the Yukon River 

watershed. The area-extents are used to extract GRACE and SSM/I data to compose regionalized time 

series of the mean, standard deviation and standard error. We compare these with monthly runoff for 

timing of winter snow water mass loading and spring surface water unloading. We then derive optimal 

least squares trends for comparison of trend gradients. 

4.1. Theory of Water Mass Changes 

On a global basis GRACE measures variations of the gravity field corresponding to the total change 

of mass from multiple sources [51,52]. On terrestrial non-glacier regions the mass changes will include 

those from snow, soil and vegetation moisture, lake storage, ground-ice, runoff and groundwater 

storage. Previously we found that the regionalized gradients of soil and vegetation moisture did not 

make significant contributions to regionalized total water equivalent storage change on the Arctic 

permafrost watersheds [18]. 
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The regionalized gradient of total water equivalent storage change from GRACE (TGRACE) is the 

sum of the gradients of sub-surface (groundwater storage change, G) and surface water storage 

change (runoff, R) 

TGRACE 



  G + R (2)  

In this algebra G is the unknown. Reducing TGRACE by R yields the regionalized gradient of 

groundwater storage change 

G 



  TGRACE − R (3)  

In our formalism the regionalized gradient of groundwater storage change includes second-order 

regionalized gradients of storage changes in lakes, active layers, hyporheic zones and ground-ice 

bodies. Therefore, Equation (3) forms our theory of measurement. We estimate uncertainties from the 

trends and formal errors trough the error propagation equation [53]. In this respect the estimate of the 

uncertainty of groundwater storage change gradient is the root sum of the squares of the uncertainties 

of GRACE total water storage change gradient and the area-average runoff gradient. 

In our formulation there exist the Hilbert Space , where the functions T, G and R exist and have 

sub-spaces , , and  [54]. T, G and R and the sub-spaces are linearly independent. Equation (3) 

formalizes a reduction of T by R in  to derive G. This is not the so-called hydrologic balance. In 

applications, our formalism is the same philosophy as employed in Geopotential Theory, also in 

Harmonic Analysis, to reduce the total potential (field) by the strongest component potentials (fields) 

to derive an unknown component potential (field) [55]. As such the derived potential (field) G may 

contain potentials (fields) of third and lesser order. 

We use geoid models GEOID99 and GEOID09 to compute a geoid-difference model. This model is 

adjusted by using a trend surface derived from GPS vertical rates to remove isostatic effects in the 

period from 1999 through 2009. In theory, on short time scales and with removal of atmosphere, tide 

and solid-Earth isostatic effects, geoid changes should reflect changes of surface and groundwater 

storage and flows. We note that the models GEOID99 and GEOID09 are not completely independent. 

Differencing them will remove common features and present a net change of the Earth’s geoid in 

Alaska and western Canada from 1999 through 2009. 

5. Results 

5.1. Regionalized Time Series and Gradients of Water Equivalent Mass Changes 

Regionalized time series of GRACE, SSM/I, and in situ measured runoff show monthly water 

equivalent mass variations within Alaskan Arctic coastal plain, foothills and the Yukon River 

watershed regions (Figure 3). Gradient and uncertainties of water equivalent mass change in units of 

thickness (cm) water equivalent mass change are given in Table 1 and graphically in Figure 4. 

The seasonal cycle of GRACE-derived water equivalent mass changes are evident within the Yukon 

watershed. The seasonal cycle of water equivalent mass changes within the Arctic foothills has a much 

smaller range, relative to the Yukon watershed. The seasonal cycle of water equivalent mass changes 

within the Arctic coastal plain had a much smaller range, relative to the Arctic foothills. On the Yukon 

watershed and Arctic foothills GRACE-derived minima occur in September–October and maxima 
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occur in April–May. SSM/I-derived snow water equivalent maxima occur in February–March with 

minima in June–September. Runoff-derived maxima occur in June with minima in December–April. 

Figure 3. Regionalized time series of water mass changes and trends. Symbols refer to 

GRACE (orange filled squares), SSM/I SWE (light blue filled diamonds) and monthly 

runoff MR (blue bars) with annual runoff (August through July, light blue filled circles). 

T-bars denote regionalized standard deviations. 
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Table 1. Regionalized Gradients of GRACE (water equivalent mass), SSM/I (snow water 

equivalent) and Runoff Changes from August 2002 through December 2008. 

