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Abstract: Visual image interpretation and digital image classification have been used to map 
and monitor mangrove extent and composition for decades. The presence of a high-spatial 
resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove 
species. However, little research has explored the use of pixel-based and object-based 
approaches on high-spatial hyperspectral datasets for this purpose. This study assessed the 
ability of CASI-2 data for mangrove species mapping using pixel-based and object-based 
approaches at the mouth of the Brisbane River area, southeast Queensland, Australia. 
Three mapping techniques used in this study: spectral angle mapper (SAM) and linear 
spectral unmixing (LSU) for the pixel-based approaches, and multi-scale segmentation for 
the object-based image analysis (OBIA). The endmembers for the pixel-based approach 
were collected based on existing vegetation community map. Nine targeted classes were 
mapped in the study area from each approach, including three mangrove species: Avicennia 
marina, Rhizophora stylosa, and Ceriops australis. The mapping results showed that SAM 
produced accurate class polygons with only few unclassified pixels (overall accuracy 69%, 
Kappa 0.57), the LSU resulted in a patchy polygon pattern with many unclassified pixels 
(overall accuracy 56%, Kappa 0.41), and the object-based mapping produced the most 
accurate results (overall accuracy 76%, Kappa 0.67). Our results demonstrated that the 
object-based approach, which combined a rule-based and nearest-neighbor classification 
method, was the best classifier to map mangrove species and its adjacent environments. 
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1. Introduction 

The role and importance of mangroves as a coastal resource is well established. Mangroves are one 
of the most important objects of wetland ecosystems, which are essential for maintaining coastal 
environment. They are highly productive ecosystems that typically dominate the intertidal zone of low 
energy tropical and subtropical coastlines [1,2]. Mangroves not only characterize the ecosystem, but 
also define an economic resource for the surrounding communities. They also provide an important 
nursery area for the juveniles of many commercial fish and crustacean species and play important roles 
in coastal protection and water quality [3-5].  

Mapping the distribution of species and vegetation communities in coastal wetlands is important to 
provide wetland inventories, assess change over time and to map and quantify biodiversity [6]. 
Remote sensing has an essential role to provide a fast and efficient method of ecosystem baseline 
mapping and subsequent monitoring in mangrove areas which are temporarily inundated and sometime 
inaccessible [7,8]. Mangrove environments often grow in remote and inaccessible areas and field-survey 
and airborne data acquisition is difficult and time consuming. High-spatial resolution multi-spectral 
optical sensors are well-suited technologies for detailed coastal ecosystem mapping, such as mangroves, 
and are also cost-effective when compared to traditional air photo interpretation [5,7]. Mangrove stands 
of different species composition are hard to distinguish in conventional, moderate-spatial resolution, and 
multi-spectral satellite images [9-11], but was possible using hyperspectral images from airborne 
sensors [12-16].  

The potential of hyperspectral imaging and image processing has already been demonstrated for 
numerous applications in vegetation structure, composition and physiology [8,17,18]. This advantage 
is mainly driven by its ability to measure reflectance and absorption in specific and narrow spectral 
bands. Airborne and satellite hyperspectral data offer a large number of narrow, contiguous, spectral 
bands, covering the 400 to 2,500 nm range of the electromagnetic spectrum [17,18]. Each pixel in the 
remotely acquired scene has an associated spectrum similar to the spectra of the material obtained in the 
laboratory or from the field. As a result, hyperspectral data allow for a better separation of feature types 
based on their unique spectral reflectance and absorption characteristics. Therefore, hyperspectral data 
may improve our ability of to differentiate mangrove species composition [13,14,16].  

Most of hyperspectral applications for mangrove species composition were conducted using  
pixel-based mapping approach, such as maximum likelihood [12,19], spectral angle mapper 
(SAM) [12-14], and spectral unmixing [14]. Another approach, object-based image analysis (OBIA), 
has not been assessed for mapping mangrove species composition from hyperspectral data. This 
approach is different to the conventional pixel-based classification methods which rely only on the 
spectral reflectance information from each individual pixel in an image. Object-based techniques 
recognize that important semantic information is not always represented in single pixels, but in 
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meaningful image objects and in their contextual relations [20,21]. Thus, it is necessary to implement 
those approaches and evaluate the results to understand their potentials for mangrove species mapping. 

