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Abstract: Through the application and use of geospatial data, this study aimed to detect 
and characterize some of the key environmental drivers contributing to landscape-scale 
vegetation response patterns in Central Asia. The objectives of the study were to identify 
the variables driving the year-to-year vegetation dynamics in three regional landscapes 
(desert, steppe, and mountainous); and to determine if the identified environmental drivers 
can be used to explain the spatial-temporal variability of these spatio-temporal dynamics 
over time. It was posed that patterns of change in terrestrial phenology, derived from the 
8 km bi-weekly time series of Normalized Difference Vegetation Index (NDVI) data 
acquired by the Advanced Very High Resolution Radiometer (AVHRR) satellites  
(1981–2008), can be explained through a multi-scale analysis of a suite of environmental 
drivers. Multiple linear stepwise regression analyses were used to test the hypotheses and 
address the objectives of the study. The annually computed phenological response 
variables or pheno-metricstime (season start, season length, and an NDVI-based productivity 
metric) were modeled as a function of ten environmental factors relating to soil, 
topography, and climate. Each of the three studied regional landscapes was shown to be 
governed by a distinctive suite of environmental drivers. The phenological responses of the 
steppe landscapes were affected by the year-to-year variation in temperature regimes. The 
phenology of the mountainous landscapes was influenced primarily by the elevation 
gradient. The phenological responses of desert landscapes were demonstrated to have the 
greatest variability over time and seemed to be affected by soil carbon content and  
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year-to-year variation of both temperature regimes and winter precipitation patterns. 
Amounts and scales of observed phenological variability over time (measured through 
coefficient of variation for each pheno-metrictime) in each of the regional landscapes were 
interpreted in terms of their resistance and resilience capacities under existing and 
projected environmental settings.  

Keywords: remote sensing; phenology; climate; modeling; Central Asia  
 

1. Introduction 

Environmental drivers like climate, topography and soil properties affect vegetation dynamics at 
different spatial and temporal scales, ranging from instant to long-term and from local to regional 
scales. This makes the assessment of their response and ecological processes complex because due to 
the spatial and temporal scale dependence of drivers, the landscape-scale responses that are the most 
substantial for a specific place and time might be less important in other space or time scales. The 
development and advancement of the field of landscape ecology plays an important role in the attempts 
to unravel complex and interrelated landscape-scale terrestrial response dynamics, their drivers, and 
consequences. Various digital biophysical datasets (e.g., vegetation indices) represent an essential part 
of environmental assessments and have become particularly important when studying the pace and 
extent of landscape change dynamics across space and time [1–5].  

While much attention has been given to predictive modeling of climate scenarios at regional to 
global scales, the scales at which the interplay of environmental factors will impact landscape-scale 
vegetation response across time and space has received far less emphasis. A more nuanced 
understanding of this matter will be an important contribution to the field of global change research. 
Notably, such research can provide insight and interpretation of climate and environmental change in 
Central Asia, a region that has had limited attention from the international scientific community [6]. 
Therefore, through the application of geospatial data, this study proposed to detect, document, and 
explain the environmental drivers contributing to landscape-scale vegetation response patterns in 
Central Asia, an arid region that occupies about four million km2 in the heart of Eurasia. Specifically, 
the objectives of this research were to develop a spatially explicit model for various regional 
landscapes of Central Asia, to (1) identify the key environmental variables driving annual (the  
year-to-year) vegetation dynamics in each regional landscape and (2) determine if the identified 
environmental drivers can be used to explain the variability—the tendency for deviation in the 
response—detected in vegetation dynamics across time. Terrestrial vegetation is often viewed as the 
most overt evidence of biological response to climatic and other environmental factors [7,8], and 
because of this notion, land surface phenological variables were used in this study as a measure of 
landscape-scale response to environmental drivers [1,9,10]. 

The main hypothesis of this study is that the patterns of change in land surface phenology can be 
identified through a multi-scale analysis of environmental drivers and can be expanded into two related 
hypotheses. First, there is a set of particular environmental drivers that consistently drive vegetation 
dynamics from year to year in a given region. Second, regional-scale landscapes will demonstrate 
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unique yet predictable combinations of spatially explicit (e.g., in accordance with latitudinal and/or 
altitudinal gradients) phenological responses to these environmental drivers, enabling such drivers to 
be used as landscape-scale predictors of variability in vegetation response over time.  

Variability in response patterns is often associated with the concepts of stability in a given 
ecosystem [11,12], and measures of variability are used to describe characteristic features of sensitivity 
to change of that ecosystem. Ecosystem sensitivity to change, as a response to short-term perturbations 
and long-term stressors, is a function of environmental factors at various temporal and spatial 
scales [13,14], and depends on two components that make up the concept of ecosystem stability: the 
capacity to withstand perturbation while maintaining regular functioning (resistance), and the ability to 
recover structural and functional attributes from perturbation (resilience) [12,15,16]. Some systems 
may exhibit a higher degree of resistance than resilience; moreover, the systems that demonstrate high 
resistance and high resilience are expected to be the most stable systems (Table 1). Hence, it can be 
argued that ecosystems which have low resistance and high resilience capabilities are more able to 
adapt to long-term environmental change than ecosystems with high resistance and low resilience 
capabilities, as the latter may lose their recovery and functioning abilities with long-term stress. For 
instance, healthy woodland systems of the mountainous regional landscape of Central Asia might be 
comparatively resistant to fire due to the protective bark structure and relatively high moisture content 
of the soil [17,18]. But if these systems catch fire and burn due to prolonged regional droughts, their 
recovery rate (resilience capability) might be relatively low and the systems may never return to their 
initial states. On the other hand, the grassland vegetation of the dry deserts and steppe areas of Central 
Asia might not be ostensibly resistant to fire [19], but it might recover quickly, exhibiting high 
resilience qualities [20].  

Table 1. Conceptual framework: resistance and resilience capacities of some ecological systems. 
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2. Methods and Analysis 

2.1. Study Area 

This study was conducted in Central Asia and included five countries: Kazakhstan, Kyrgyzstan, 
Tajikistan, Turkmenistan, and Uzbekistan (Figure 1). The study area was stratified based on three 
distinct biome types based on Köppen’s climate classification [7] as used in Smith and Smith [21], 
resulting in three regional landscapes that include (1) a semi-steppe and steppe area; (2) a mountainous 
area; and (3) a semi-desert and desert area. 

The semi-steppe and steppe area [22], referred to as the steppe regional landscape in this study 
henceforward, comprises the territory of Kazakhstan (Figure 1) of about 2.7 million km2. Key features 
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of this regional landscape are a general absence of trees, and a continental climate [22] with maximum 
precipitation in summer and minimal precipitation in spring and fall seasons [23]. The steppe regional 
landscape’s vegetation response patterns are assumed to be governed mostly by the climate regimes 
that follow a very clear latitudinal gradient [24]. 

Figure 1. Map of study area extent with areas of the three regional landscapes vegetation 
responses that were assessed through modeling of their pheno-metrics: steppe regional 
landscape outlined by the green color; mountainous regional landscape outlined by the 
purple color; and desert regional landscape outlined by orange color. The map also 
demonstrates locations of the rainfed and irrigated agricultural areas excluded from the 
analysis.  
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The area of the mountainous regional landscape incorporates the territories of Tajikistan and 
Kyrgyzstan (Figure 1), covering about 135 thousand km2. The mountainous regional landscape 
represents a key focal point in the Central Asian landscape that experiences adverse effects of the rapid 
rates of climate change [25–27]. The snow pack and glaciers in the high mountains of the Tien Shan 
and Pamir, located in this area, are the origins for numerous rivers meandering through the Central 
Asian terrain and constitute about 70% and 21% of the total fresh water resources of the Central Asian 
region, respectively [28]. Intensified melting of the glaciers and snow pack occurs under conditions of 
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warming climate [25] is expected to lead to a decrease of glacier areas by about 20% in the next two 
decades [27], causing temporary increases in runoff and river flow, overflowing and flooding of 
existing mountain lakes, and the increasing loss of melt water due to evaporation caused by warmer 
temperatures. This regional landscape is characterized by the highest amount of rainfall distribution in 
Central Asia, which peaks in late winter and early spring and totals 800 to 2,000 mm per year [29]. 
The vegetation dynamics of the mountainous regional landscape are expected to be driven mostly by 
temperature thresholds along the altitudinal gradients [30] and exhibit patterns of clinal variation—a 
gradual phenotypic and/or genetic variation over a geographical area—similar to those observed across 
the latitudinal gradient of the steppe regional landscape [31]. Similarity, altitudinal and latitudinal 
patterns can elicit responses to the same environmental factors, i.e., spatial clines in climate and 
energy [32].  

The semi-desert and desert regional landscape comprises the territories of Turkmenistan and 
Uzbekistan (Figure 1) and will be referred to as the desert regional landscape in the study hereafter. 
This regional landscape covers approximately one million km2 and is predominantly represented by the 
sandy Karakum and Kyzylkum deserts [33]. Major freshwater resources for this regional landscape 
come from the perennial rivers that are fed by seasonal melt water from the snow packs and glaciers of 
the mountainous regional landscape. The vegetation dynamics of the desert regional landscape are 
assumed to be mostly precipitation-driven [30], as this regional landscape is characterized by the 
lowest amount of precipitation in Central Asia [27]. It receives about 75–100 mm precipitation per 
year peaking in the spring [23].  

2.2. Datasets 

Response Variables: Deriving Metrics of NDVI-Based Vegetation Dynamics 

Annual phenological metrics (pheno-metrics) for the study sites were derived from the 1981–2008 
time-series of biweekly (15 days) composited 8-km Normalized Difference Vegetation Index (NDVI) 
values of the Global Inventory Modeling and Mapping Studies (GIMMS) project acquired by the 
Advanced Very High Resolution Radiometer (AVHRR) sensors 7, 9, 11, 14, 16 and 17 on board the 
National Oceanic and Atmospheric Administration (NOAA) satellite platforms; the NDVI data were 
calibrated and corrected for view geometry, volcanic aerosols, and other miscellaneous issues that 
were not related to vegetation response [34,35]. The source for this data set was the Global Land Cover 
Facility (www.landcover.org). These NDVI data are widely used for time series trend analysis [36,37], 
because of the efforts by the producers to minimize inconsistencies [34,35]. The NDVI time-series 
dataset spans 28 years, 24 images per year, resulting in 672 gridded images with observations of 
vegetation dynamics. TIMESAT time-series analysis software was used to extract metrics of 
vegetation dynamics (phenological metrics) for each year (1981–2008). An adaptive Savitsky−Golay 
smoothing filter [38] was used because it maintains distinctive vegetation time-series curves and 
minimizes various atmospheric effects [39,40]. For the purpose of this study, two timing and one 
greenness metrics were used: (1) the start of growing season, the time when base NDVI value has 
increased by 20% [40] of the distance between the pre−season minimum and the seasonal maximum; 
(2) the length of growing season, the difference between the start and end dates of the growing season; 
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and (3) the integrated NDVI (large integral), for the season. We used a consistent start of growing 
season NDVI threshold (20%; other thresholds were used with less success) to optimize our 
interannual phenological retrieval rate for pixels with a seasonal response, while maintaining a start of 
season that relates to the beginning of the increase in photosynthetic activity. The use of this threshold 
could introduce a bias (an earlier SOS would be expected with lower threshold and a later season start 
with a higher threshold), but is not likely impacting the relationship between response and explanatory 
variables. The timing based pheno-metrics are important indices that can characterize seasonal 
photosynthetic thresholds and patterns among different vegetation types and along latitudinal and/or 
altitudinal gradients. These metrics are also quite informative when considering the capacity of 
vegetation types to assimilate carbon during their growing season [41,42]. Metrics integrating NDVI 
values over the growing season are often used as a proxy measurement for seasonal vegetation 
productivity [43], and in this study the large integral is used as an NDVI-based productivity metric. 
Each of the selected metrics was accordingly expected to reveal unique spatio-temporal response 
patterns to environmental drivers in each of the studied regional landscapes.  

