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Abstract: Image registration is widely used in remote-sensing applications. The existing 

automatic image registration techniques fall into two categories: Intensity-based and  

feature-based; the latter (which extracts structures from both images) being more suitable 

for multi-sensor fusion, detection of temporal changes and image mosaicking. Conventional 

image registration algorithms have proven to be inaccurate, time-consuming, and unfeasible 

due to image complexity which makes it cumbersome or even impossible to discern the 

appropriate control points. In this study, we propose a novel method for automatic image 

registration based on topology (AIRTop) for change detection and multi-sensor (airborne 

and spaceborne) fusion. In this algorithm, we first apply image-processing methods 

(SURF—Speeded-Up Robust Features) to extract the landmark structures (roads and 

buildings) and convert them to a features (vector) map. The following stages are applied in 

GIS (Geographic Information System), where topology rules, which define the permissible 

spatial relationships between features, are defined. The relationships between features are 

established by weight-based topological map-matching algorithm (tMM). The suggested 

algorithm presents a robust method for image registration. The main focus in this study is on 

scale and image rotation, when the quality of the scanning system is constant. These seem to 

offer a good compromise between feature complexity and robustness to commonly 

occurring deformations. The skew and the anisotropic scaling are assumed to be  

second-order effects that are covered to some degree by the overall robustness of the sensor. 
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1. Introduction 

Image registration is a critical pre-processing procedure in all remote-sensing applications that 

utilizes multiple image inputs, including multi-sensor image fusion, temporal change detection, and 

image mosaicking. The recent interest in change detection and modeling has brought automatic image 

registration into the limelight [1].  

In manual registration, the selection of control points (CPs) is usually performed by a human 

operator. This has proven to be inaccurate, time-consuming, and unfeasible due to image complexity, 

which makes it cumbersome or even impossible for the human eye to discern the suitable CPs. 

Therefore, researchers focused on automating feature detection to align two or more images with no 

need for human intervention. The automatic registration of images has generated extensive research 

interest in the fields of computer vision, medical imaging and remote sensing. Comprehensive reviews 

have been published by Brown [2] and Zitova and Flusser [3]. 

Many proposed schemes for automatic registration employ a multi-resolution process. The discrete 

wavelet transform (DWT) is employed to register satellite images [4], and the modulus maxima are 

applied to the LH and HL frequency bands in order to extract edge points; correlation is then applied 

for matching. Le Moigne et al. [1] developed a parallel algorithm using the maxima of DWT 

coefficients for the feature space, and correlation for the search space. Mutual information (MI) 

methods, originating with Viola and Wells [5], are able to register multimodal images since MI 

represents a measure of statistical dependency between the reference and the sensed images rather than 

gray intensity values, which vary when different types of imagers are used, or under different lighting 

conditions. Registration of a multimodal brain image [6-10] combines the sum of the difference (SAD) 

and MI into a matching criterion to enhance registration accuracy. Even though the SAD is applied 

directly to the gray intensity values, the authors claim that their algorithm works for 

multimodal images.  

The existing automatic image-registration techniques that are based on spatial information fall into 

two categories: Intensity-based and feature-based [3]. The feature-based technique extracts salient 

structures from sensed and reference images by accurate feature detector and by the overlap criterion. 

As the significant regions (e.g., roofs) considered, and lines (e.g., roads), are expected to be stable in 

time at a fixed position, the feature-based method is more suitable for multi-sensor fusion, change 

detection and image mosaicking. The method generally consists of four steps [12]: (1) CP extraction; 

(2) transformation-model determination; (3) image transformation and resampling; and (4) assessment 

of registration accuracy. The first step is the most complex, and its success essentially determines 

registration accuracy. Thus, the detection method should be able to detect the same features in all 

projections and at different radiometrical sensitivities regardless of the particular image/sensor 
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deformation. Despite the achieved performance, the existing methods operate directly on gray intensity 

values and hence they are not suited for handling multi-sensor images. 