The CASI-2 hyperspectral image has a combination of properties for accurate mapping of 
mangrove environments, namely the narrow spectral bands and high spatial resolution. These 
properties offer an opportunity to apply either pixel-based or object-based analysis for mangrove 
mapping. To date, there is no specific results have been published comparing and evaluating the results 
of pixel-based (per-pixel and sub-pixel) and object-based classification techniques applied to 
hyperspectral image for mangrove species mapping. This study assesses the CASI-2® airborne 
hyperspectral images for mangrove species mapping by comparing the accuracy of pixel-based and 
object-based approaches applied to the same data set captured over an area of sub-tropical mangroves 
in eastern Australia. 

2. Data and Methods 

2.1. Study Area 

This study was located at the mouth of the Brisbane River, southeast Queensland, Australia, which 
is a part of Moreton Bay, centered at approximately 153°10′30″E and 27°23′00″S (Figure 1). This area 
is separated from the Pacific Ocean by two sand islands, Moreton Island in the north and North 
Stradbroke Island in the south. Mangroves are the most noticeable component of the wetlands in this 
area. They occur along the shoreline, on the banks of creek and streams, in swamps, in river mouths 
and also around islands and in bays and other low-laying areas [22]. Mangroves proliferate in areas 
protected from high-energy waves. The Brisbane River mouth and St. Helena Island are among the 
areas protected from strong wave action where mangroves communities exist in this area. There are 
three mangrove species in the study area, which are Avicennia marina, Rhizophora stylosa, and 
Ceriops australis [23,24]. Among them Avicennia marina is the most widespread species, which 
comprises approximately 75% of the entire community within this region [25]. It grows along 
riverbanks, the bay islands and along the intertidal fringes of the Bay. 

2.2. Image Data and Reference Map 

The primary dataset used in this study was a CASI-2® hyperspectral dataset with 30 bands and 4 m 
spatial resolution, covering the mouth of the Brisbane River area, acquired on 29 July 2004 at 9:56:29 am 
(Figure 1). This dataset was chosen due to its high spectral and spatial resolutions (Table 1). The data 
meets the requirement for both hyperspectral pixel-based and object-based mapping. As the CASI 
sensors allow users to choose their own band sets, all of the 30 bands were optimized for vegetation 
discrimination purposes.  

Several image pre-processing procedures were applied to the dataset. The CASI provider applied 
radiometric correction to at sensor spectral radiance. Anstee at CSIRO further processed the image 
data, by applying cross-track corrections and using Brando & Dekker [26] method to derive at-surface 
reflectance. The imagery used in this study has been fully corrected geometrically and radiometrically 
to at surface reflectance. All image processing for pixel-based approach were using ENVI 4.4 
software, while the object-based approach was using Definiens® Developer 7. 
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Figure 1. CASI-2® image of the study area, the mouth of the Brisbane River, Southeast 
Queensland, Australia, in false color composite (R: band 29 [799 nm], G: band 15 [650 nm], 
B: band 9 [540 nm]), acquired on 29 July 2004. The yellow polygons show boundaries of 
the mapped mangrove. 

 

Table 1. Summary of image dataset collection parameters CASI-2 and band set used for 
mangrove mapping (Source: [27]). 

Acquisition Parameters  

Sensor altitude: ~1,200 m 

Acquisition date and time: 
-Date: 29 July 2004 
-UTC: 23:56:29 
-Local: 09:56:29 

Meteorological conditions at acquisition: 
- Temperature: 16.7 °C 
- Atmospheric pressure: 66 % 
- Humidity: 1,022.4 hPa 

Acquisition and Solar Geometry: 
Off-NADIR view = 2.6 (ideal = 0) 
Satellite Azimuth = 97.6 
Satellite Elevation= 87.3 
Sun Azimuth = 35.0 
Sun Elevation = 36.5 

Image size (pixels, rows): 4,971, 4,108 

Pixel size: 4.0 m × 4.0 m 
Geometric Attributes:  
WGS84 in Decimal degrees for Lat/Lon 

Spectral band for vegetation mapping: 30 bands 

Radiometric resolution (dynamic range):  
14 bit (16,384 levels) 
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The reference map used in this study was a digital map of the mangrove species in the study area, 
which was an official product of Queensland Herbarium/Environmental Protection Agency (EPA) [28]. 
This map was derived from aerial photographic interpretation at scale of 1:25,000, site data, traverses, 
and other available data in 1999 for regional coastal wetland assessment and produced mangrove 
species map at scale 1:25,000, which has a coarser level of information compare to CASI-2 image. 
However, the map provides valuable information on the existing mangrove species in this area, as well 
as a guide for endmembers selection and a reference for accuracy assessments of the resulting 
mangrove maps.  