A. Total Volume Change Rates 

Region GRACE SSM/I Runoff 

Arctic Coastal Plain +0.06 ± 0.14 km
3
/a +0.82 ± 0.36 km

3
/a −1.14 ± 0.31 km

3
/a 

Arctic Foothills −0.99 ± 0.25 km
3
/a +0.56 ± 0.42 km

3
/a −1.14 ± 0.31 km

3
/a 

Yukon Watershed −7.37 ± 2.76 km
3
/a +7.17 ± 3.51 km

3
/a +0.08 ± 2.55 km

3
/a 

B. Area-Average Thickness Change Rates 

Region GRACE SSM/I Runoff 

Arctic Coastal Plain +0.05 ± 0.13 cm/a +0.78 ± 0.35 cm/a −1.10 ± 0.31 cm/a 

Arctic Foothills −0.99 ± 0.25 cm/a +0.56 ± 0.42 cm/a −1.10 ± 0.31 cm/a 

Yukon Watershed −0.78 ± 0.29 cm/a +0.63 ± 0.38 cm/a +0.01 ± 0.38 cm/a 

In A. and B. runoff on the Alaskan Arctic coastal plain and foothills is integrated using 

the discharges from the Colville River (Umiat Station), Kuparuk River (Deadhorse), and 

Sagavanirktok River (Pump Station #3). 

Figure 4. Regionalized gradients and uncertainties from GRACE, SSM/I and runoff, with 

estimated groundwater storage change: (a) volume change rates and (b) area-average 

thickness change. The scale on the left pertains to the Arctic coastal plain and foothills and 

right side pertains to the Yukon River watershed. 

 

Runoff trends showed geographic variation north and south of the Brooks Range (Figure 4 and 

Table 1). The Alaska Arctic coastal plain and foothills have decreasing runoff. The Yukon River 

watershed shows steady (non increasing and non decreasing) runoff. The magnitudes of the uncertainty 

estimates, including the standard error of the trends are products of the short span of the time series.  
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In all cases the SSM/I trends are discordant with those from GRACE and annual runoff (Figure 4 

and Table 1). The Alaskan Arctic coastal plain, foothills and the Yukon River watershed all show snow 

water equivalent mass gains over the period from August 2002 through December 2008.  

Reduction of the GRACE total water equivalent mass change gradient by the runoff gradient yields 

an estimate of groundwater storage change (see section 4.1). The results indicate the Arctic coastal 

plain is gaining water equivalent mass (Figure 4 and Table 2). This contrasts with the Arctic foothills 

and the Yukon River watershed, which are losing water equivalent mass. 

5.2. Geoid-Difference Model Changes 

The geoid-difference model (Figure 5) shows negative geoid change gradients greatest on the large 

glaciers and high-elevation icefields along the mountains of central and southern Alaska and western 

Yukon [56-58]. Negative geoid change gradients are large on the western region of the Yukon 

watershed, predominately discontinuous zone, and are lesser through the remainder of the watershed, 

noted for relatively thin permafrost in the discontinuous and sporadic zones. Positive geoid change 

gradients are largest on Arctic coastal plain and the Mackenzie Delta region in the Northwest 

Territores, noted for their thick and ice-rich permafrost of the continuous zone and numerous thaw lake 

basins. The Yukon River watershed geoid change gradient is negative. The area-average geoid changes 

agree with the GRACE-derived regionalized groundwater storage change trends (Table 2). 

Figure 5. Geoid-difference model 1-arc minute (about 2-km) grid of geoid change from 

1999 through 2009. 
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Table 2. Regionalized Groundwater Storage Gradients from GRACE and Geoid-Difference Model. 

A. Total Volume Change Rates 

Region Groundwater Storage Change Geoid-Difference Change 

Arctic Coastal Plain +1.15 ± 0.65 km
3
/a +2.95 ± 1.97 km

3
/a 

Arctic Foothills +0.11 ± 0.68 km
3
/a −0.14 ± 1.37 km

3
/a 

Yukon Watershed −7.44 ± 3.76 km
3
/a −7.06 ± 1.04 km

3
/a 

B. Area-Average Thickness Change Rates 

Region Groundwater Storage Change Geoid-Difference Change 

Arctic Coastal Plain +1.10 ± 0.62 cm/a +2.83 ± 1.89 cm/a 

Arctic Foothills +0.11 ± 0.48 cm/a −0.13 ± 0.98 cm/a 

Yukon Watershed −0.79 ± 0.40 cm/a −0.78 ± 0.11 cm/a 

6. Discussions 

Permafrost distribution and talik configuration affect the characteristics of surface drainage and 

groundwater storage changes in Arctic watersheds [5,10,11,59-61]. Watersheds with a low percentage 

of permafrost and well-developed talik have base flow of about 80% of discharge [10]. In watersheds 

with a high percentage of permafrost and poorly developed taliks, discharge can be composed of about 

50% to 60% by base flow [10]. 