The search for discrete CPs can be divided into three main steps: (1) Selection of ―interesting 

points‖; (2) description of nearest points or features; (3) matching between images. The most valued 

property of CP detection is its repeatability. The description of nearest points has to be distinctive but 

robust to noise, and potential displacements such as geometric and radiometric deformations. To 

succeed, the matching technique has to be accurate and sufficient while the detection scheme has to 

simplify the above requirements. This paper presents a novel method for automatic image registration 

based on topology rules (AIRTop) for change detection and multi-sensor (airborne and 

spaceborne) fusion. 

2. Automatic Image Registration 

The AIRTop algorithm (Figure 1) consists of the four stages of any conventional registration 

method. First, the significant features are extracted by applying SURF (Speeded-Up Robust Features) 

method [13] on both sensed and reference images and converted to vector format. The spatial 

distribution and relationship of these features is expressed by topology rules and converts them to 

potential CPs by determining a transformation model between sensed and reference images. The 

defined rules for a weight-based topological map-matching (tMM) algorithm manage [14], transform 

and resample features of the sensed image according to a reference image.  

Since AIRTop has a sufficient number of CPs, the registration accuracy can be estimated by test 

point error (TPE) technique [15]. The results of the map-matching are determined by predefined Root 

Mean Square Error (RMSE) threshold. If the algorithm fails to identify the correct CPs among the 

candidate features, then the algorithm regenerates another set of random values of coefficients and 

repeats the map-matching. This process continues by optional loop procedure until the algorithm 

selects the correct CPs.  

The threshold decision for a map-matching procedure is similar to the automatic segmentation 

problem where scale of values can be used for classification. In general, the threshold is placed at the 

minimum value of the histogram. We employ a statistical approach based upon a parameter model that 

fits the sum of the functions to the normally distributed histogram. The squared means of the normally 

distributed quantities of each algorithm’s stage could be modeled as a noncentral chi-squared 

distribution (having zero degree of freedom) [10]. We suggest automatizing selection of thresholds by 

calculating the power of test (using ncx2stat function, MATLAB 2009b) on the mean of a normal 

distribution. Thus, we achieve the regulation of the threshold. 
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Figure 1. A flow-chart describing the AIRTop algorithm. Red box is stage 1 (feature 

extraction), blue box is stage 2 (topology map matching), orange box is stage 3 (matching 

process), green box is stage 4 (validation and accuracy). 
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2.1. Significant Features 

CP identification is the key step in image registration. There are two main methods to detect CPs: 

area-based and feature-based. In feature-based algorithms, an image is represented in a compact form 

by a set of features. The common features are edges, regions, lines, line endings, line intersections, or 

region centroids. Thus, the feature-based methods are adopted when objects’ features are distinct. 

These methods are relatively more powerful for the registration of different types of images 

with distortions. 

Because the image scenes studied in this research have a large area, region of interest (ROI) 

selection, which contains relatively large radiometric variation (grayscale contrasts), is conducted prior 

to feature detection. The idea of addressing the registration problem by applying a global-to-local level 

strategy has proven to be an elegant way of speeding up the whole process, while enhancing the 

accuracy of the registration procedure [11]. Thus, we expected this method to greatly reduce false 

alarms in the subsequent feature extraction and CP identification steps. To select the distinct areas, an 

image is divided into adjacent small blocks (10% × 10% of image pixels with no overlap between 

blocks). Then, entropy is calculated for each block (with a filter size of 20% × 20% of the pixel block), 

which can be used to measure the local variation within the block. Figure 2 shows the entropy map of 

an image (subset of one block) of 420 × 420 pixels, where the blocks with large entropies correspond 

to the areas with relatively high variation, such as buildings (two roofs in the center of the image) and 

roads (located in the upper right part of the image). A threshold η is set to choose the blocks with large 

entropies as ROIs for CP detection. This ensures that at least one ROI will be selected from each patch, 

which may result in a wider distribution of CPs.  