2.3. Endmember Selection 

Image endmember reflectance spectra were selected to enable mapping of wetland classes 
mapping from spectral angle mapper (SAM) and linear spectral unmixing (LSU) algorithms (Figure 2). 
Image-based endmembers were ideal because they were drawn from the population of data points to 
be analyzed, increasing the likelihood that the composition of image pixels will be estimated 
accurately [17,29]. A minimum noise fraction (MNF) transformation was also applied to all of the 30 
bands to reduce the dimensionality of hyperspectral data. In addition, as the selection of image 
endmembers requires identification of homogenous pixels comprised of a dominant cover type, a pixel 
purity image (PPI) was also produced, and interpreted in relation to the reference map, to identify 
pixels occupied by one of the target mapping classes which correspond to endmembers [30].  

Figure 2. (a) Endmember selection strategy for pixel-based classification. Each image 
objects’ spectral reflectance was derived from known-associated objects in the map, pixel 
purity image (PPI) image, and false-color composite (FCC) image. Object code: A is 
saltmarsh and B is closed Avicennia. (b) The spectral reflectance of the nine-collected 
endmembers in different color code. 
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In order to develop spectral signature of known features to be mapped, supporting data were 
required to ensure appropriate endmember selection. Endmembers were derived from three sources: 
the existing mangrove species map, false-color composite (FCC) image of CASI-2, and PPI image 
(Figure 2). There were nine endmembers collected from the study area: four mangrove species classes 
(closed Avicennia, open Avicennia, closed Rhizophora, closed Ceriops), four saltmarsh classes (deep, 
medium and shallow, and vegetated saltmarsh), and water bodies (river and others).  

The endmembers collected (Figure 2(b)) showed that mangroves classes have similar spectral 
reflectance pattern. All of the mangrove classes have a typical healthy vegetation spectral reflectance. 
They have low spectral reflectance in visible bands (approximately 400–700 nm), and dramatically 
increase in the shifting area between the red and near infrared band, which known as “red edge” region 
(between 680 and 730 nm). The saltmarsh class contained three variants, due to significant differences 
in the amounts of vegetation cover and standing water. Vegetated saltmarsh had the highest vegetation 
cover with limited water cover, while shallow and deep saltmarsh had lower amounts of vegetation 
cover and higher amounts of standing water.  

2.4. Image Classification 

2.4.1. Spectral Angle Mapper (Per-Pixel Mapping) 

The Spectral Angle Mapper (SAM) technique determines the similarity between two reflectance 
spectra by calculating the ‘spectral angle’ between them, treating them as vectors in a space with 
dimensionality equal to the number of bands (Figure 3) [31]. The image reflectance spectra is then 
assigned a correlation factor between 0 (low correlation) and 1 (high correlation) relative to the 
reference reflectance spectral library or endmembers. The spectral angle is the angle between any two 
vectors originating from a common origin. The magnitude of the angle specifies the degree of  
dis-similarity between material and reference; a smaller angle correlates to a more similar spectral 
reflectance signature [32]. 

Figure 3. Diagram of spectral angle between vector representation of image pixel spectral 
(object t and k in a multi-dimensional image), and the reflectance spectra of reference 
object in the spectral library. Object t is more similar to the reference than k, i.e., the angle 
(α) in radians between r and t is smaller (modified from [31], p. 453). 
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A coincident or small spectral angle between an image pixel and specific feature class reflectance 
spectra indicates the likelihood that the unknown pixels could be assigned to that feature class [13,31] 
(Figure 3). Results from the SAM algorithm were displayed as a rule image for each feature class, with 
image digital numbers representing the spectral angle. In this study, the nine-targeted wetland 
endmembers were used in the SAM classification, which created nine rule images. In order to create a 
single classified map, an additional process was then used to combine the rule images into a single 
image layer by setting up a threshold value to each rule image to determine membership for each class. 