Explanatory Variables: Obtaining Key Environmental Drivers 

The suite of potential explanatory environmental variables hypothesized as drivers of the vegetation 
dynamics measured in this study included climate, soil, and topography characteristics. To address 
potential multicollinearity, a common issue when interpreting outputs of multiple regression models, 
interdependency among all the explanatory variables was assessed to ensure that their 
interrelationships had lower coefficients of determination than R2 = 0.64 (or correlation coefficient 
R = ±0.8) [44,45]. Consequently, ten environmental variables were used, among which were eight 
seasonal precipitation and temperature-based variables (out of 10 climate variables considered), one 
topography-based factor (of 3 considered), and one soil-based variable (of 7 considered) (Table 2). 

Climate-based data included the mean monthly precipitation (mm) and temperature (°C) data 
available from the Global Land Data Assimilation System (GLDAS) modeled dataset with one degree 
of spatial resolution [46]. The climate dataset [46] represents synthetic data from the land surface 
models (uncoupled from the atmospheric models) forced with precipitation gauge observations, 
satellite data, radar precipitation measurements, and output from numerical prediction models [47]. 
From the GLDAS data, seasonal temperature and precipitation data were calculated from 1980 to 
2008, to coincide with the available temporal extent of the NDVI-based metrics. Four seasons were 
created for (cumulative) precipitation and (average) temperature variables: the winter season included 
December, January, and February (DJF); the spring season included March, April, and May (MAM); 
the summer season consisted of June, July, and August (JJA), and the fall season included September, 
October, and November (SON). Because fall season variables demonstrated high multicollinearity to 
other seasonal variables, fall temperature and precipitation were not included in the phenological 
modeling phase. However, antecedent fall temperature and precipitation did not demonstrate clear 
collinear behavior and therefore were incorporated in the modeling effort to account for possible lags 
in phenological responses.  
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Table 2. Response and both stable (s) and dynamic (d) explanatory variables to be used in 
the regression and correlation models. The unused explanatory variables are listed as well. 

Pheno-metrics as 
response variables 

Explanatory factors 
Used Unused 

Start of growing season Antecedent fall T° (d) *EVPT (d) 
Length of growing season Winter T° (d) *Total canopy water storage (d) 
Integrated NDVI value  Spring  T° (d) *Surface runoff (d) 
 Summer T° (d) *Subsurface runoff (d) 
 Antecedent fall precipitation (d) *Sensible heat flux (d) 
 Winter precipitation (d) *Latent heat flux (d) 
 Spring  precipitation (d) *Near surface specific humidity (d) 
 Summer precipitation (d) *Surface pressure (d) 
 Topography: Elevation (s) Topography: Slope (s) 
 Soil carbon content (s) Topography: Aspect (s)    
  Soil nitrogen content (s) 
  Soil field capacity (s)    
  Soil wilting point (s) 
  Soil available water capacity (s) 
  Soil thermal capacity (s) 
  Soil bulk capacity (s) 
*Climate variables for five seasons: antecedent fall (SON), winter (DJF), spring (MAM), summer 
(JJA), fall (SON). 

The dynamics of vegetation in a given ecosystem are influenced not only by the weather but also by 
topography and soil properties of the system. Elevation values (m) were derived from the World 
Digital Elevation Model (DEM) file, included in the sample datasets of ENVI software. The DEM data 
were 0.1 degree of spatial resolution. The global gridded surfaces of selected soil characteristics from 
the Global Soil Data Task Group International Geosphere−Biosphere Programme (IGBP−DIS) dataset 
were used to represent soil variables within the study sites [48]. The carbon content variable showed 
the highest spatial variability after being tested for multicollinearity among seven soil-based metrics 
(soil carbon content, total nitrogen content, field capacity, wilting point, profile available water 
capacity, thermal capacity, and bulk density) and was selected to represent a soil-based explanatory 
metric. Calculated quantities of the carbon content at a depth of 0–100 cm were extrapolated and 
interpolated from point locations to values representing areas by linkage to soil maps to represent 
gridded carbon content values (kg/m2) at five arc-minutes (0.083333 degree) spatial resolution [48].  

All explanatory variables were resampled to 8 km to match the spatial resolution of the 
phenological response metrics. Climate-based variables were temporally dynamic explanatory metrics 
that were used to account for changes in vegetation responses over space and time. Soil- and 
topography-based drivers, stable over time, were used to characterize spatial variation of the response 
patterns. All the pixels identified as either irrigated or rainfed cropland (Figure 1) were removed from 
the analysis to avoid the effect of these land cover types on the evaluation of vegetation dynamics in 
non-cropland areas, the primary focus of this research. Cropland was identified using the Global 
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Irrigated Agriculture Map (GIAM) dataset [49] and the Global Map of Rainfed Cropland Areas 
(GMRCA) dataset [50] respectively, available from the International Water Management Institute web 
portal [51].  

2.3. Phenological Modeling Methods: Analyses and Testing Hypothesis  

What Environmental Factors Drive Spatial and Temporal Variation in Vegetation Dynamics?  

To address the study’s first hypothesis, the year-to-year response of the three selected  
pheno-metrics to all ten environmental explanatory variables was assessed. For each phenol-metric, 
stepwise multivariate regression models were run for each of the 28 years (1981–2008) in each of the 
three studied regional landscapes separately, totaling 252 models run for this stage of the analysis. The 
annual variation in each of the pheno-metrics was modeled as a function of environmental factors at 
yearly time steps: 

Pheno-metrica = f (xs, xd,a) (1) 

where x identifies the suite of both stable (s) and dynamic (d) environmental factors and a = 28 years 
(Table 2). Each response metric was analyzed using a unique suite of environmental variables that was 
most relevant to the metric’s spatio−temporal variation. Model results were examined to determine the 
most frequently appearing yearly drivers of vegetation dynamics in each of the regional landscapes, 
and to assess the causes of variation in these dynamics across time. Additionally, measures of 
explanatory power (adjusted R2) were obtained for individual explanatory variables (simple linear 
regression model) that contributed significantly (p <= 0.05) to each of the models: 

Pheno-metrica = f (xa)  (2) 

This statistic was then used for a separate level contribution assessment of each of the ten 
environmental variables. 

What Environmental Drivers Explain Phenological Variability (COV) across Time (28 yrs)?  

To address the second hypothesis determining whether the identified environmental factors explain 
detected variability in vegetation dynamics across time, the COV, the ratio of the standard deviation 
and the mean, for each phenol-metric was used as a measure of variability in the vegetation dynamics 
over time [52,53]. Higher COV values are associated with higher susceptibility to the changes in 
environmental drivers of a given system, and often are used to represent the vulnerability and 
resilience properties of that system [52,54–56]. Antle et al. [54] simulated the effects of climate 
change on land use and net returns to grain production systems by using the COV as a measure of 
vulnerability to climate change with and without adaptation in agricultural production systems, and 
argues that adaptive capacity is associated with lower COV values. Hurd et al. [55] studied the impact 
of climate change projections on key aspects of water supply and used COV as a measure of 
vulnerability, and states that high variability (high COV) values are indicative of the areas that are 
closer to system thresholds and are vulnerable to substantial adverse effects of climate change. 
Luers [57] used COV values as a linked measure of sensitivity and exposure of the system to 
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characterize relative vulnerability of a variable of concern (agricultural yield) to a set of forces 
of disturbance.  

In this study, COV values are viewed as measures of temporal variability of annual phenological 
responses, to represent the given systems’ stability: 

COV (Pheno-metrica) = f ( )ads xx ,,  (3) 

where xs are the stable (soil and elevation) environmental factors and adx ,  are the seasonal  

climate-based explanatory variables, which were averaged across the 28 years to avoid 
pseudoreplication. To assess the relative variability in the pheno-metrics’ responses among the 
regional landscapes, the COV values were calculated using the inputs from the entire extent of Central 
Asia, not for each regional landscape separately. The explanatory drivers included in these series of 
models were the variables that contributed explanatory power to the multilinear regression models 
during at least 14 out of 28 years. In total, nine regression models were run for this step of the analysis, 
i.e., a model for each of three pheno-metrics for three regional landscapes. The residuals for the three 
regional landscapes—the difference between actual COV values of the NDVI-based pheno-metrics and 
their modeled outputs from the nine regression models—were mapped to identify and compare spatial 
patterns in the variation that was not explained by the models.  

In this study area, although it is expected that the mountainous regional landscape will demonstrate 
the least variability over time (lowest COV), these values will not necessarily be indicative of higher 
resilience capabilities of this regional landscape but rather of high resistance capabilities (Table 1), 
which might be due to the species richness and altitudinal heterogeneity of the system, e.g., the species 
longevity capacities that tend to follow the elevation gradient of plant growth forms ranging from 
herbs to trees [58–60]. The temperature-driven variability patterns of the steppe regional landscape are 
also expected to be indicative of the sensitivity to change in this regional landscape: higher COV 
values mean that the systems are susceptible to change due to low resistance capabilities, while lower 
COV values mean higher resistance capabilities under current and projected climate variability 
impacts. The healthy systems of this regional landscape are expected to have higher resistance and 
higher resilience capabilities (Table 1) to natural perturbation events, as the undisturbed steppe 
vegetation communities culminate with high biodiversity, productivity and ecosystem stability 
concurrently [61]. Finally, because phenological responses of the desert regional landscape are 
precipitation-driven, they are expected to have higher variability (higher COV) values than those of the 
steppe regional landscape. Higher variability values are assumed to be indicative of lower resistance, 
and also might be indicative of either high (if the system maintains its heterogeneity) or low (degraded 
biodiversity) resilience capabilities of the desert regional landscape (Table 1). It should be noted that 
COV data might be very sensitive to areas with low vegetation cover, such as desert landscapes, and 
the interannual land surface phenological variations detected in these regions could partially be due to 
changes in soil surface reflectance, as well as due to the affects of calibration and atmospheric 
correction [56]. In areas with high vegetation cover, such as in the northeastern region of Brazil, 
variation in the COV values helped to detect seasonal oscillations in vegetation dynamics when high 
COV values were detected during the dry seasons [52].  
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3. Results and Discussion 

3.1. Yearly Models of Yearly Spatial Variation in Vegetation Dynamics as a Function of Climate, Soil, 
and Elevation Factors  

In examining the functional relationship between the three NDVI-based metrics and the ten 
environmental drivers to explain the year-to-year variation in vegetation dynamics across the three 
regional landscapes of Central Asia (Appendices A1–A9), each environmental driver explained a 
comparable amount of variation in the pheno-metrics for each of the regional landscapes (Figures 2–4). 
Generally, the number of explanatory variables contributing to the spatial variation of the NDVI-based 
phenological metrics for all three regional landscapes across years was higher for the productivity 
metric than for the start and length of season timing metrics (Figure 5). Among the ten explanatory 
variables, summer temperature consistently contributed the least explanatory power to the spatial 
variation in NDVI-based phenological responses in all three regional landscapes and all 28 years 
(Figure 5). All the outputs displayed and discussed in this study contributed significantly (p ≤ 0.05) to 
the regression models. The following sections describe the modeling results for each of the three 
regional landscapes. 