Significant features are then extracted by SURF algorithm. First, the fast-Hessian corner 

detector [16], which is based on integral image and approximation, is performed. The Hessian matrix 

is responsible for primary image rotation (Figure 3) using principal points that are identified as being 

of interest. The next stage is to make a descriptor of local gray level geometry features. The vector 

representing the local feature is created by a combination of the Haar wavelet response. The values of 

dominant directions are defined relative to the principal point.  

The approximated determinant of the Hessian represents the blob response in the image. These 

responses are saved in a blob response map over different scales, and local maxima are detected. An 

integral image (Equation (1)) at a location 𝐼 (𝑥) represents the sum of all pixels in the input image 𝐼 

within a rectangular region formed by the origin and 𝑥. The sum of intensities inside a rectangular 

region (e.g., roofs) is calculated using integral images [17]: 

 

(1) 

The Haar wavelet of the integral image is calculated. The responses are represented as points in a 

space with the horizontal response strength along the abscissa and the vertical response strength along 

the ordinate. The dominant orientation is estimated by calculating the sum of all responses within a 

sliding orientation window. The horizontal and vertical responses within the window are summed, 

yielding a local orientation vector. The longest vector defines the orientation of the point of 

interest [18].  

𝐼Σ 𝑥 =    𝐼  𝑖, 𝑗 

𝑗≤𝑦

𝑦=0

𝑖≤𝑥

𝑖=0

 (1)  
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The results of the SURF algorithm are three additional images (integral image, primary rotated 

image, and feature orientation image) of the reference and sensed images. The next stage is feature 

extraction from both the reference and sensed images, by applying two algorithms supported by the 

SURF algorithm images: The Hough Transform [19] used for long (global) edge extraction and the 

Canny detector [20] used for extraction of shorter (local) edges.  

Figure 2. ROI selection. (A) Original image. (B) Entropy map of 10 adjacent blocks. 

 

Figure 3. Repeatability score for image rotation of up to 180°. 

 

The suggested process extracts long edges related to road features with the Hough Transform prior 

to the Canny operator. Since SURF integral (magnitude) and orientation images are applied as the base 

layer for feature detection, we propose modifying several stages of the Canny operator. First, the 

process of non-maximal suppression (NMS), also known as non-maximum, is imposed on the integral 

SURF image. Second, the edge-tracking process is controlled by a predefined threshold. The 

traditional Canny operator carries out the edge tracking according to a high and low (two) thresholds. 

The tracking of one edge begins at a pixel whose gradient is larger than the high threshold, and 

tracking continues in both directions from that pixel until there are no more pixels with gradients larger 

than the low threshold. However, it is usually difficult to set the two thresholds properly, especially for 

 0% 20% 

160% 180% 
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remotely sensed images, in view of the frequent nonuniformity of illumination and contrast in the 

different pixels [21]. In our method, the short (local) edges can be implemented without two 

predefined thresholds, as shown after using Hough Transform, relatively long edges are related to 

roof features.  

Since it is difficult to detect continuous and stable edges solely from the images (reference and 

sensed), the morphological closing operation, produced by the combination of dilation and erosion 

operations, is employed. During this process, the edge detected areas are integrated into individual 

features. Finally, all of the extracted features are converted from raster to vector format and saved as a 

GIS project. While roofs are converted into polygons, roads are converted into polylines that cross 

along the central line of the detected (long edged) features.  

The extracted features are enhanced using a thresholding program that creates a binary raster image. 

Vectors are then extracted from this binary image by use of a simplified chord test [22]. A pixel is 

considered to be part of the vector if the distance from its center to the vector being created is less than 

one pixel width. Modifications of the features include smoothing the vectors to remove or reduce the 

amount of aliasing so that they will have a more ―real‖ appearance, or reducing the number of vertices 

(within vectors) produced during the initial translation. 