2.4.2. Linear Spectral Unmixing (Sub-Pixel Mapping) 

Linear spectral unmixing, also known as sub-pixel sampling or spectral mixture analysis, is a 
method developed to estimate sub-pixel information or fractional cover of selected target features 
(endmembers) that contribute to a pixel’s spectral reflectance [17]. This method assumes the 
reflectance in a pixel is the result of a linear combination or the area weighted sum of reflectance 
spectra of selected endmembers. The un-mixing algorithm estimates the relative fraction, abundance or 
area of the pixel occupied by each end-member (Figure 4) [33,34]. 

This mapping approach is based on the assumption that the reflectance spectra of materials in a 
sensor’s instantaneous field of view (IFOV) combines linearly, with proportions given by their relative 
abundances. A reflectance spectrum can be decomposed into a linear mixture of its spectral 
endmembers [33], where the weighting coefficients of each endmember, were then interpreted as the 
relative area occupied by each endmember in a pixel (Figure 4). The results produced from this 
mapping method were fraction images for each of the endmembers or wetland classes, indicating the 
fraction of a pixel covered by each class.  

Figure 4. Principle of spectral mixing and unmixing (modified from [17], Figure 6, p. 48, 
with kind permission from Springer Science+Business Media B.V.). 
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In order to produce a single output wetlands map to compare with the other mapping approaches 
developed in this work, the fraction images needed to be combined into a single image layer. In a 
similar approach to the SAM rule images, the fraction images were forced into a hard classification 
type by defining a threshold for each pixel to be assigned to one wetland class and then combined 
together into one layer. In ENVI, the thresholds were defined prior to the fraction images combination. 
In this approach, larger weights in relation to the variance of the data cause the unmixing to honor the 
unit-sum constraint more closely [35].  

2.4.3. Object-Based Mapping 

Object-based classifications were developed as a means of incorporating hierarchical spatial and 
contextual information into an image mapping procedure. This approach enables image analysts to 
work from large simple objects to smaller more complex objects, and use both spatial and spectral 
reflectance information. An image object can be defined as a grouping of pixel having similar spectral 
and spatial properties [20,21,36]. In this context the object-based image analysis (OBIA) refers to 
analyzing the image in an object space rather than in a pixel space, and objects can be used as the 
primitives for image classification rather than pixel value. The processing approach described here was 
developed and applied using the Definiens® software, hence some of nomenclature reflects processing 
operations specific to that software. The process of detecting objects in an image in object-based 
approach consists of sequences of image segmentation and classification procedures, which together 
develop the rule sets.  

The main task of image segmentation is to partition the whole image into a series of discrete 
objects, which coincide with the spatial patterns at specific scales. The image is segmented into 
homogeneous objects based on the spectral information and local pattern or textual information that 
are included in groups of neighboring pixels [20,21]. Multi-resolution segmentation is a bottom up 
region-merging technique starting with one-pixel objects. In numerous subsequent steps, smaller 
image objects are merged into bigger ones. Region growing is among the most commonly used 
segmentation methods. This procedure starts with the generation of seed points over the whole scene, 
followed by grouping neighborhood pixels into an object under a specific homogeneity criterion [20]. 
The object continues to grow until its spectral closeness metric exceeds a predefined break off value 
(scale factor). Different break-off points result in different object resolution, the higher the break-off 
values producing larger segmented objects (Figure 5).  

The outcome of the segmentation algorithm is controlled by a scale factor and a heterogeneity 
criterion. The scale factor is indirectly related to the average size of the objects to be detected. The 
heterogeneity criterion controls the merging process, and is computed using image spectral layers or 
non-spectral layers, e.g., thematic data such as elevation. This criterion consists of two properties; 
color and shape. Color refers to the spectral homogeneity, whereas shape considers the semantic 
characteristics of the objects, which consist of smoothness and compactness [20,37]. 

Designing appropriate mapping sequences in an object-based approach is a fundamental strategy to 
obtain accurate results. In contrast to the pixel-based approach which only consider on pixel values, 
image analysis in this approach is based on more than one object’s features and object levels [37,38]. 
Different object might have different features composition and semantic classification level. Thus, 
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strategically, to map mangrove species and its environment properly, the mapping process has been 
broken down into several consecutive sequences. 

Figure 5. Example of image segmentation using three different scale parameters. 