Steppe Regional Landscape 

The temperature regimes were expected to be the most obvious and important factors affecting 
vegetation dynamics in the steppe regional landscape. Generally, climate variables were most 
frequently used and contributed the highest explanatory power in this region’s models of the  
NDVI-based vegetation dynamics (Appendices A1–A3 and Figure 2).  

The spatial variations in start of season were explained more consistently across years by climate 
drivers than by topography and soil drivers (Appendix A1). Generally, temperature regimes had 
consistently the most variation explained in start of season from 1981 to 2008 (Appendix A1 and 
Figure 2(A)). After holding the effect of all other variables constant, higher spring temperature and 
lower antecedent fall and winter temperature regimes were most highly related to earlier growing 
season start dates (Appendix A1). Among all environmental drivers, summer temperature regime 
showed the lowest number of years impacting the start of season: the summer temperature variable was 
present only during 10 years among 28 years of observations (Appendix A1). In all 28 years, at least 
six of the ten environmental variables contributed to the explanation of variation in start of season 
(Appendix A1). Explained variation in start of season by the selected environmental drivers varied 
from year to year and was highest in 1986, reaching 44% or an adjusted R2 of 0.44 (will be referred as 
a percentage of variation explained hereafter), and was the lowest at 8% in 1985 and 2000 
(Appendix A1). Separately, spring temperature explained the most spatial variation in start of season 
dates, having on average about 8% explained variation (Figure 2(A)).  

Spatial variations in the length of season for the steppe regional landscape (Appendix A2) were 
explained well by elevation and spring precipitation patterns, with both metrics contributing to the 
best-fit models during 27 of the 28 years of observations (Appendix A2), and relating to shorter season 
length with increased rainfall and higher altitude after the effect of all other explanatory variables was 
held constant. Summer temperature had the fewest occurrences in the models, being present during 
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only 13 of the 28 years (Appendix A2), but when assessed separately, it contributed on average the 
highest (9%) amount of explained spatial variation in the season length (Figure 2(B)). At least five of 
the ten environmental drivers related to the variation in length of season each year (Appendix A2). 
Across years the explained spatial variation in length of season did not exceed 42% (1986) and was 
lowest at 5% (1993) (Appendix A2). 

Figure 2. Yearly adjusted R2 values obtained for each of the response variables and their 
corresponding ten explanatory variables for the steppe regional landscape. (A) Start of the 
growing season. (B) Length of the growing season. (C) The NDVI-based productivity metric. 
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The spatial variations in the NDVI-based productivity metric for the steppe regional landscape were 
most consistently explained across years by soil carbon content, which was present in all 28 years 
(Appendix A3) and individually explained about 10% of variation on average (Figure 2(C)). Higher 
carbon content of soil led to higher values of the NDVI-based productivity metric (Appendix A3) 
when the effect of all other explanatory variables was held constant. Antecedent fall temperature was 
also consistently present in the models, occurring in 27 years (Appendix A3). Elevation had the lowest 
explanatory power (on average less than 1%) for the NDVI-based productivity metric, while 
antecedent fall, current winter, and spring temperature variables individually explained about 15% of 
spatial variation on average and up to 35% in some years (Figure 2(C)). NDVI-based productivity 
models incorporated at least seven of ten environmental variables across the years (Appendix A3). 
Spatial variations in the NDVI-based productivity metric for the steppe regional landscape explained 
by the model and selected environmental factors ranged between years, from 8% (2008) to 48% (1983) 
(Appendix A3).  

Mountainous Regional Landscape 

Across years, the total number of environmental variables that explained spatial variation in  
NDVI-based vegetation dynamics in the mountainous regional landscape (Appendices A4–A6) was 
less than that for the steppe regional landscape (Appendices A1–A3). Elevation explained the highest 
amount of spatial variation (Figure 3) and was one of the most frequent drivers explaining the variation 
in vegetation dynamics of the mountainous regional landscape across years (Appendices A4–A6). The 
explanatory power of the climate variables was lower than that of elevation, which is often viewed as a 
proxy for climate when assessing vegetation dynamics along elevation gradients [45] as temperature 
decreases and precipitation often increases at higher altitudes [62]. However, in this region, whereas 
temperature variables seemed to be overshadowed by the elevation variable in explaining spatial 
variation, precipitation variables contributed quite consistently to the best-fit models during the 
28 years. 

The spatial variation in start of season in the mountainous regional landscape was most consistently 
explained by elevation and precipitation (Appendix A4). Higher elevation related to later season start 
dates when all the other explanatory variables were taken into consideration. Furthermore, when 
individual contribution of each environmental variable was examined, elevation contributed the most 
explanatory power, which on average was about 10% and reached up to 26% (1993) (Figure 3(A)). 
Although elevation values were not considered as a biophysical parameter, they served as a good 
proxy for temperature and precipitation constrains that vary with altitude, especially given the 
limitation of coarser spatial resolution of climate variables. The number of environmental variables 
explaining spatial variation in season start was as low as one (elevation, in 1984) and did not exceed 
nine variables in any given year (Appendix A4). For any of the 28 years the explained spatial variation 
in start of season by the set of selected explanatory drivers did not exceed 29% (1992) and was the 
lowest at 7% (1986; Appendix A4). 
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Figure 3. Yearly adjusted R2 values obtained for each response variable and their 
corresponding ten explanatory variables for the mountainous regional landscape. (A) Start 
of the growing season. (B) Length of the growing season. (C) The NDVI-based 
productivity metric. 
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The spatial variation in the length of season for the mountainous regional landscape was best 
explained by the soil carbon content and precipitation patterns across years (Appendix A5). Higher 
carbon content values related to shorter season length other variables were held constant 
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(Appendix A5), which can be explained by the fact that soil carbon content varied with altitude and 
represented a proxy for soil moisture content in this regional landscape. Winter temperature 
contributed the least number of times to all models explaining spatial variation in length of season, 
being present during only six of 28 years (Appendix A5). Soil carbon content and elevation had the 
highest explanatory power at the individual level, each having on average about 15% of explained 
variation (Figure 3(B)). The number of environmental variables explaining spatial variation in season 
length ranged from three to nine variables across years (Appendix A5). The whole-model explanatory 
power of environmental drivers among all yearly season length models ranged from 5% (1990 and 
1995) to 38% in 1994 (Appendix A5). 

The spatial variations in the NDVI-based productivity metric for the mountainous regional 
landscape were most consistently explained by elevation, which was present in all 28 years 
(Appendix A6) and individually explained on average about 25% of variation across years (Figure 3(C)). 
Values of the NDVI-based productivity metric decreased with higher elevation when all other 
explanatory variables were held constant (Appendix A6), which is probably due to cooler temperature 
with higher altitude. Winter precipitation had the lowest separate explanatory power (on average about 
2%) for the NDVI-based productivity metric (Figure 3(C)). Summer temperature occurred the fewest 
times in the multilinear regression models for the NDVI-based productivity metric, present in 12 of the 
28 yearly models (Appendix A6). The number of explanatory factors of spatial variation in  
NDVI-based productivity values ranged from four to ten variables per year (Appendix A6). The power 
of studied environmental drivers to explain spatial variation in the NDVI-based productivity metric 
ranged from 22% in 1991 to 44% in 1986 (Appendix A6). 

Desert Regional Landscape 

Because deserts are generally pulse-driven systems, the selected precipitation variables were 
expected to be the most noticeable factors affecting vegetation dynamics in the desert regional 
landscape. However, temperature regimes were the most frequently used variables in the models 
(Appendices A7–A9), and explained the greatest amount of spatial variation in vegetation dynamics in 
the desert regional landscape (Figure 4). The interpretation of the desert results is not intuitive. The 
start of the season is driven primarily by the higher temperatures in the fall, winter and spring, and 
secondarily by winter and spring precipitation. The timing of both temperature trends and precipitation 
events are likely impacting desert plant response through multiple interactions. Higher fall 
temperatures might cause more evapotranspiration and consequently a later growing season unless 
spring precipitation in combination with higher spring temperatures causes an early start of the 
growing season. Higher spring temperatures provide for earlier starts of the growing season if enough 
precipitation accumulated during winter and spring. 

The spatial variation in start of season was very consistently explained by antecedent fall and 
current winter temperatures (Appendix A7). Higher values of these variables related to later season 
start dates if other environmental variables were held constant. Summer temperature showed the 
fewest occurrences among all environmental drivers of start of season, being present during only 13 
out of 28 years of models (Appendix A7). For all the years examined, best-fit models explaining 
spatial variation in start of season included at least five of the ten environmental factors 
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(Appendix A7). The explained variation in the start of season by the suite of selected explanatory 
drivers from year to year was highest in 1983 reaching 44% and was the lowest at 7% in 1984 
(Appendix A7). Winter temperature had the highest individual explanatory power for the start of 
season metric and on average, about 12% of spatial variation was explained by this climate metric, 
reaching 30% in some years (2001–2002) (Figure 4(A)). 

Figure 4. Yearly adjusted R2 values for each of the response variables and their corresponding 
ten explanatory variables for the desert regional landscape. (A) Start of the growing season. 
(B) Length of the growing season. (C) The NDVI-based productivity metric. 
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The spatial variations in the length of season in the desert regional landscape were well explained; 
the length of season tended to be longer with higher antecedent fall temperatures and lower winter 
rainfall when all other variables were held constant (Appendix A8). Notably, taking into account that 
higher antecedent fall temperatures related to later season start and longer season length, it can be 
surmised that the end of the growing season is substantially later with higher antecedent fall 
temperatures. The summer temperature again was used the least in the length of season models, taking 
place only during nine of the 28 years (Appendix A8). The number of environmental drivers relating to 
spatial variation in length of season ranged from two to nine of the ten explanatory variables 
considered (Appendix A8). The explained spatial variation in the length of season by the suite of 
selected drivers in any given year did not exceed 31% (2005) and was the lowest at 2% (1993) 
(Appendix A8). Winter temperature regimes had the highest explanatory power at a separate level 
contribution assessment, having on average about 5% of explained variation (Figure 4(B)).  