A measure of the displacement between vector and initial raster feature provides more accurate 

information about the translations (Table 1). As the area of this study is large, representing mixed land 

uses and complex structures and shapes, we examined the accuracy of the vectorization/rasterization 

models (ArcMap 9.3, ESRI) based on simulated geometric data. This test quantified the amount of area 

committed/omitted/correctly assigned to the converted feature (from raster to vector and vice versa). 

This analysis was represented as an area error matrix. 

Table 1. The error matrix for simulated geometric features (raster resolution 0.25 m; size 

60 m × 60 m; square area is 9 m
2
; shape area is 7 m

2
; circle radius is 0.75 m with area of 

1.77 m
2
) and commission/omission of errors (in m

2
). 
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 Background Square Shape Circle  

Background  42.49284 0.005 0.002 0.00016 42.5 

Square 0.002 8.998 0.000 0.000 9 

Shape 0.004 0.000 6.996 0.000 7 

Circle 0.00116 0.000 0.000 1.7684 1.77 

 42.5 9.003 7.016 1.76856  

2.2. Topology Matching  

Topological matching is used to reduce the search range or check the results of geometric matching 

since it is seldom used alone. Topological methods can spread the matching into the whole network, 

but this requires high topological similarity of the two datasets, as in topological transfer method [23].  
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The data pre-processing stage standardizes input data sets, and ensures that conflation data sets have 

the same data format and the same north direction (SURF-rotated image). As part of the preparation, 

the search key on the shapes must be defined. In a real data set, the features extracted from reference 

and sensed images are biased by noises and retained artifacts. Thus, out of the many possible methods 

for defining a search key, the selected method must include a succinct representation of the shape, and 

must not be sensitive to noise or small errors on the feature surface. We propose to use the 

Multiresolution Reeb Graph (MRG) skeleton structure method [24]. The Reeb graph uses a continuous 

scalar function on an object by the equivalence relation that identifies the points belonging to the same 

connected component [25].  

In the topology-matching process, the Reeb graph is used as a search key that represents feature 

shapes. A node of the Reeb graph represents a connected component in a particular region, and 

adjacent nodes are linked by an edge if the corresponding connected components of the object are 

contiguous. The Reeb graph is constructed by repartitioning each region in a binary manner. 

The output of the resampling process is a hierarchical design of nodes (base and support) for each 

extracted feature. Then, the integral of the geodetic distance is calculated using Dijkstra’s algorithm, 

which evaluates approximated values, as suggested by Hilaga et al. [26].  

The construction of the MRG is illustrated in Figure 4. The following notations were defined:  

(1) R-node (red points are MRG node for s0 level, blue points for s1 level, green points for s3 level, 

orange points for s4 level); (2) R-edge (the thick lines connecting R-nodes of different resolutions); 

(3) T-set (the thin lines corresponding to each R-node in triangle connection); (4) μn-range (connecting 

function of R-node or T-set). 

Figure 4. Multiresolution Reeb graph in 2D for a roof as the selected feature. (A) Original 

image; (B) map of extracted features; (C) selected feature with respect to the corner 

detection function; and (D) corresponding Reeb graph.  

(A)                              (B)                               (C)                              (D) 

 

Topology matching follows coarse-to-fine resolution levels to estimate similarities between 

features. The comparison between reference and sensed images is based on the vertex attributes  

(R-node, R-edge, T-set, and μn-range) of each feature in these images. The most influential R-node is 

selected based on hierarchy design for each feature separately. The record of these nodes is compared 

by attributes and summarizes to the matching list of candidate R-nodes. The matching process is 

guided by two rules for similarity: (1) How the final similarity is reduced by the matching; (2) adjacent 

effect of nearest R-nodes.  
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2.3. Weight-Based Topological Map-Matching  

The MRG based approach has major limitations when used with airborne and spaceborne image 

registration and processing. This method is affected by connectivity within the feature surface and is 

not bound to represent the true skeleton of the features. Furthermore, it is sensitive to the geometry of 

the feature, and thus is not faithful to subgraph matching.  

