Next Article in Journal
Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments
Previous Article in Journal
A New Approach to Change Vector Analysis Using Distance and Similarity Measures
Article Menu

Article Versions

Export Article

Open AccessArticle
Remote Sens. 2011, 3(11), 2494-2528; doi:10.3390/rs3112494

Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements

Department of Forest Engineering, Resources, and Management, Oregon State University, Peavy Hall 204, Corvallis, OR 97331, USA
Author to whom correspondence should be addressed.
Received: 28 September 2011 / Revised: 20 October 2011 / Accepted: 20 October 2011 / Published: 18 November 2011
View Full-Text   |   Download PDF [4527 KB, uploaded 19 June 2014]   |  


Light Detection and Ranging (LiDAR) remote sensing has demonstrated potential in measuring forest biomass. We assessed the ability of LiDAR to accurately estimate forest total above ground biomass (TAGB) on an individual stem basis in a conifer forest in the US Pacific Northwest region using three different computer software programs and compared results to field measurements. Software programs included FUSION, TreeVaW, and watershed segmentation. To assess the accuracy of LiDAR TAGB estimation, stem counts and heights were analyzed. Differences between actual tree locations and LiDAR-derived tree locations using FUSION, TreeVaW, and watershed segmentation were 2.05 m (SD 1.67), 2.19 m (SD 1.83), and 2.31 m (SD 1.94), respectively, in forested plots. Tree height differences from field measured heights for FUSION, TreeVaW, and watershed segmentation were −0.09 m (SD 2.43), 0.28 m (SD 1.86), and 0.22 m (2.45) in forested plots; and 0.56 m (SD 1.07 m), 0.28 m (SD 1.69 m), and 1.17 m (SD 0.68 m), respectively, in a plot containing young conifers. The TAGB comparisons included feature totals per plot, mean biomass per feature by plot, and total biomass by plot for each extraction method. Overall, LiDAR TAGB estimations resulted in FUSION and TreeVaW underestimating by 25 and 31% respectively, and watershed segmentation overestimating by approximately 10%. LiDAR TAGB underestimation occurred in 66% and overestimation occurred in 34% of the plot comparisons.
Keywords: LiDAR; biomass; forestry; inventory LiDAR; biomass; forestry; inventory

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sens. 2011, 3, 2494-2528.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top