The spatial variation in the NDVI-based productivity metric for the desert regional landscape was 
most consistently explained by soil carbon content, which was present in 27 out of 28 years (Appendix 
A9) and separately explained on average about 13% of the variation (Figure 4(C)). When holding other 
explanatory variables constant, higher carbon content values related to higher NDVI-based 
productivity values (Appendix A9). Winter temperature was also consistently present in the models, 
occurring in 26 years (Appendix A9). Summer temperature occurred the least frequently in the models 
across years (Appendix A9) and had the lowest explanatory power (on average less than 2%) for the 
NDVI-based productivity metric (Figure 4(C)). The number of environmental variables that related to 
variation in NDVI-based productivity metric was at least six out of ten per year (Appendix A9). Across 
all years, the spatial variation in the NDVI-based productivity metric in the desert regional landscape 
explained by the suite of selected explanatory factors ranged from 73% (2003) to 22% (1990 and 
1997) (Appendix A9). 

An assessment of the environmental variables relating to spatial variation across years and across 
regional landscapes reveals that the steppe and desert regional landscapes had similar relationships 
among NDVI-based metrics and assessed environmental drivers (Figure 5(A,C)). Generally, 
temperature regimes, with the exception of summer temperature, were the most consistent variables 
relating to the spatial variation in the vegetation dynamics of both regional landscapes (Figure 5(A,C); 
Appendices A1–A3 and A7–A9)). As expected, the impact of precipitation variables on the spatial 
variation in pheno-metrics differed between these two regional landscapes [23], with spring and 
summer precipitation being the most important for steppe regional landscape and winter precipitation 
for the desert regional landscape (Figure 5).  
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Figure 5. Frequency of appearances (in percentage) of each of the ten environmental 
variables during the 28 years of modeling. (A) Steppe regional landscape. (B) Mountainous 
regional landscape. (C) Desert regional landscape. 
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3.2. Drivers of Variability in Vegetation Dynamics over Time  

Patterns of Variability in Vegetation Dynamics across Landscapes  

Overall, the spatial distribution of the temporal variability in the three NDVI-based metrics 
(represented by COV) demonstrated distinct latitudinal and altitudinal patterns for all three regional 
landscapes (Figure 6). The pheno-metrics of the steppe and the mountainous regional landscapes 
showed similar magnitude in temporal variability (COV) patterns (Figure 6). This expected similarity 
is in contrast to the assessment of drivers of the spatial variation in the NDVI-based metrics, where the 
steppe and desert regional landscapes had analogous patterns (Appendices A1–A9 and Figures 2–5).  

The pheno-metrics for the desert regional landscape showed to be more variable (higher COV) over 
time than those for the steppe and the mountainous regional landscapes (Figure 6). This high 
variability in vegetation dynamics (Figure 6) was expected and characteristic of the “pulse 
stability” [19] of this regional landscape. Its ecosystems are adapted to the particular intensity and 
frequency of the natural perturbation through lower resistance and higher resilience properties [19].  

The variability (COV) of pheno-metrics in the steppe regional landscape was relatively low, 
revealing that systems of this regional landscape might have higher resistance. The variability in the 
mountainous regional landscape showed as expected low COV values, revealing that its systems 
demonstrate higher resistance. Below, all the implications of the short-term perturbations and long 
term stressors are discussed with regards to the climate and other natural variability, i.e., processes that 
are not primarily governed by humans.  

Figure 6. Distribution of the coefficient of variation (COV) values for: (A) Start of the 
growing season. (B) Length of the growing season. (C) The NDVI-based productivity metric.  
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Figure 6. Cont. 
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Drivers of Variability in Vegetation Dynamics for Each Regional Landscape  

Each of the nine models developed to assess the drivers of variability in pheno-metrics had a 
different set of associated explanatory environmental variables (Table 3). Winter, spring, and summer 
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precipitation and elevation were included in all nine models, with spring precipitation and elevation 
being the most consistent variables that contributed to these models (Table 3). Summer temperature 
was almost consistently absent from the models (Table 3). The mountainous regional landscape had 
less explanatory variables included into the models than the steppe and desert regional landscapes, 
which both had the same representative set of environmental variables in the models for each of the 
response variables (Table 3). The explanatory variables for the steppe regional landscape had the 
largest explanatory power for each of the pheno-metrics (Table 3). Among the NDVI metrics, the 
variability in the length of season was explained the best for all three regional landscapes (Table 3), in 
contrast to the NDVI-based productivity metric that was explained best among the year-to-year models 
(Appendices A3, A6 and A9). The spatial patterns in the residuals, obtained for each of the three 
regional landscapes, demonstrated that the models for the desert regional landscape produced the least 
amount of residuals in the COV values of the phenological response variables (mapped residuals in 
Figure 7) compared to the steppe and mountainous regional landscapes.  

Table 3. Summary results for the coefficient estimates for a series of stepwise multilinear 
regressions. The regression models were run to assess how the temporal variability (COV) 
in three NDVI-based metrics (season start, season length and productivity) is related to the 
suite of explanatory environmental variables for the three regional landscapes. Explanatory 
variables for each of the metric of each regional landscape were identified as most 
frequently occurring (at least 50% of time) variables during the 28 years of the year-to-year 
models. The bottom row includes the explained variability values (Adj.R2*100). Gray 
colored cells identify variables that were not frequently present in the year-to-year models 
and were intentionally excluded from these models. Dashed cells identify variables that 
were not contributing statistical significance to the overall explanatory power of the model. 
Note: T°—temperature; PPT—precipitation; C content—soil carbon content. 

 

Steppe Regional  
Landscape 

Mountainous Regional 
Landscape 

Desert Regional  
Landscape 

Season 
Start 

Season 
Length 

NDVI 
Prod. 

Season 
Start 

Season 
Length

NDVI 
Prod. 

Season 
Start 

Season 
Length 

NDVI 
Prod. 

Winter T° 6.35 2.20 5.36     −2.34 −2.04 
Spring T° 4.75 −0.67 5.57   0.58 9.30 1.72 2.74 

Summer T°         −0.97 
Fall T° −8.60  −8.87  0.25  −8.04 1.11  

Winter PPT −0.41 −0.11 0.07 −0.10   0.40 −0.38 −0.26 
Spring PPT 0.06 0.04 −0.21 −0.05 −0.06  −0.38 0.26 0.23 

Summer PPT  0.09 0.26  0.05  1.14 −0.16 −0.29 
Fall PPT  −0.14 0.16  −0.05 0.14 −0.40  0.15 

Carbon content −0.37 −0.19    −0.34 −4.16 −0.91  
Elevation −0.01 −0.002 −0.005 −0.002 0.003 −0.003 −0.004  −0.004

Adj.R2*100 63 70 25 12 17 6 25 48 32 
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Figure 7. Distribution of the residual values for the modeled COV assessment for: 
(A) Start of the growing season. (B) Length of the growing season. (C) The NDVI-based 
productivity metric. 
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Figure 7. Cont. 
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Modeling Interannual Variability of Vegetation Dynamics as a Function of Environmental Drivers for 
the Steppe Regional Landscape 

Interannual variability in the season start metric for the steppe regional landscape was mostly 
related to temperature regimes, when all the other explanatory variables were held constant. Higher 
winter and spring temperatures related to increased variability (high COV) in season start while higher 
fall temperatures related to lower variability (low COV) in season start (Table 3). Although the 
explanatory power of all the variables contributing to the model reached 63% (Table 3), the spatial 
patterns in the residuals revealed that the model slightly overestimated (negative residuals) the 
variability in start of the growing season (Figure 7(A)).  

Winter temperature had the largest effect on the length of season’s variability, with higher 
temperature relating to higher variability of the season length (Table 3). Overall the explanatory power 
of the environmental drivers contributing to the COVseason length model was the highest among all nine 
COV-based models, reaching 70% (Table 3). Furthermore, the modeled explanatory variables 
performed relatively better for this model (lower absolute values of the residuals) than those for the 
COVseason start model, slightly overestimating COV values in the southern part and underestimating it in 
the northern part of the steppe landscape (Figure 7(B)). 

Variability (COV) in the NDVI based productivity metric was also predominantly affected by the 
temperature regimes. Lower fall temperatures and higher winter and spring temperatures related to 
higher variability in productivity responses across time (Table 3). The explanatory power of the 
COVproductivity model did not exceed 25% (Table 3). As it can be inferred from the mapped residuals 
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(Figure 7(C)), the model enabled a prediction of the spatial variability in the productivity metric of this 
regional landscape.  

The variability (COV) values for the three pheno-metrics for the steppe regional landscape were 
generally low, suggesting that the regional landscape exhibits good resistance but might not be as 
resilient to change (Table 2). Given that the temperature regimes have the largest affect among other 
assessed environmental variables, the current shifting climate regimes might have direct implications 
for agricultural and natural land cover types of the steppe regional landscape. Although the cereal 
production in the northern and eastern part of the regional landscape can benefit from the longer 
growing season and warmer winters [26], natural land cover types might experience reduction of 
overall vegetation productivity and irregularity in the growing season, which altogether could lead to 
phenological asynchrony across trophic levels due to temporal mismatches between resource 
availability and consumer demand [63].  

Modeling Interannual Variability of Vegetation Dynamics as a Function of Environmental Drivers for 
the Mountainous Regional Landscape 

In the mountainous regional landscape more rainfall during the winter and spring seasons led to 
lower COVseason start values and the overall model explained 12% of the variation (Table 3). Higher fall 
temperatures related to more variability in season length dates, and contributed to the overall 17% of 
explanatory power of the COVseason start model (Table 3). Warmer spring temperatures, lower soil 
carbon content, and higher precipitation amounts related to higher variability in COVproductivity. The 
explanatory variables of this model explained only 6% of total variation (Table 3). In spite of the fact 
that all three models of the mountainous regional landscape (for COVseason start, COVseason length, and 
COVproductivity metrics) had the lowest explanatory power across the three regional landscapes (bottom 
row in Table 3), these models enables prediction of the variability of all three response variables. This 
can be inferred from the mapped residuals of the mountainous regional landscape (Figure 7(A–C)), 
which were close to zero.  