To overcome these limitations, we suggested formulating topology relations (connectivity and 

contiguity) between extracted features within reference and sensed images individually. According to 

the topology relation of polygon to polygon, polygon to polyline, and polyline to polyline, matching 

can be deduced. The topology rules that control the interaction between features are performed at two 

levels. In the first level, each feature is globally aware and related to all features within the image. In 

the second level, each feature is introduced to the nearest neighborhood and has knowledge of its local 

surroundings. This level overlaps with the ROI that was selected by adjacent small blocks during the 

feature-extraction stage.  

Consider first how to formulate the spatial dependency and relation of a single image having n 

features. Since any error in the initial matching process will lead to mismatching of the CP positions, a 

robust three-stage approach is introduced. The first stage is identification of a set of candidate CPs. 

The following stages involve both reference and sensed images. The second stage is identification of 

correct CPs among candidate CPs using heading weight (Hw) and proximity weight (Pw). The final 

stage is to estimate similarity between selected features supported by the MRG skeleton structure.  

First, the AIRTop algorithm creates an error tolerance around features, the radius of which is 

primarily based on spatial resolution of given image. All candidate CPs that are either within, crossing 

or tangent to the tolerance of a certain point are related to it and considered a suitable candidate. 

Identification of candidate CPs is established on the R-node for the s0 level (MRG nodes) of each 

feature. A set of candidate CPs is represented by the nodes and vertices of polygons (features related to 

roofs) and polylines (features related to roads).  

Next, a square proximity matrix of the distances between features is created. We employ the 

Gaussian-weighted matrix using Chord Length Distribution (CLD) as suggested by Taylor and 

Cooper [27]. The heading is considered a cosine angle between features that has been included in a set 

of candidate CPs, in reference and sensed orientation (SURF result) maps. This parameter measures 

the angle difference between orientation maps with respect to the primary image rotation (SURF).  

Finally, the similarity of the features is evaluated by MRG skeleton structure. The comparison 

includes all of the MRG parameters (R-node, R-edge, T-set and μn-range) for the features in both 

reference and sensed images.  

The values of three weight coefficients (heading weight, proximity weight and MRG similarity) are 

estimated and summed to give the total weight score. The weight-optimization process parallels the 

map-matching (MM). The first feature is selected from a set of candidate CPs on the sensed image and 

compared to features on a set of reference images by the three spatial descriptions/attributes of the 

features. The process initiates with the first-level topology rules (in which features are related to an 

entire image), where feature attributes are global connectivity and contiguity matrices. The comparison 

at this level provides a temporal list of fitting CPs candidates from reference image for each feature in 

the sensed image. The process continues at the local level using the second level of topology rules (in 
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which features are related to the nearest neighborhood), where feature attributes are local connectivity 

and contiguity matrices, proximity matrix, heading matrix and MRG parameters (for each feature 

individually). For a specific feature (in the sensed image), the optimization process starts with the  

map-matching of a positioning-fixed CP between sensed and reference images. If no fixed CPs are 

found, the algorithm continues to the next region of interest and candidate CPs are listed in the 

temporal file. In the case of fixed CPs, the random values for the three coefficients (heading 

weight (Hw), proximity weight (Pw) and MRG similarity) are generated between 1 and 100 (so that the 

sum of all coefficients equals 100). Using these values, the process then calculates the total weight 

score (MMtotal) for all features at the local level and indentifies the correct CPs based on the highest 

total weight score value (Equation (2)): 

 

(2) 

The relationship between percentage of wrong CPs identified and the weight coefficients (heading 

weight (Hw), proximity weight (Pw) and MRG similarity) is developed using a regression analysis. 