 

A combination of top-down (subdividing) and bottom-up (merging) segmentation strategy was used 
in this study. The image was segmented into some image objects during the process of image analysis. 
According to the developed class hierarchy (Figure 6), the image objects were organized into image 
object levels on which the image analyses would be performed. In this study, not all of the image 
extent was used for analysis; only parts of the image where the mangrove stands existed were 
considered as the study area. 

Figure 6. Objects class hierarchy used in this study. 

 

In the classification stage, a combination of nearest neighbor and rule-based classification was used, 
which form a supervised classification method. The nearest neighbor classifier classifies image by 
finding the k-neighbor nearest to the new sample from the training space based on a suitable similarity 
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or distance metric [20]. First, sample objects were declared for each class, and then the algorithm 
searched for the closest sample object in the feature space for each image object. All class assignments 
in Definiens® were determined by assignment values in the range 01. The closer an image object was 
located in the feature space to the reference spectral reflectance signature. For a class, the higher the 
membership function value will be for this class. The best classification result kept the objects with 
highest membership values [38]. The rule-based classification assigned the class membership 
according to the object features on the image or the class’ rule. This rule was developed by combining 
several object feature characteristics which represent the class. 

2.5. Error and Accuracy Assessment 

Accuracy assessment is an integral part of information extraction from remotely sensed data, since 
thematic information always contains error [31,39,40]. In this study, the accuracy assessment was 
performed for each of the classified maps using reference map from the Queensland Herbarium/EPA. 
The class samples were collected within the area occupied by both classified map and reference map. 
According to the reference map, there were five classes used to assess the accuracy of classified map, 
which were closed Avicennia, closed Ceriops, closed Rhizophora, open Avicennia, and Saltmarsh. The 
four classes of saltmarsh in classified maps were combined to form a single saltmarsh class for 
this purpose.  

The sampling design used in this study was stratified random sampling, which is preferred for 
remote sensing analysis [31]. 400 samples were collected for this purpose, where each class has 
different sample size based on the class distribution or importance. The accuracy measures used in this 
study were error matrix and Kappa coefficient, which both were discrete multivariate techniques. This 
technique is appropriate for accuracy assessment because remotely sensed data are discrete rather than 
continuous [31]. An error matrix is the standard way to represent map accuracy, with individual 
accuracies of each category (class) being described along with both the errors of inclusion 
(commission errors) and errors of exclusion (omission errors) present in the classification. 

3. Results and Discussion 

3.1. Image Classification Results 

3.1.1. Spectral Angle Mapper 

Overall, the class boundaries of resulting SAM classification map produced a high degree of 
correspondence to the reference map and image features (Figure 7). Figure 8 demonstrates the 
individual rule images which were used for each class in the final combined classification. Avicennia 
marina dominated the land cover of the study area, about 55.44% of the total area (Table 2). 
According to Duke [41], this type of mangrove has remarkable adaptation ability to wide range of 
temperature conditions, tidal inundation level, moisture condition, salinity variability, and various 
growing substrates. The Closed Ceriops class exhibited a patchy distribution in the classified map, and 
occupied only 1.71% of the total study area. Most of this class occurred within the closed Avicennia 
class, at the upper left of the map. This class has the most similar spectral reflectance to the closed 
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Avicennia and consequently produced some miss-classifications which will be discussed in the 
accuracy assessment.  

Table 2. Summary statistics of the wetland classes for all classified map. 