The COV values of the mountainous phenological responses were low, suggesting low 
susceptibility to change due to its higher resistance capabilities. Since precipitation has the largest 
effect on the three pheno-metrics representing this regional landscape, lower rainfall coupled with 
higher temperatures may have a negative feedback on ecosystems of the mountainous regional 
landscape. The changing climate regimes negatively affect mountain-restricted species causing shifts 
in treeline and migration of species towards the summits [64]. Furthermore, because these climate 
regime shifts have caused changes in the extent of glaciers and much faster rates of snowmelt and 
glacier retreat [27,65–69], they could lead to changes in the vertical zonation of mountainous flora and 
fauna and, thus to alteration of their phenological parameters.  

Modeling Interannual Variability of Vegetation Dynamics as a Function of Environmental Drivers for 
the Desert Regional Landscape 

In the desert regional landscape more variability in the season start dates was related to higher 
spring temperatures, lower fall temperatures, and lower carbon content in the soil (Table 3). While the 
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overall model explained only 25% of total variation in the COV, the mapped residuals of the 
explanatory variables were very close to zero (Figure 7(A)).  

COVseason length was higher with lower fall and winter temperatures and higher spring temperatures. 
The goodness of fit of the model was 48% (Table 3) where, as it can be inferred from the mapped 
residuals (Figure 7B), modeled variables had sufficient prediction power. 

COVproductivity values were higher with lower winter and summer temperatures and higher spring 
temperatures. The explanatory variables of the model explained about one third of the total variation 
(Table 3) and with the residuals being close to zero (Figure 7(B)), they seemed to predict quite well the 
variability of all three of the response variables.  

The observed high COV values for the desert pheno-metrics suggested that this regional landscape 
is very susceptible to change, particularly with lower resistance (Table 2). It is expected that desert 
landscapes have higher resilience, components of which include ecosystem elasticity (rate of 
restoration to a stable state after perturbation) and amplitude of stability (deformation extent from 
which an ecosystem will return to its initial state) [70]. Although the systems of the desert regional 
landscape are assumed to be able to recover after short-term perturbation and long-term stress events, 
the long-term impacts of projected climate change could likely degrade these systems that are 
susceptible to change [26,71,72].  

4. Conclusions  

Through the application and analyses of digital biophysical time series data, this research provides 
new and valuable understanding of the impact of environmental drivers on the spatial, annual and 
interannual variation of vegetation dynamics in three regional landscapes of Central Asia. 
Additionally, this study links measures and scales of observed interannual variability in vegetation 
dynamics in steppe, mountain and desert landscapes to their sensitivity to change patterns, specifically 
to their resistance and resilience capacities under existing and projected environmental regimes of 
change and variability in these regional landscapes.  

Although this study has provided important insights into regional landscape-scale vegetation 
dynamics, the results can likely be further enhanced by using more consistent and finer resolution 
spatial and temporal datasets. This matter is especially relevant to the climate datasets. The climate 
datasets are often compilations of records of climate data gathered from a variety of sources [73] and 
uncertainty might be introduced in climate datasets from the interpolation between weather station 
locations, elevation bias in the weather stations, elevation variation within grid cells, and through data 
partitioning and cross–validation [73]. The uncertainty in climate data is generally the highest in 
mountainous and in poorly sampled areas [73]. Additionally, the estimations of precipitation patterns 
might have higher uncertainty as they might be spatially less accurate than the temperature data due to 
nature of precipitation patterns and resolution of the rainfall data. Therefore, potential future research 
might include replicating the applied approach at a finer spatial scale with finer-resolution datasets. 
The use of minimum and maximum temperature regimes is worth considering as well [74,75].  

Specifically, the research identifies potential drivers of spatio-temporal patterns in landscape-scale 
vegetation dynamics (phenology and productivity) in three regional landscapes (desert, steppe, and 
mountainous), which then were used to map the temporal variability of these dynamics. The results of 
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this study suggest that a unique suite of specific environmental drivers governs the vegetation response 
of steppe, mountainous, and desert regional landscapes. Central Asia’s landscape-scale vegetation 
dynamics showed strong relationships to environmental factors in across latitudinal and elevation 
gradients. The spatial and year-to-year variation in vegetation dynamics of the steppe regional 
landscape were demonstrated to be mostly affected by temperature. The temporal variability (COV 
values) of the response metrics in this region was also mostly affected by temperature, although 
temperature variables did not explain the observed spatial patterns of the COV values (mapped 
residuals) completely. Finally, relatively low temporal variability of vegetation dynamics suggested 
higher resistance to change in this regional landscape.  

In the mountainous regional landscape the spatial variation in vegetation responses over 28 years 
were related primarily to climate variables, especially precipitation observed along the elevation 
gradients. The models that assessed temporal variability of the vegetation dynamics also suggested 
altitudinal clines of climate patterns as drivers. Although drivers of the temporal variability in 
vegetation dynamics had lower explanatory power (adj.R2 values) than the steppe and desert 
environmental drivers, they still explained the spatial patterns of variability relatively well. Lower 
values of the COV of vegetation dynamics can be assumed to relate to higher resistance and lower 
susceptibility to short-term perturbations in this regional landscape.  

Vegetation dynamics in the desert regional landscape were demonstrated to have the greatest 
variability (high COV) over time that seemed to be affected by the combination of temperature 
regimes, winter precipitation patterns, and soil carbon content. The high COV values of the desert 
regional landscape suggest its higher susceptibility to change and low resistance capabilities.  

Given that climate precipitation and temperature variables showed the largest impact among other 
assessed environmental variables on vegetation dynamics across all three regional landscapes, 
projected climate changes could severely impact water use and agricultural production. Land use 
policy and decision makers in each of the regions will need to develop economically and 
environmentally effective climate change adaptation and mitigation plans to sustain natural resources 
and agriculture in Central Asia. Healthy ecosystem functions need to be maintained through processes 
that could confer adaptive capacities such as rapid recovery, high growth rates, rapid succession of 
ecosystem development stages, and/or flexible and opportunistic timing of vegetation growth 
responses. Because components of landscape susceptibility to change include resistance and 
resilience [70], the systems of the three regional landscape might be able to adapt to projected climate 
changes [25] if the future rates of change turn out to be less rapid and more gradual than is projected. 
As this is likely not the case, climate change implications in all three regional landscapes could involve 
both mitigation (e.g., increased water use efficiency, water storage) and adaptation (e.g., reduced water 
use and crop changes) efforts across the extent of these landscapes.  
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Appendix A 

Appendix A1. Steppe start of season summary table for series of stepwise multilinear regression models, run for each year from 1981 to 
2008, where the start of season metric is a response variable to a suite of ten explanatory environmental variables (described in Table 1) and 
listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 models. The table 
presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p ≤ 0.05) to the explanatory power 
(last column) of the regression models and were included in the total number of environmental X−variables (second column) present per year 
(first column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year X−var./year 
Ant. 

Fall T°
Winter 

T° 
Spring 

T° 
Winter 

PPT 
Spring 
PPT 

Summer 
PPT 

Ant.Fall 
PPT 

Elevation
Carbon 
content

Summer 
T° 

AdjR2*  
100(%) 

1981 9 1.471 0.081 −1.332 −0.002 −0.009 0.009 −0.004 −−− 0.015 −0.287 17 
1982 8 0.591 0.348 −0.867 −0.003 −0.014 0.008 0.003 0.085 −−− −−− 15 
1983 7 −−− −0.069 −0.089 0.005 −0.005 0.001 −0.002 0.044 −−− −−− 17 
1984 10 −0.086 0.102 −0.285 −0.006 −0.003 0.007 0.013 0.111 0.015 0.243 30 
1985 6 −−− 0.267 −−− −0.014 −0.018 0.026 −−− 0.065 −−− 0.087 8 
1986 10 1.308 0.228 −0.955 −0.001 −0.006 0.011 −0.003 −0.025 0.017 −0.649 44 
1987 7 −0.064 0.294 −0.397 0.004 −0.009 −−− 0.010 0.053 −−− −−− 11 
1988 7 0.165 0.297 −0.449 −0.022 −0.015 −−− 0.023 −−− 0.028 −−− 19 
1989 10 0.254 0.475 −0.604 0.003 −0.013 −0.016 0.017 −0.048 0.014 −0.403 26 
1990 8 0.908 −0.162 −0.410 0.007 0.007 −0.003 −0.015 −−− −−− −0.588 14 
1991 8 0.145 0.825 −1.176 −0.007 −0.004 −0.019 0.017 −−− −0.015 −−− 33 
1992 8 0.279 −−− −0.275 −0.003 0.004 −0.003 0.016 0.086 0.016 −−− 19 
1993 8 0.427 −0.219 −0.245 −0.004 −−− 0.006 −0.004 0.077 0.023 −−− 13 
1994 8 −−− 0.018 −0.156 −0.006 −0.002 0.006 0.003 0.035 0.032 −−− 17 
1995 6 0.752 0.321 −1.145 0.008 −−− −0.008 −−− −0.019 −−− −−− 14 
1996 7 1.960 0.853 −2.426 −0.006 0.007 −−− −−− 0.110 −0.024 −−− 28 
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1997 8 0.246 0.452 −1.006 0.016 −0.022 0.006 −0.007 −−− 0.026 −−− 29 
1998 6 0.195 0.092 −0.257 −−− −0.010 −−− 0.015 0.078 −−− −−− 9 
1999 8 0.272 0.266 −0.677 −0.013 −−− −0.002 0.013 0.038 0.011 −−− 20 
2000 9 0.216 0.575 −0.749 −0.027 0.014 −0.014 −0.003 0.138 0.044 −−− 8 
2001 7 0.852 −0.110 −0.405 0.010 −0.023 0.005 −−− −−− −−− −0.384 19 
2002 8 −0.076 −0.081 −−− −0.017 0.004 0.008 −0.003 0.066 0.019 −−− 35 
2003 9 −0.146 0.266 −0.639 −0.015 −−− 0.005 0.008 0.064 0.022 0.378 38 
2004 7 0.742 −−− −0.886 −0.009 −0.004 −0.003 −−− 0.055 0.010 −−− 28 
2005 8 0.102 −−− −0.272 −−− −0.005 0.004 −0.005 0.075 0.043 0.093 15 
2006 9 0.203 −0.155 −0.163 −0.008 0.018 −0.002 −0.007 0.055 0.025 −−− 30 
2007 8 −0.204 0.253 −−− −−− −0.007 0.008 0.003 0.054 0.034 −0.063 21 
2008 9 0.466 −0.112 −0.419 −0.008 0.001 0.007 0.003 0.038 0.006 −−− 27 

Total # from 1981 to 2008 25 25 25 25 24 24 23 22 20 10  

Appendix A2. Steppe length of season summary table for series of stepwise multilinear regression models, run for each year from 1981 to 
2008, where the length of season metric is a response variable to a suite of ten explanatory environmental variables (described in Table 1) and 
listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 models. The table 
presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p ≤ 0.05) to the explanatory power 
(last column) of the regression models and were included in the total number of environmental X−variables (second column) present per year 
(first column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year X−var./year 
Spring 
PPT 