Since the functional relationship between the weights and the map-matching error is an internal test for 

accuracy, various specifications are considered. We assumed that the map-matching depends on the 

individual weights (Hw, Pw, MRG), their square terms and their inverse terms. In Equation (3), 𝛼 is a 

selected point, 𝛽  are the regression coefficients to be estimated and 𝜀𝑖  is the error of 

rasterization/vectorization conversion that has been assumed to be independently and identically 

distributed with constant variance: 

 

(3) 

To minimize the error, some restrictions have to be imposed. As discussed, the sum of all weight 

coefficients is set to 100 and the minimum and maximum values of each weight coefficient are set at 1 

and 100, respectively. The optimization function obtained from the MMerror analysis is given in 

Equation (4): 

 

(4) 

subject to: 

 

Equation (4) was optimized using the nonlinear minimization method proposed by Michael et al. [28]. 

The values of the weight coefficients were calculated by identifying the global minimum of the 

map-matching stage.  

𝑀𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑓(𝑯𝒘, 𝑷𝒘 , 𝑴𝑹𝑮) (2)  

(3) 𝑀𝑀𝑒𝑟𝑟𝑜𝑟 = 𝛼 +  𝛽ℎ1𝐻𝑤 + 𝛽𝑝1𝑃𝑤 + 𝛽1𝑀𝑅𝐺 +  𝛽ℎ2𝐻𝑤
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The accuracy of the map-matching procedure is estimated by mathematical representation of RMSE 

value. The results of the local map-matching are determined by a predefined RMSE threshold that is 

dependent on the spatial resolution of the images in question. If the algorithm fails to identify the 

correct CPs among the candidate features and the RMSE exceeds the threshold, then the algorithm 

regenerates another set of random values of coefficients and repeats the map-matching. This process 

continues by optional loop procedure until the algorithm selects the correct CPs.  

To determine the accuracy of the map-matching procedure, we modified the commonly used test 

Point Error (TPE) method [15]. TPE defines the test set by excluding groups of CPs from the 

map-matching procedure and measures the accuracy of the registration process. Our modification of 

the TPE uses marked features rather than fixed CPs. These features are randomly chosen from the 

extracted-features map according to ROI. As a result, no regions are marked due random selection 

mode. Our scoring method does not allow setting TPE to zero due to overfitting. In our algorithm, 10% 

of all CPs are excluded as a test set from TPE evaluation. Again, if the algorithm fails to transform and 

resample the sensed image and TPE exceeds the threshold, then the algorithm regenerates by optional 

loop procedure. 

For a given level of detail, the inner loop of the algorithm, as indicated in Figure 1, optimizes the 

registration process in the global and local image domains. By globally optimizing the corresponding 

ROIs, the optimization process can rapidly converge or even skip areas that do not contain a required 

feature, leading to considerable savings in execution time. The strategy of local registration by global 

optimization can be justified by the following facts. If the CPs are already close to their optimal 

position within the selected ROI, the separated optimization of each CP leads to the same solution as 

the optimization of all points within the selected ROI. The optimal value of the similarity is achieved 

by maximizing the local topological relation of each component to the global similarity of the ROIs. 

The contributions of topological relation to each ROI are independent of each other because they are 

achieved by small rearrangements of the CPs, which adjust the registration of both images in 

local areas. 

3. Results  

This section presents both simulated and real-world results. First, we evaluate the effect of  

multi-temporal parameter settings and show the overall performance of the suggested AIRTop 

algorithm using a standard evaluation set. Then, we evaluate the effect of multi-temporal and  

multi-sensor parameters. AIRTop has already been tested in a few real-world applications. Taking this 

application further, we focus in this article on the more difficult problem of camera calibration and 

temporal changes. AIRTop manages to calibrate the camera reliably and accurately, even in some very 

challenging cases. 

3.1. Experimental Evaluation  

One important advantage of simulated images is that they help meet the basic requirement for the 

automatic image registration algorithm that nothing is misleading between local and global registration 

accuracies. One drawback of the global topology method is that when the image has local geometric 

differences or the CPs in a local neighborhood are inaccurate, the local geometric differences average 
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out equally over the whole image. The effect of geometric differences or measurement inaccuracy of a 

CP on an approximating point will be the same no matter how near or far the CP is from the 

approximating point. Thus, the AIRTop algorithm uses an improved method in which a CP influences 

the nearby point more than distant points. To localize this method, we define a weight function that 

represents the contribution or influences of the CPs by weight-based topology.  