The active layer, the near-surface soil-earth layer that seasonally freezes and thaws is another factor 

in permafrost watersheds [59]. Changes in the active layer affect soil moisture and groundwater, 

ecological process and energy fluxes between the atmosphere and land [3]. Dynamics of permafrost, 

talik and active layer exert significant influences on surface and groundwater hydrology and 

geomorphology in the Arctic, and they are spatially non-uniform and nonlinear. 

6.1. Alaskan Arctic Coastal Plain 

The Arctic coastal plain of Alaska is a region of numerous and some quite large thermokarst thaw 

ponds, lakes and drained thaw lake basins [22,62]. These lakes reside in the thick ice-rich continuous 

permafrost zone. Their development and growth come by way of thermal processes at ice-wedge 

intersections and permafrost thawing with subsidence of the ground surface and increased thickness of 

the active layer [63]. Their elliptical shapes develop over time from thermo-erosion and wind-oriented 

waves that produce circulation cells. Over time, small ponds merge into large lakes, and some will 

drain when thermo-erosion and bank undercutting cause a breach [22,62]. Beneath the lake a talik 

(unfrozen soil) develops (closed talik) [59]. The talik’s lateral and vertical extent depend on the 

internal structure of the permafrost and on the temperature regime at the ground surface. Over time 

talik becomes an open talik and serves as an aquifer whereby lake water drains to become subsurface 

groundwater (increased groundwater storage) within or in some cases below the permafrost (where it is 

relatively thin on the order of 10 s of meters). This indicates surface water is being recruited for 

subsurface groundwater storage (including ice growth) and groundwater residence time is increasing. 

Additional groundwater storage changes (increasing) because of increasing numbers and area of thaw 

bogs, ponds and lakes. Independent research indicates lakes (including thaw bogs and ponds) have 

been increasing in the continuous permafrost zone in Eurasia and Alaska [17,63]. On the northern 
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Alaskan Arctic coastal plain there is similar evidence of thaw lakes increasing, lateral spillage channels 

(outflow) forming on lake margins, and new pingos also appear (Guido Grosse, Personal 

Communication, 2009). Recent evidence also point to increased thaw penetration, which increases 

active layer thickness on the Arctic coastal plain of Alaska [64]. In related research we find that 

GRACE-derived groundwater storage is increasing in the Lena and Yenisei River watershed regions of 

Eurasia [18]. These watersheds encompass large areas of the continuous and discontinuous permafrost 

zones and talik [65]. 

6.2. Yukon River Watershed 

An independent study of Yukon River watershed runoff indicates increasing groundwater 

(subsurface storage) contribution to streamflow (i.e., groundwater storage loss) that currently maintains 

annual discharge [27]. This study pointed, in general, to permafrost thawing during the last century 

climate warming as having enhanced deeper flowpaths. We hypothesize that permafrost degradation is 

accompanied by development of taliks (which act as subsurface flowpaths) allowing intra-permafrost 

groundwater (either held trapped or from thawing of ice rich layers) to enter streamflow thus offsetting 

a negative annual net precipitation (i.e., P-ET) in annual runoff. Furthermore, independent research 

indicates decreasing lake numbers and areas in the discontinuous permafrost zone [17,59,66]. 

Therefore, a component of the groundwater loss can be attributed to thaw lake shrinkage (drainage) in 

the Yukon River watershed of Alaska and Yukon Territory. In related research we found that 

GRACE-derived groundwater storage is decreasing in the Mackenzie River watershed of Canada, and 

groundwater storage is stable, i.e., unchanged, in the Ob’ River watershed of Eurasia [18]. The 

Mackenzie watershed is well noted for its predominately discontinuous permafrost extent and the Ob’ 

River watershed has relative little extent of discontinuous permafrost [67]. 