Elevation
Ant.Fall 

T° 
Summer 

PPT 
Winter  

T° 
Winter 

PPT 
Ant.Fall 

PPT 
Spring 

T° 
Carbon 
content

Summer 
T° 

AdjR2*  
100(%) 

1981 9 −0.005 −0.139 0.130 −0.006 0.045 −0.005 −−− 0.161 −0.066 0.306 11 
1982 7 −−− −0.173 0.341 −−− −−− −0.017 −0.020 0.295 −0.111 0.409 16 
1983 9 −0.001 −0.120 −−− −0.008 −0.050 0.002 −0.006 0.055 0.001 0.196 9 
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1984 10 −0.020 −0.098 −0.331 −0.003 −0.254 0.015 −0.004 −0.200 0.112 0.147 19 
1985 8 0.002 −0.135 −0.054 −0.015 −0.090 0.010 −0.006 0.013 −−− −−− 16 
1986 9 −0.016 −0.197 0.320 −0.028 0.149 −0.006 −0.021 −−− −0.078 0.479 42 
1987 8 −0.019 −0.180 0.063 −0.013 −0.040 −−− −0.026 0.116 −0.058 −−− 22 
1988 8 −0.002 −0.159 0.264 −0.017 0.138 0.003 −0.017 −−− −0.081 −−− 8 
1989 8 0.011 −0.108 −−− −0.013 −0.195 0.011 −0.035 −−− −0.023 0.230 30 
1990 9 −0.015 −0.132 0.209 −0.012 0.107 −0.012 −0.014 0.306 −0.101 −−− 16 
1991 9 0.022 −0.156 0.139 0.001 0.141 0.001 0.005 0.202 0.012 −−− 15 
1992 7 −0.022 −0.132 0.222 −0.018 0.077 −0.017 −−− 0.167 −−− −−− 15 
1993 7 −0.014 −0.085 0.006 0.001 −−− 0.001 −−− 0.049 −0.021 −−− 5 
1994 8 −0.013 −0.110 0.353 −0.028 0.148 −0.007 0.006 0.498 −−− −−− 20 
1995 10 −0.009 −0.056 −0.111 0.001 −0.079 −0.005 −0.001 −0.112 0.008 −0.019 20 
1996 8 −0.001 −0.116 −0.051 −0.001 −0.074 0.001 −0.012 0.003 −−− −−− 18 
1997 8 0.013 −0.211 0.392 −0.010 0.168 −0.011 −0.006 −−− −0.109 −−− 35 
1998 6 0.016 −−− 0.301 −0.021 0.099 −−− −0.021 0.250 −−− −−− 22 
1999 9 0.021 −0.022 −0.095 0.007 −0.116 0.010 −0.004 −0.098 −−− −0.229 19 
2000 9 −0.016 −0.134 −0.007 −0.004 −0.099 0.005 −0.009 −0.026 −0.082 −−− 19 
2001 5 −0.004 −0.120 −−− −0.018 0.106 −−− −−− −−− −0.086 −−− 15 
2002 7 −0.016 −0.160 −0.159 −0.011 −−− −0.004 −−− −−− 0.093 −0.104 15 
2003 9 −0.014 −0.142 0.168 −−− 0.143 0.020 −0.028 0.224 −0.077 0.259 23 
2004 8 −0.004 −0.147 0.121 −0.014 −−− 0.003 −0.008 0.174 −0.042 −−− 25 
2005 10 −0.013 −0.113 −0.036 −0.003 −0.179 −0.008 −0.012 −0.084 0.016 −0.095 15 
2006 9 −0.030 −0.038 −0.044 −−− −0.057 −0.012 0.001 0.114 0.016 0.004 23 
2007 9 −0.025 −0.087 −0.350 −0.013 −0.622 −−− −0.027 −0.353 0.016 −0.168 35 
2008 8 0.001 −0.185 0.360 −0.020 0.221 0.020 −0.010 0.377 −−− −−− 27 

Total # from 1981 to 2008 27 27 25 25 24 24 23 22 21 13  
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Appendix A3. Steppe NDVI based productivity summary table for series of stepwise multilinear regression models, run for each year from 
1981 to 2008, where the NDVI-based productivity metric is a response variable to a suite of ten explanatory environmental variables 
(described in Table 1) and listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 
1981 to 2008 models. The table presents coefficient estimates (β) for each of the environmental variables that contributed significantly 
(p ≤ 0.05) to the explanatory power (last column) of the regression models and were included in the total number of environmental  
X−variables (second column) present per year (first column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year X−var./year 
Carbon 
content

Ant.Fall 
T° 

Spring 
T° 

Winter 
PPT 

Summer 
PPT 

Ant.Fall 
PPT 

Spring 
PPT 

Winter 
T° 

Elevation
Summer 

T° 
AdjR2*  
100(%) 

1981 10 0.037 0.075 −0.302 0.009 0.007 −0.005 0.003 −0.059 −0.010 0.146 46 
1982 9 0.036 0.155 −0.104 0.011 0.006 0.007 −0.004 −0.118 0.014 −−− 44 
1983 7 0.033 −−− −0.288 0.011 −0.003 −−− 0.002 0.016 −−− 0.079 48 
1984 10 0.054 −0.276 0.110 0.006 −0.010 0.010 −0.011 −0.081 −0.013 0.075 28 
1985 8 0.038 −0.404 −−− 0.007 −0.011 0.001 −0.005 −−− −0.020 0.111 29 
1986 8 0.051 −0.290 0.214 0.016 −0.008 −0.004 −−− −−− −0.012 −0.066 32 
1987 8 0.062 −0.291 0.174 0.012 −−− −0.015 −0.003 −0.083 −0.014 −−− 45 
1988 7 0.041 0.287 −0.215 0.006 −0.009 0.004 −−− −0.209 −−− −−− 29 
1989 9 0.038 −0.373 0.322 −−− −0.007 −0.009 0.018 −0.074 −0.010 −0.087 28 
1990 10 0.043 0.122 0.191 0.003 0.002 −0.003 0.005 −0.278 −0.032 −0.171 38 
1991 8 0.028 −0.312 −0.129 −0.004 −0.016 −0.003 0.015 −−− −−− 0.168 19 
1992 8 0.038 −0.217 −0.168 0.005 −0.005 −0.007 −−− 0.060 −0.046 −−− 23 
1993 9 0.038 0.246 −0.185 0.007 0.004 −0.003 −0.003 −0.216 −0.015 −−− 27 
1994 9 0.034 0.160 −0.317 0.001 −0.012 −0.014 0.013 −0.163 −0.032 −−− 28 
1995 10 0.024 −0.870 −1.248 −0.007 −0.006 0.003 −0.011 0.676 0.028 1.315 23 
1996 8 0.058 0.094 −0.078 0.005 0.002 −−− −0.003 −0.115 0.013 −−− 24 
1997 8 0.033 0.128 −0.272 0.006 −0.007 0.001 0.001 −0.086 −−− −−− 32 
1998 10 0.018 −0.423 −0.788 −0.005 0.007 −0.013 0.012 0.377 0.060 0.961 20 
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1999 10 0.033 −0.380 0.081 0.015 −0.003 −0.002 0.004 0.045 −0.014 0.074 32 
2000 10 0.066 −0.166 −0.154 0.011 0.006 −0.015 −0.012 0.087 −0.078 −0.093 42 
2001 10 0.048 0.552 0.031 −0.003 0.005 −0.005 −0.006 −0.282 −0.025 −0.488 33 
2002 8 0.087 −0.163 −0.047 0.005 −0.009 0.018 −0.013 −−− −0.026 −−− 36 
2003 9 0.048 0.172 0.325 0.003 0.008 −0.029 −0.009 −0.297 −−− −0.306 16 
2004 9 0.075 0.471 −0.250 0.024 0.004 0.002 −0.014 −0.331 −0.042 −−− 19 
2005 9 0.047 0.667 −0.228 −−− −0.006 0.004 0.003 −0.240 −0.013 −0.298 30 
2006 8 0.080 −0.314 0.281 0.012 −0.009 −−− 0.002 −0.107 −0.021 −−− 13 
2007 9 0.036 −0.173 −0.086 0.019 −0.004 −0.006 −0.004 −0.033 −0.024 −−− 44 
2008 7 0.066 0.171 −−− −0.012 −−− 0.003 −0.003 −0.199 −0.015 −−− 8 

Total # from  1981−2008 28 27 26 26 26 25 25 24 23 15  

Appendix A4. Mountainous start of season summary table for series of stepwise multilinear regression models, run for each year from 
1981 to 2008, where the start of season metric is a response variable to a suite of ten explanatory environmental variables (described in Table 
1) and listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 models. 
The table presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p≤0.05) to the explanatory 
power (last column) of the regression models and were included in the total number of environmental X−variables (second column) present 
per year (first column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year 
X−var./ 

year 
Elevation

Summer 
PPT 

Winter 
PPT 

Spring 
PPT 

Ant.Fall  
T° 

Ant.Fall 
PPT 

Summer 
T° 

Winter 
T° 

Spring 
T° 

Carbon 
content

AdjR2*  
100(%) 

1981 5 0.069 −−− −−− 0.003 0.159 −−− −−− −0.169 −−− −0.020 11 
1982 7 0.040 0.011 −−− −−− −0.244 −0.017 0.483 −−− −0.268 −0.031 9 
1983 5 0.078 0.012 −−− −0.012 −−− −−− −0.212 0.213 −−− −−− 18 
1984 1 0.082 −−− −−− −−− −−− −−− −−− −−− −−− −−− 9 
1985 3 0.079 0.015 0.010 −−− −−− −−− −−− −−− −−− −−− 14 
1986 4 0.081 −−− −0.018 0.011 −−− −−− −−− −−− 0.093 −−− 7 
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1987 4 0.078 0.006 0.007 −−− −−− −0.017 −−− −−− −−− −−− 10 
1988 6 0.102 0.005 −0.004 −−− 0.178 0.010 −−− −−− −0.198 −−− 20 
1989 5 0.080 −−− −−− 0.012 −−− 0.012 0.107 −0.179 −−− −−− 18 
1990 3 0.069 −−− −0.005 0.007 −−− −−− −−− −−− −−− −−− 8 
1991 4 0.062 −−− −−− −−− −0.035 0.008 −−− −−− −−− 0.023 16 
1992 8 0.109 0.002 0.005 −−− 0.800 −0.011 1.041 −0.155 0.443 −−− 29 
1993 6 0.107 0.002 −−− 0.003 0.276 −−− −−− −0.117 −0.140 −−− 28 
1994 5 0.104 0.017 −−− −0.006 −−− −−− −−− 0.159 −0.126 −−− 18 
1995 2 0.079 −−− −−− −−− −−− −−− −−− −−− −−− −0.022 22 
1996 3 0.115 −−− −−− −0.012 −−− 0.006 −−− −−− −−− −−− 23 
1997 3 0.086 0.004 −0.005 −−− −−− −−− −−− −−− −−− −−− 10 
1998 4 0.108 0.009 −0.016 0.009 −−− −−− −−− −−− −−− −−− 13 
1999 7 0.100 0.007 0.014 −−− 0.232 −−− 0.096 −0.346 −−− 0.031 20 
2000 9 0.100 0.001 0.006 −−− 0.240 0.013 −0.123 −0.748 0.533 0.026 16 
2001 9 0.085 0.014 −−− −0.012 0.568 0.003 −0.334 −0.774 0.613 −0.082 17 
2002 6 0.091 0.003 −0.015 0.007 −0.250 −−− −−− −−− 0.296 −−− 19 
2003 6 0.094 −−− −0.013 0.006 0.169 0.015 −0.145 −−− −−− −−− 14 
2004 9 0.079 0.005 −0.005 0.018 1.071 −0.013 −0.434 −0.706 −−− 0.026 17 
2005 3 0.083 −−− −−− −−− −0.209 −−− −−− −−− 0.228 −−− 13 
2006 2 0.080 0.003 −−− −−− −−− −−− −−− −−− −−− −−− 11 
2007 6 0.139 0.007 −0.006 0.003 −−− −−− 0.037 −−− −−− 0.030 25 
2008 5 0.129 −0.009 −0.017 −−− −−− 0.022 −0.047 −−− −−− −−− 18 