Note that for every point, we have an error measure in the form of RMSE; by minimizing the error 

measure, we obtain a mapping function that best fits the data when considered from the selected point. 

Thus, for each candidate point in the reference image, we are determining the corresponding 

component point in the sensed image. The overall accuracy of the map-matching procedure is provided 

by the TPE.  

This section describes a set of simulated images which make it possible to evaluate the matching 

accuracy of the proposed technique. The strategy of testing the AIRTop algorithm using simulated 

images emphasizes the following: (1) Temporal changes simulated by adding and removing structures 

and lines; (2) multi-sensor data simulated by different spatial resolutions (rotation and scaling). The 

evaluation criterion is the repeatability score. We estimated the temporal changes between two images 

by adding and removing features from the attribute table (in ARCGIS) using a statistical random code. 

From the captured images, we extracted 15 to 21 ROIs having 108 to 58 features, which were used for 

the registration experiments. These ROIs contain only polygons and polylines, and they do not contain 

any background. We launched the AIRTop algorithm between a reference image before the random 

function and after it. We estimated the TPE (Test Point error for 10% of all CP pairs) by matching 

images on the weighting function used in each ROI, where each CP pair was optimized by RMSE 

threshold for every experimental image.  

We evaluated the errors in the following manner: 43 images of random changes were matched to a 

reference image. Figure 5 shows that the TPE, with a reasonable accuracy rate of >0.9, is maintained 

for a temporal change rate of <40% in 26 simulated scenarios of spatial variances, including feature 

deletion and displacement. For cardinal changes (>40%), the RMSE threshold in stage 2 (topological 

map matching) fails to identify the correct CP pair.  

Figure 5. Temporal change versus registration accuracy. Blue points are different 

simulations of temporal changes, the black hatched line is the trend line, and the red arrow 

is the RMSE threshold of the topological map-matching stage. 
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Artificial scaling and rotation of a simulated image is used to evaluate the matching accuracy for a 

multi-sensor data set. Table 2 summarizes the displacement error, where TPE represents Test Point 

error for 10% of all CP pairs. ―Original‖ corresponds to the original spatial resolution (0.1 m) and 

orientation (0°) of the simulated image and reference image matched to itself (after 

rasterization/vectorization procedure); ―Sim1‖ corresponds to a rotation of 100°, ―Sim1_1‖ 

corresponds to a rotation of 100° and 2X scaling , ―Sim2‖ corresponds to a rotation of 290°, ―Sim2_2‖ 

corresponds to rotation of 290° and 2.5X scaling. 

Table 2. Error (in m) for a simulated multi-sensor data set with an original image 

resolution of 0.1 m and orientation of 0°. 

Simulated data set Original Sim 1 Sim 1_1 Sim 2 Sim 2_2 

TPE 0.01 0.032 0.056 0.038 0.063 

The parameters shown in Table 2 were selected by experimental optimization using the topology 

weighting function. By changing the parameters of the weighting function, we could reduce the 

estimated error and achieve relatively high accuracy.  

3.2. Case Study Using Real Images  

In this study, we selected three sensors to emphasize the multi-sensor registration at two selected 

periods in which multi-temporal changes occurred. The selected sensors are documented in Table 3. 

Images of these three sensors covered an area of 1.5 × 1.1 km in central (33°30′/34°42′) Israel. 

Table 3. Selected sensors. 