6.3. Hypothesis 

We hypothesize the changes of groundwater storage are associated with changes of surface water 

mass in thaw bogs, ponds, and lakes, and in subsurface water mass, possible including ice, in 

permafrost zones. Furthermore, we hypothesize the water mass changes are linked to changes in the 

character and distribution of permafrost, talik, and the active layer:  

1. Increase in permafrost degradation, 

2. Development of new closed- and possible open-taliks within the continuous permafrost zone, 

3. Expansion of existing closed- and open-taliks and new open-taliks accompanying by decrease in 

volume occupied by permafrost in the discontinuous and sporadic permafrost zones, 

4. Increase of taliks and active layer thickness beneath thaw lakes and rivers (increase of thaw lakes 

in the continuous zone and decrease of thaw lakes in the discontinuous and sporadic zones). 

These physical changes in permafrost, talik and active layer serve to seasonally increase surface 

water storage on the Barrow Peninsula region and also to remove a portion of runoff for recruitment 

into subsurface groundwater storage.  
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Within the Yukon River watershed, the lateral reduction of permafrost, development of new 

open-taliks beneath thaw bog, pond, lake and river bed allows for the removal of surface water storage 

(thaw ponds and lakes) into groundwater storage and a portion of the groundwater storage is being 

recruited into runoff. Our findings agree with observations that thaw lakes have increased in the 

continuous permafrost zone and have decreased in the discontinuous permafrost zone [17,59,63,66]. 

The changes of permafrost, talik and active layer will affect groundwater residence times. On the 

Arctic coastal plain of Alaska groundwater residence time will increase as surface water is recruited 

into groundwater storage. On the Yukon River watershed groundwater residence time will decrease as 

groundwater leaves storage and becomes part of the river runoff (i.e., discharge). This effect is in part 

due to the increased presence of taliks on watersheds and beneath riverbeds and serves to enhance 

exchange (both recruitment and export) of shallow groundwater and river water [67]. 

The character and changes of permafrost is strongly dependent on surface air temperature and snow 

cover [3,4,16]. Permafrost warming in Alaska was coincident with warming of air temperatures that 

began most strongly in 1976/77 in a step-like function. The Arctic coastal plain air temperatures 

warmed by up by 2 to 3 °C, on average, and the Yukon River watershed air temperatures warmed up by 

1 °C. Surface thawing of permafrost on tundra and forest sites in Alaska was about 0.1 m/a at some 

locations. Basal thawing at one site was about 0.04 m/a, and accelerated to 0.09 m/a [16]. Talik 

provides a path for surface water to enter permafrost from above, and for groundwater to join river 

runoff as base flow. 

On longer time scales, significant changes of permafrost and linked responses to climate and 

ecosystems (water cycle and carbon stocks) have occurred [6,7,10,68]. Modeling of the regional 

permafrost environments with general circulation model scenarios suggests significant changes in 

permafrost distribution are likely over the next century [69,70].  

7. Conclusions 

Analysis of GRACE and runoff data allow for estimates of the changes in groundwater storage. Our 

results indicates from 2002 through 2008: 

1. Alaska Arctic coastal plain groundwater storage is increasing at 1.15 ± 0.65 km
3
/a equivalent to an 

area-average is equivalent thickness rate of 1.10 ± 0.62 cm/a. 

2. Yukon River watershed groundwater storage is decreasing at 7.44 ± 3.76 km
3
/a equivalent to and 

area-average water equivalent thickness rate of 0.79 ± 0.40 cm/a. 

Analysis of NOAA gravimetric geoid models with isostatic glacial adjustment from continuous GPS 

stations indicates geoid changes from 1999 through 2009: 

1. Alaska Arctic coastal plain area-average geoid change of +2.83 ± 1.89 cm/a equivalent to 

+2.95 ±  1.97 km
3
/a. 

2. Yukon River watershed area-average geoid change of -0.78 ± 0.11 cm/a equivalent to 

−7.06 ± 1.04 km
3
/a. 

We hypothesize these groundwater storage changes are linked to the development of new  

closed- and possibly open-taliks within the continuous permafrost zone associated most strongly with 
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the thaw ponds and lakes of the Barrow region of the Alaskan Arctic coastal plain, and expansion of 

existing closed and open-taliks and new open-taliks accompanied by decreasing volume occupied by 

permafrost in the discontinuous and sporadic permafrost zones of the Yukon River watershed in 

Alaska and Yukon Territory. Furthermore, our results support observations of increased bogs, ponds 

and lakes in the continuous permafrost zone and decreased bogs, ponds and lakes in the discontinuous 

permafrost zone. These changes have the potential of reducing groundwater residence-time by storage 

depletion (Yukon River watershed) and conversely increasing groundwater residence-time (Alaska 

Arctic coastal plain) by surface water recruitment into groundwater storage. 
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