Total # from  1981−2008 28 18 15 14 13 12 11 10 10 9  
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Appendix A5. Mountainous length of season summary table for series of stepwise multilinear regression models, run for each year from 
1981 to 2008, where the length of season metric is a response variable to a suite of ten explanatory environmental variables (described in 
Table 1) and listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 
models. The table presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p≤0.05) to the 
explanatory power (last column) of the regression models and were included in the total number of environmental X−variables (second 
column) present per year (first column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year 
X−var./ 

year 
Carbon  
content 

Spring 
PPT 

Summer 
PPT 

Winter 
PPT 

Elevation
Ant.Fall 

T° 
Ant.Fall 

PPT 
Spring T°

Summer 
T° 

Winter T°
AdjR2*  
100(%) 

1981 7 −0.170 0.008 −0.007 0.009 −−− −1.169 −0.019 −−− 1.069 −−− 13 
1982 6 −0.189 0.012 −0.032 −−− −0.037 −0.905 −−− −−− 0.744 −−− 14 
1983 5 −0.147 −−− −0.022 0.016 −−− --- --- --- 0.132 −0.256 11 
1984 4 −0.120 --- --- --- 0.087 --- --- −0.475 --- 0.323 21 
1985 7 −0.119 −0.020 −0.023 --- −0.062 −0.349 --- 1.140 −1.005 --- 33 
1986 3 −0.172 --- --- --- --- 0.365 --- −0.611 --- --- 22 
1987 3 −0.136 --- −0.015 --- --- --- --- −0.098 --- --- 15 
1988 5 −0.088 −0.010 −0.021 0.014 0.044 --- --- --- --- --- 14 
1989 5 −0.100 −0.033 −0.035 --- --- 1.409 --- --- −1.207 --- 27 
1990 4 --- −0.010 −0.010 --- --- 0.257 --- --- −0.324 --- 5 
1991 5 −0.193 0.032 −0.031 0.032 --- --- −0.043 --- --- --- 24 
1992 5 −0.159 −0.015 --- 0.011 −0.027 --- 0.021 --- --- --- 11 
1993 3 −0.158 --- −0.018 --- --- --- 0.031 --- --- --- 21 
1994 7 −0.127 −0.016 −0.021 0.031 0.089 −0.083 −0.033 --- --- --- 38 
1995 5 −0.050 −0.010 0.011 0.038 --- --- −0.022 --- --- --- 5 
1996 9 −0.069 0.047 --- 0.047 −0.057 0.972 −0.058 1.479 −1.510 −1.083 19 
1997 5 --- --- −0.006 0.038 −0.099 1.198 --- --- −1.271 --- 16 
1998 4 --- −0.025 −0.033 0.036 −0.060 --- --- --- --- --- 25 
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1999 9 −0.147 0.022 −0.022 0.022 −0.031 −0.304 --- 0.744 −0.951 0.393 25 
2000 5 −0.140 --- --- 0.021 --- --- 0.016 −0.835 --- 1.023 24 
2001 7 −0.106 −0.006 --- 0.011 −0.051 0.349 −0.009 --- −0.477 --- 11 
2002 7 --- −0.010 −0.013 0.019 −0.156 0.955 --- −0.256 −0.757 --- 36 
2003 6 −0.207 −0.011 --- 0.035 --- −0.829 −0.045 0.704 --- --- 37 
2004 6 −0.198 −0.032 −0.016 0.014 −0.050 --- 0.021 --- --- --- 28 
2005 6 −0.113 −0.011 0.006 --- --- 1.312 0.015 −1.403 --- --- 19 
2006 5 --- 0.011 --- --- −0.095 --- --- −1.748 0.684 1.155 8 
2007 7 −0.155 --- −0.008 0.015 −0.050 0.737 −0.013 −0.754 --- --- 36 
2008 3 --- --- --- 0.020 0.059 --- −0.029 --- --- --- 13 

Total # from 1981−2008 22 19 19 18 16 15 14 12 12 6  

Appendix A6. Mountainous NDVI based productivity summary table for series of stepwise multilinear regression models, run for each 
year from 1981 to 2008, where the NDVI based productivity metric is a response variable to a suite of ten explanatory environmental 
variables (described in Table 1) and listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) 
in the 1981 to 2008 models. The table presents coefficient estimates (β) for each of the environmental variables that contributed significantly 
(p≤0.05) to the explanatory power (last column) of the regression models and were included in the total number of environmental X−variables 
(second column) present per year (first column). Note: T—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year 
X−var./ 

year 
Elevation

Summer 
PPT 

Winter 
T° 

Spring 
T° 

Carbon  
content

Ant.Fall 
T° 

Spring 
PPT 

Winter 
PPT 

Ant.Fall 
PPT 

Summer 
T° 

AdjR2*  
100(%) 

1981 5 −0.061 0.002 --- --- 0.025 0.030 0.004 --- --- --- 23 
1982 10 −0.059 −0.007 −0.058 0.118 0.028 0.165 0.011 −0.014 0.017 −0.194 27 
1983 7 −0.062 −0.008 −0.165 0.319 --- −0.176 0.015 −0.008 --- --- 35 
1984 4 −0.060 −0.011 --- --- 0.041 --- --- --- 0.017 --- 25 
1985 7 −0.035 0.003 −0.271 --- 0.035 --- 0.003 0.004 --- 0.275 40 
1986 7 −0.052 0.003 −0.115 0.478 0.043 −0.306 --- 0.010 --- --- 44 
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1987 8 −0.052 0.005 −0.178 −0.200 --- --- 0.008 −0.011 0.015 0.453 40 
1988 7 −0.061 0.004 −0.216 0.376 --- −0.163 0.004 0.006 --- --- 36 
1989 5 −0.066 --- --- 0.204 --- −0.442 0.012 --- --- 0.236 34 
1990 9 −0.062 0.006 −0.475 0.283 --- 0.619 0.003 0.012 0.003 −0.394 41 
1991 7 −0.040 0.021 0.138 −0.119 0.040 --- −0.010 0.014 --- --- 22 
1992 6 −0.063 0.006 −0.203 0.216 --- --- 0.010 −0.003 --- --- 31 
1993 7 −0.046 0.006 −0.288 0.151 0.015 0.164 0.008 --- --- --- 29 
1994 5 −0.059 --- −0.250 0.119 --- 0.153 --- --- 0.012 --- 28 
1995 8 −0.067 0.014 −0.079 0.469 0.033 −0.354 --- 0.024 −0.015 --- 36 
1996 9 −0.055 −0.008 −0.591 0.737 0.056 0.546 0.039 --- 0.018 −0.690 33 
1997 9 −0.057 --- −0.726 0.805 0.027 0.519 0.013 −0.020 0.043 −0.530 41 
1998 6 −0.035 0.003 −0.459 --- --- --- 0.011 --- −0.029 0.322 25 
1999 9 −0.043 −0.006 −0.336 −0.804 0.045 0.214 --- −0.003 0.011 0.965 31 
2000 3 −0.077 --- --- 0.050 0.034 --- --- --- --- --- 27 
2001 10 −0.078 −0.007 0.236 −0.243 0.043 −0.235 0.009 −0.005 0.002 0.298 33 
2002 9 −0.064 --- 0.588 −0.569 0.056 −0.399 0.011 −0.012 −0.013 0.423 33 
2003 5 −0.085 −0.003 −0.090 --- 0.055 0.140 --- --- --- --- 25 
2004 8 −0.086 −0.005 0.259 −0.576 0.059 --- --- −0.007 0.009 0.303 39 
2005 5 −0.093 −0.003 −0.236 --- 0.048 0.228 --- --- --- --- 37 
2006 5 −0.082 −0.003 --- --- 0.029 --- 0.007 --- −0.011 --- 32 
2007 5 −0.094 −0.006 --- 0.194 0.052 −0.188 --- --- --- --- 34 
2008 4 −0.098 −0.006 --- --- 0.037 0.049 --- --- --- --- 35 

Total # from 1981−2008 28 23 21 20 20 19 17 15 14 12  
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Appendix A7. Desert start of season summary table for series of stepwise multilinear regression models, run for each year from 1981 to 
2008, where the start of season metric is a response variable to a suite of ten explanatory environmental variables (described in Table 1) and 
listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 models. The table 
presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p≤0.05) to the explanatory power (last 
column) of the regression models and were included in the total number of environmental X−variables (second column) present per year (first 
column). Note: T°—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year 
X−var./ 

year 
Ant.Fall 

T° 
Winter 

T° 
Spring 

T° 
Winter 

PPT 
Carbon 
content

Elevat.
Spring 

PPT 
Ant.Fall 

PPT 
Summer 

PPT 
Summer 

T° 
AdjR2*  
100(%) 