Sensor Type Detector 
Spatial 

Resolution 

Radiometric 

Resolution 
Date 

Ikonos Spaceborne Pushbroom 1 m 11 bit 06/2008 

Panchromatic 

scanner 1 
Airborne Pushbroom 0.25 m 12 bit 07/2009 

Panchromatic 

scanner 2 
Airborne Whiskbroom 0.12 m 8 bit 06/2009 

Panchromatic 

scanner 2 
Airborne Whiskbroom 0.12 m 8 bit 02/2009 

Prior to feature detection, the ROIs, which contain relatively large radiometric variation (grayscale 

contrasts), were selected. For viewing convenience, the results of the AIRTop algorithm are presented 

for a selected ROI (Figure 6). The next stage, illustrated in Figure 7, was feature extraction for a 

panchromatic airborne scanner from both the reference image (from 06/2009 with 0.12 m spatial 

resolution) and the sensed image (from 07/2009 with 0.25 m spatial resolution), applying two 

algorithms (Hough Transform and Canny) supported by SURF images (integral and orientation).  
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Figure 6. The selected ROI. (A) Original reference image; (B) Entropy image. 

 

Figure 7. Buildings (gray polygons) and roads (black polyline) extraction for: (A) The 

reference image (panchromatic airborne scanner with spatial resolution of 0.12 m from 

06/2009); and (B) the sensed image (panchromatic airborne scanner with spatial resolution 

of 0.25 m from 07/2009).  

 

The next stages were performed automatically: our algorithm searches for corresponding CP pairs, 

applying weighting function and topology. In the presented case study, the AIRTop successfully 

detected three matched features (marked V in Figure 7) and exposed seven CPs. The final results of the 

image registration procedure are shown in Figure 8. The TPE for 18 CPs, which are 10% of all the 

detected CPs, was 0.043 m.  

The suggested procedure was used for registration between an Ikonos (spaceborne) image and three 

panchromatic (airborne) images (Table 3). The errors in displacement of the three sensed panchromatic 

images to the reference Ikonos image from 2008 are summarized in Table 4. Values represent TPE for 

10% of all CP pairs.  
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Figure 8. Results of the image-registration process with the AIRTop algorithm between: 

(A) Reference image (panchromatic airborne scanner with spatial resolution of 0.12 m 

from 06/2009); and (B) sensed image (panchromatic airborne scanner with spatial 

resolution of 0.25 m from 07/2009). (C) Image produced by the registration procedure 

showing overlap between reference and sensed  images (with transparency of 30%). 

 

Table 4. Error (in m) for the three panchromatic (airborne) images (with spatial resolution 

of 0.12 m and 0.25 m) matched to Ikonos (spaceborne) image (with spatial resolution of 

1 m) with 180 CPs. 

Sensed image 
Panchromatic scanner 1 

(07/2009) 

Panchromatic scanner 2 

(06/2009) 

Panchromatic scanner 2 

(02/2009) 

TPE 1.13 0.74 0.4 

4. Discussion 

In this paper, a new technique for an automated image registration algorithm is presented. Our study 

focused on the registration of multi-sensor and multi-temporal images. We proposed combining the 

image-processing and map-matching procedures, and incorporating tools of remote sensing and GIS, 

into an automatic method for image registration. The suggested algorithm proved able to register two 

images acquired from different sensors (airborne and spaceborne), and from different periods, and 

hence different viewpoints, which are expected to be dissimilar in rotation, translation, and 

possible scaling.  

According to the literature, many existing algorithms suffer from two main problems: Errors caused 

by different intensities between images and therefore inability to handle multi-sensor and  

multi-temporal (multimodal) data sets; and computation power limits.  

 A B C 
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To overcome these, we proposed to extract features for the reference and sensed images, convert 

them to GIS vector maps, and use these for the registration procedure. Operating on feature maps 

instead of the image itself not only solves the correlation limitation (correlating intensity values), but 

also reduces computational requirements since most of the map, aside from the feature locations, 

consists of zero values.  

The notion of addressing the registration problem by applying a global-to-local level strategy 

provided an elegant method to speed up the whole process, while enhancing the accuracy of the 

registration procedure. What we found is that when using the global level for map-matching, the 

AIRTop fails to consistently give good registration results. This was improved by reducing the area to 

ROIs, which were selected based on an entropy map. The significant reduction in data points greatly 

reduced the computation time required for the algorithm.  
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