Wetland Class 
SAM LSU Object-Based 

Pixel Area (ha) % Pixel Area (ha) % Area (ha) % 

Unclassified 3,101 4.96 0.65 906 1.45 0.19 9.85 1.28 

Closed Avicennia 265,894 425.43 55.44 155,560 248.90 32.43 347.24 45.25 

Closed Ceriops 8,187 13.10 1.71 20,992 33.59 4.38 18.37 2.39 

Closed Rhizophora 20,117 32.19 4.19 2,809 4.49 0.59 30.23 3.94 

Open Avicennia 69,515 111.22 14.49 142,675 228.28 29.75 122.16 15.92 

Shallow saltmarsh 59,863 95.78 12.48 35,180 56.29 7.33 40.69 5.30 

Medium saltmarsh 21,436 34.30 4.47 95,059 152.09 19.82 72.48 9.44 

Deep saltmarsh 5,313 8.50 1.11 4,231 6.77 0.88 29.68 3.87 

Vegetated saltmarsh 24,647 39.44 5.14 6,983 11.17 1.46 81.67 10.64 

Water body (river) 1,565 2.50 0.33 15,243 24.39 3.18 15.04 1.96 

Total 479,638 767.42 100.00 479,638 767.42 100.00 767.42 100.00 

 
Figure 7. Classification results comparison for one of the selected areas in the study site. 
The FCC and reference are provided for comparison. Note that reference map has one 
saltmarsh class only. 
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Figure 8. Rule images of each class and combined classes of spectral angle mapper (SAM) 
(see yellow box in Figure 7 for location subset). The greyscale images show the SAM 
angle, darker objects represent smaller angle, or high similarity to the reference class. The 
final image resulted from a combination of rule images based on the smallest angle in each 
reference class. 

 

Closed Rhizophora were mostly found in narrow stands along the river or near the seaward area of 
closed Avicennia. This is in accordance to their characteristics previously studied. However, the 
distribution of this class was much wider than the reference map, which only indicated patches on St. 
Helena Island. Open Avicennia were widely spread throughout the study area, particularly in the inner 
mainland, and associated with the saltmarsh, and occupies 14.49% of total area (Table 2). Saltmarsh 
classes occupy the lowland part of the mainland which was inundated due to tidal flow from the Bay 
and River at the time of image acquisition. This class occupied about 23.20% of the study area or 
178.01 hectares. Areas assigned to the water class were mainly small tidal creeks and some patches 
within the more open saltmarsh.  

3.1.2. Linear Spectral Unmixing 

The results of spectral unmixing were a series of gray-scale images, one for each endmember, plus a 
root-mean-square (RMS) error image (Figure 9). Higher abundances, and higher errors for the RMS 
error image, were represented by brighter pixels. The unmixing results should have a data range from 0 
to 1, which represent endmembers’ abundance or fractional cover. The RMS error images were used to 
determine areas of missing or inappropriate endmembers.  
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Figure 9. Linear spectral unmixing (LSU) images of each class and combined 
classification result. The greyscale images show the objects abundance or fractional cover 
of a pixel, brighter pixel represents higher abundance or fractional cover. The final 
combined classification image was produced after applying thresholds to each individual 
abundance/fraction image. See Figure 7 for classes’ legend to interpret the combined 
classified image. 

 

The resulting classification map shows a different pattern compared to the SAM classified maps 
(Figure 8). The classes were patchier and less contiguous than on the SAM map. In terms of class 
distribution, the most noticeable difference was found between closed Avicennia, open Avicennia and 
medium saltmarsh classes. In this classification, closed Avicennia and open Avicennia have a very high 
value of area, followed by medium saltmarsh. These three classes were distributed extensively on the 
map, with the percentage of 32.43%, 29.75%, and 19.82% respectively (Table 2). The two most 
markedly different classified areas were found at Fisherman Islands and St. Helena Island. Most of the 
saltmarsh classes produced by SAM at Fisherman Islands were classified as open Avicennia. 
Therefore, the percentage of this class in LSU classification increased significantly. At St. Helena 
Island, most of closed Avicennia class from SAM was classified as saltmarsh in this classification. 
Hence, this considerably reduces the percentage of closed Avicennia class.  

3.1.3. Object-Based Classification 

In object-based approach, the essential process prior to mapping objects is to design the appropriate 
mapping approach. Figure 10 shows the mapping approach used in this study, this is including 
decisions on how objects and sub-objects related in an image object hierarchy. The first process was 
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intended to separate the image objects between mangrove and non-mangrove classes within the study 
area. However, prior to the separation process, a chessboard segmentation in pixel level detail was 
performed. This process was intended to maintain pixels’ spectral information for mangrove species 
discrimination in the next sequence. If a multi-resolution segmentation applied in this stage, the 
individual pixels information would be lost, which consequently between mangrove species 
discrimination would be difficult. The separation of mangrove and non-mangrove class used rule-based 
classification in regard to pixels’ features, and generating a ‘Mangrove Level’. 

Figure 10. Image object hierarchy and the mapping sequences. 