1981 8 5.882 4.493 1.882 --- 0.439 −0.196 0.023 0.060 −0.051 --- 21 
1982 7 3.112 2.641 --- −0.011 0.450 −0.718 --- --- 0.042 −0.503 20 
1983 7 1.134 2.484 --- 0.143 0.657 −0.147 --- 0.031 --- 0.298 44 
1984 5 --- 0.738 −0.387 --- −0.397 −0.063 0.036 --- --- --- 7 
1985 7 1.004 0.280 −2.191 −0.034 --- −0.279 0.026 --- 0.098 --- 25 
1986 7 0.556 1.208 −1.792 --- 1.148 −0.448 0.080 --- −0.126 --- 30 
1987 7 −1.540 2.458 −1.611 0.069 1.017 −0.400 --- --- −0.123 --- 31 
1988 9 0.885 −0.849 1.632 --- 0.170 −0.292 −0.026 0.106 −0.030 −1.952 18 
1989 6 1.432 −0.364 −0.652 −0.069 0.306 --- --- 0.060 --- --- 13 
1990 6 1.753 −0.416 --- −0.028 --- --- 0.032 0.084 −0.034 --- 17 
1991 7 3.607 1.765 2.660 −0.015 --- −0.141 −0.034 --- --- −4.165 15 
1992 6 3.284 2.888 8.185 --- --- −0.243 --- −0.023 --- −8.532 21 
1993 8 0.886 0.380 −1.025 --- 0.599 −0.359 0.058 −0.094 0.053 --- 15 
1994 9 −2.006 1.774 0.860 0.023 0.927 −0.211 0.085 −0.017 0.109 --- 27 
1995 8 0.882 1.138 −0.796 0.020 0.426 −0.240 0.112 0.013 --- --- 34 
1996 9 −1.834 1.347 0.952 0.183 −0.168 −0.110 −0.138 0.028 −0.079 --- 29 
1997 6 1.422 −0.619 −0.962 −0.061 --- --- −0.033 0.044 --- --- 19 
1998 7 3.110 0.329 −3.747 −0.019 0.199 --- −0.041 --- −0.100 --- 21 
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1999 6 2.957 --- −2.930 −0.126 --- −0.133 0.111 0.070 --- --- 37 
2000 5 2.037 2.063 --- 0.047 --- --- --- --- 0.053 0.951 19 
2001 9 3.960 2.445 −0.926 0.125 0.282 0.251 −0.061 −0.175 0.201 --- 41 
2002 7 1.759 --- −1.390 0.077 0.781 --- 0.025 −0.089 --- 1.807 38 
2003 6 --- 0.488 −1.541 0.023 0.886 −0.167 --- --- --- −1.712 40 
2004 9 0.725 --- −1.819 0.037 1.090 −0.269 −0.024 0.105 −0.155 −2.422 23 
2005 9 3.884 3.217 --- 0.050 0.184 −0.258 −0.045 0.046 −0.060 1.442 25 
2006 8 −2.224 2.160 −1.448 0.050 0.359 --- −0.063 0.025 --- 2.768 35 
2007 8 2.648 --- −2.672 0.058 0.296 −0.197 --- −0.089 0.157 0.686 29 
2008 10 0.501 0.613 −2.466 0.025 0.527 −0.091 −0.046 0.053 −0.174 1.829 18 

Total # from  1981−2008 26 24 23 22 21 21 20 19 17 13  

Appendix A8. Desert length of season summary table for series of stepwise multilinear regression models, run for each year from 1981 to 
2008, where the length of season metric is a response variable to a suite of ten explanatory environmental variables (described in Table 1) and 
listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 1981 to 2008 models. The table 
presents coefficient estimates (β) for each of the environmental variables that contributed significantly (p≤0.05) to the explanatory power (last 
column) of the regression models and were included in the total number of environmental X−variables (second column) present per year (first 
column). Note: T—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year X−var./year 
Ant.Fall  

T° 
Winter 

PPT 
Spring 

T° 
Summer 

PPT 
Winter 

T° 
Carbon  
content 

Spring 
PPT 

Ant.Fall 
PPT 

Elevation
Summer 

T° 
AdjR2* 100(%) 

1981 6 0.690 --- 0.198 0.022 −0.718 −0.150 --- 0.020 --- --- 7 
1982 5 --- −0.014 0.195 --- −0.379 --- −0.044 0.076 --- --- 12 
1983 6 1.957 0.011 −0.701 --- −1.069 −0.109 0.017 --- --- --- 8 
1984 2 --- --- --- --- --- −0.558 0.022 --- --- --- 4 
1985 6 2.141 --- 1.548 −0.143 −2.038 --- --- --- 0.072 −1.612 15 
1986 7 1.687 −0.030 −1.936 −0.081 −0.384 --- --- −0.110 −0.118 --- 34 
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1987 7 1.479 −0.034 −2.082 0.060 0.315 0.134 --- −0.041 --- --- 17 
1988 7 0.880 −0.020 −1.999 −0.056 --- 0.384 −0.054 --- −0.204 --- 22 
1989 5 −1.096 −0.019 0.415 --- --- --- −0.042 0.057 --- --- 27 
1990 6 0.637 −0.042 −0.563 −0.020 −0.708 --- --- 0.040 --- --- 22 
1991 8 1.677 −0.007 --- 0.012 −0.952 −0.104 −0.027 --- 0.058 −0.476 8 
1992 4 --- −0.046 −1.072 −0.017 --- --- −0.037 --- --- --- 21 
1993 2 --- --- --- 0.017 --- −0.265 --- --- --- --- 2 
1994 8 0.655 0.020 --- 0.047 −0.567 −0.164 −0.061 −0.021 --- −0.799 15 
1995 6 0.619 −0.043 −0.552 0.082 −0.260 0.077 --- --- --- --- 7 
1996 8 −2.473 −0.054 −3.230 --- 2.667 −0.357 --- 0.048 0.201 3.856 23 
1997 8 3.126 −0.087 −0.681 −0.034 −2.306 −0.444 0.059 0.029 --- --- 28 
1998 8 3.371 −0.035 −2.964 --- −0.388 −0.242 −0.021 −0.078 0.122 --- 13 
1999 6 −0.401 −0.076 --- −0.073 --- −0.145 0.063 0.053 --- --- 11 
2000 5 0.569 --- −0.676 0.039 --- --- --- --- 0.074 0.727 12 
2001 7 2.514 −0.022 −0.305 --- −1.774 --- --- 0.037 −0.159 −0.554 14 
2002 9 3.318 0.035 −1.117 0.063 −2.485 0.078 −0.019 −0.017 −0.210 --- 16 
2003 9 −0.716 −0.049 −0.311 −0.036 0.502 0.203 0.021 0.080 −0.104 --- 12 
2004 8 0.258 −0.033 −0.461 −0.030 --- 0.315 −0.019 0.075 −0.094 --- 12 
2005 7 −3.206 −0.080 --- −0.098 2.329 --- 0.075 --- −0.107 0.651 26 
2006 8 −3.336 0.064 −1.131 --- 2.050 0.208 −0.097 --- 0.120 3.065 31 
2007 9 0.621 −0.017 −1.929 0.062 --- 0.134 0.012 −0.035 0.053 1.410 20 
2008 8 1.899 0.034 −2.096 −0.257 −1.087 0.527 −0.192 --- −0.284 --- 20 

Total # from 1981−2008 24 23 22 20 19 19 18 16 15 9  
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Appendix A9. Desert NDVI based productivity summary table for series of stepwise multilinear regression models, run for each year from 
1981 to 2008, where the NDVI-based productivity metric is a response variable to a suite of ten explanatory environmental variables 
(described in Table 1) and listed here (top row) in a descending order of total number of the year-to-year occurrences (bottom row) in the 
1981 to 2008 models. The table presents coefficient estimates (β) for each of the environmental variables that contributed significantly 
(p≤0.05) to the explanatory power (last column) of the regression models and were included in the total number of environmental X−variables 
(second column) present per year (first column). Note: T—temperature; PPT—precipitation; Ant. Fall—antecedent fall. 

Year X−var./year 
Carbon  
content 

Winter 
T° 

Winter 
PPT 

Ant.Fall 
T° 

Spring 
T° 

Spring  
PPT 

Ant.Fall 
PPT 

Elevation
Summer 

PPT 
Summer 

T° 
AdjR2* 100(%) 

1981 10 0.093 0.208 0.009 −0.452 0.469 −0.005 0.010 0.024 0.004 −0.148 48 
1982 9 0.087 −0.299 0.014 0.428 0.678 0.004 0.007 --- −0.004 −0.821 39 
1983 8 0.115 0.363 0.026 −0.297 --- 0.004 −0.003 0.015 --- 0.095 63 
1984 7 −0.025 0.117 0.012 −0.228 0.112 −0.004 --- 0.041 --- --- 31 
1985 9 0.031 0.117 0.008 −0.262 0.154 −0.003 0.002 0.029 −0.012 --- 24 
1986 7 0.066 0.051 0.018 −0.092 −0.028 0.004 --- --- −0.028 --- 52 
1987 7 0.130 0.380 0.015 −0.220 −0.377 --- −0.014 --- --- 0.155 33 
1988 10 0.078 −0.311 0.012 0.255 0.507 0.003 −0.006 −0.030 0.002 −0.680 32 
1989 10 0.029 0.109 0.010 −0.309 0.400 0.002 0.006 0.023 0.010 −0.192 38 
1990 7 0.070 −0.280 0.007 0.376 0.298 --- --- --- 0.001 −0.496 22 
1991 6 0.030 0.136 0.011 −0.123 --- --- --- 0.027 --- 0.046 38 
1992 8 0.073 0.177 0.002 −0.170 −0.082 0.005 −0.002 --- −0.007 --- 27 
1993 9 0.065 0.131 0.010 −0.062 −0.055 0.008 −0.008 −0.017 −0.007 --- 57 
1994 8 0.106 −0.042 −0.003 0.200 --- 0.016 −0.002 0.042 0.020 --- 34 
1995 8 0.105 0.058 0.005 0.167 −0.099 0.016 −0.005 0.022 --- --- 39 
1996 6 0.015 0.079 0.030 --- --- −0.011 --- 0.040 −0.012 --- 54 
1997 9 0.031 −0.174 0.007 0.312 −0.120 0.007 −0.007 0.013 −0.004 --- 22 
1998 7 0.073 −0.025 0.003 0.401 −0.286 0.005 --- 0.015 --- --- 14 
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1999 8 0.082 --- --- −0.095 0.388 0.007 0.003 0.016 −0.009 −0.346 44 
2000 6 --- 0.195 0.004 --- −0.118 --- 0.008 0.036 −0.004 --- 39 
2001 7 0.109 --- --- 0.187 0.218 0.014 −0.005 0.042 --- −0.341 73 
2002 6 0.076 −0.159 0.018 0.295 0.097 --- --- --- --- −0.195 56 
2003 8 0.140 0.058 −0.003 −0.069 0.332 --- 0.019 --- −0.008 −0.418 52 
2004 7 0.120 0.326 0.014 −0.246 --- −0.007 0.004 --- --- −0.066 47 
2005 9 0.066 0.162 0.011 --- −0.167 −0.006 −0.006 0.011 −0.006 0.064 52 
2006 6 0.038 0.127 0.005 0.046 −0.080 --- --- 0.037 --- --- 42 
2007 9 0.067 −0.109 0.016 0.249 --- −0.003 −0.004 0.017 0.015 −0.100 46 
2008 10 0.084 −0.189 0.013 0.357 0.072 −0.014 0.007 −0.018 −0.016 −0.328 23 

Total # from 1981−2008 27 26 26 25 22 21 20 20 18 16  
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