 

Based on pixel features, the mangrove species classes were then discriminated within mangrove 
class using a rule-based classification. This classification used because although the mangrove species 
discrimination was guided by existing mangrove map, the species visual appearances on image were 
indivisible. This stage generated ‘Mgrv Level’. Non-mangrove class was broken down into saltmarsh 
and water body prior to detailed division of saltmarsh class which generated ‘Non-mgrv Level’. Water 
body (i.e., river water) has a unique feature on image, it has nearly black in colour and elongated 
shape. Thus, this object was separated in advance from saltmarsh object using rule-based classification 
before saltmarsh classes’ discrimination. Saltmarsh classes were then distinguished using sample or 
training and test area (TTA) because their differences were very clear, generating ‘Sltmrsh Level’. 

3.2. Comparison between Classification Approaches 

Different mapping and classification methods used in this study resulted in different wetland class 
distributions on the derived map, in terms of patterns and compositions of the mapped classes. Overall, 
the two classes of Avicennia, closed and open Avicennia, dominated all of the classification results 
(see graphs on Figure 11). This result was in accordance to the studies reported by Dowling [22] and 
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Duke [41], as well as the reference map, that Avicennia marina dominates this area. Therefore, the 
classifiers have successfully identified this pattern. 

The resulting maps show that pixels assigned to the Avicennia classes and shallow saltmarsh 
matched among the three classifications. Closed Rhizophora were found to be matched only on the 
SAM and object-based classified maps. They were found along the Brisbane River and some patches 
on Fisherman Island and St Helena Islands. Closed Ceriops has the least matched among the three 
classified maps; and it also formed small patches on the west-side of Brisbane Airport and Fisherman 
Island. Visually, the disagreement between mapping methods was most evident in the saltmarsh 
classes. This was attributed to the saltmarsh areas that are typically containing mixed pixels, i.e., 
water, vegetation, and soil. 

Figure 11. Maps of wetland classes and their area in hectares: (a) spectral angle mapper 
(SAM); (b) linear spectral unmixing (LSU); and (c) object-based approach. Background 
image is near infrared band of CASI-2 (band 29, centred at 799 nm).  
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Figure 11. Cont. 

 

In discriminating objects, SAM was heavily dependent on endmembers derived from the image. It 
matched the spectra of all image pixels to the endmembers spectral reflectance, and classified each 
class within certain angle threshold from it. Thus, if the derived endmembers were correctly 
representative of object classes, the SAM classification result would be accurately represent the 
distribution of those classes in the map. The object-based mapping approach, relied on object 
homogeneity, and segmented the image based on it. If the segmentation criteria selected were 
appropriate, the image objects would be accurately segmented. The problem arose when attempting to 
assign each object into certain class. Despite of our knowledge about the targeted objects entity, it was 
difficult to set the rules so that software could recognize that object as defined class. Although the 
classification rules have been set up as close to the recognized objects in the scene as possible, the 
class decision has involving subjective judgment from the analyst. Therefore, the result could be 
overestimates or underestimates in some extents, and did not exactly represent the distribution 
of objects.  

The LSU has been developed to spectrally decompose the mixed pixels into their component 
abundance. Rather than representing the landscape in terms of a number of certain classes, it 
acknowledged the compositional abundance of components (or endmembers) that together contribute 
to the observed reflectance value on the image. Therefore, the outputs of this classifier were images 
that portray the fraction of certain component within a pixel. The difficulty was found when combining 
those images into a fixed classification map. Although logical thresholds have been assigned to each 
endmember according to their importance, the result was not satisfactory since there were still many 
unclassified pixels spread around the image. 

3.3. Error and Accuracy Assessment 

The accuracy assessment results showed that overall, object-based mapping approach has the 
highest accuracy value, both for the overall accuracy and Kappa analysis (Tables 3–5). This meant that 
statistically, the object-based classification map has the highest corresponding degree to the reference 
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map. This approach resulted in an overall accuracy of 76%. On the other hand, the LSU classifier has 
the lowest accuracy value, which was only 56%. This classifier produced many unclassified objects; 
the classifier could not successfully determine the feature abundance within the mixed pixels. SAM 
classifier resulted in overall accuracy and Khat statistic value between object-based and LSU, which 
were 69% and 0.57. However, according to the accuracy assessment result (Tables 3–5), the Khat 
coefficient of all classification methods fell within 0.40 and 0.80, which meant they have moderate 
agreement according to Landis & Koch [42] category. 

Table 3. Error matrix for the SAM classified map versus reference map. 

 Reference Map Producer’s  
Accuracy 

User’s  
Accuracy  Class CA CC CR OA SM Total 

C
la

ss
ifi

ed
 

(S
A

M
) 

CA 122 24 22 27 11 206 81% 59% 
CC 3 21 0 2 0 26 42% 81% 
CR 10 0 25 0 0 35 50% 71% 
OA 13 5 3 21 2 44 42% 48% 
SM 2 0 0 0 87 89 87% 98% 

 Total 150 50 50 50 100 400   

Overall classification accuracy = 69%, Kappa = 0.57 

Table 4. Error matrix of LSU classified map versus reference map. 

 Reference Map Producer’s  
Accuracy 

User’s  
Accuracy  Class CA CC CR OA SM Total 

C
la

ss
ifi

ed
 

(L
SU

) 

CA 87 7 25 10 0 129 58% 67% 
CC 2 33 1 3 0 39 66% 85% 
CR 2 0 6 0 0 8 12% 75% 
OA 24 10 1 29 33 97 58% 30% 
SM 35 0 17 8 67 127 67% 53% 

 Total 150 50 50 50 100 400   

Overall classification accuracy = 56%, Kappa = 0.41 

Table 5. Error matrix of object-based classified map versus reference map. 

 Reference Map Producer’s  
Accuracy 

User’s  
Accuracy  Class CA CC CR OA SM Total 

C
la

ss
ifi

ed
 

(O
B

IA
) 

CA 114 18 18 12 3 165 76% 69% 
CC 7 27 0 0 0 34 54% 79% 
CR 6 0 30 0 0 36 60% 83% 
OA 19 3 2 36 1 61 72% 59% 
SM 4 2 0 2 96 104 96% 92% 

 Total  150 50 50 50 100 400   

Overall classification accuracy = 76%, Kappa = 0.67 

From the error matrix tables, saltmarsh had the highest value of producer’s accuracy or has the 
lowest omission error among those three classification methods. The probability of saltmarsh class 
being classified as another class was low. This was because saltmarsh has a very distinct pattern and is 
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easily recognized by the classification rules due to its smooth pattern with homogeneous colours, and 
relatively similar spatial patterns. The highest value of omission errors were varied among classifiers. 
Closed Ceriops and open Avicennia have both 58% of omission error on SAM, this is mainly because 
the mixed pixel problem which evidence in those classes and the difficulty of obtaining pure pixels for 
those classes. The high omission error was also evidence for closed Rhizophora on LSU by 88% and 
on SAM by 50%. This high omission error indicates that according to the endmember selected, this 
classifier failed to identify this class as can be seen in Figure 11(a,b).  

Different patterns were shown by the user’s accuracy. All classifiers have low value of user’s 
accuracy or high commission error for open Avicennia class. Meaning that there was an over-estimate 
classification result, or other classes were highly miss-classified as this class. SAM and OBIA 
classification have low commission error on saltmarsh, while LSU on closed Ceriops. This is evidence 
that LSU was a powerful classifier for mixed environment.  

4. Conclusions 

This study demonstrated the ability of CASI-2 hyperspectral data for mangrove species mapping in 
a limited test area and with three different mapping approaches. Overall, the dataset and algorithms 
mapped the target classes with moderate accuracy using both pixel-based and object-based approaches. 
This moderate accuracy was attributed to the heterogeneous mixture of vegetation, soil, and water in 
mangrove and saltmarsh environments. The results show that by applying different classification 
methods, different degree of mapping accuracy was produced. The object-based classification had the 
highest overall accuracy of 76%, followed by SAM and LSU with overall accuracies of 69% and 56% 
respectively. The object-based classification gave a better image object delineation compare to the 
pixel-based approaches, because of its advantage in incorporating various combinations of pixel’s 
features to identify an object in the classification process.  

For future research, a larger study area and higher mangrove species diversity is needed to achieve a 
better understanding on how effective these classifiers are for differentiating mangrove species. Also 
the inclusion of more image object properties such as shape, texture, size, and context should be tested 
for object-based image analysis to improve the classification result. The high degree of analyst-biased 
interaction existing in all classification methods tested remains a challenge to transfer the rules and 
algorithm to other location.  
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