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Abstract: Over the last several decades, remote sensing has emerged as an effective tool to 

monitor irrigated lands over a variety of climatic conditions and locations. The objective of 

this review, which summarizes the methods and the results of existing remote sensing 

studies, is to synthesize principle findings and assess the state of the art. We take a 

taxonomic approach to group studies based on location, scale, inputs, and methods, in an 

effort to categorize different approaches within a logical framework. We seek to evaluate 

the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in 

several spectral regions. We also investigate the value of archived data that enable 

comparison of images through time. This overview of the studies to date indicates that 

remote sensing-based monitoring of irrigation is at an intermediate stage of development at 

local scales. For instance, there is overwhelming consensus on the efficacy of vegetation 

indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing 

season, may suffice to identify irrigated lands, although to multi-date image data are 

necessary for improved classification and to distinguish different crop types. At local 

scales, the mapping of irrigated lands with remote sensing is also strongly affected by the 

timing of image acquisition and the number of images used. At the regional and global 

scales, on the other hand, remote sensing has not been fully operational, as methods that 

work in one place and time are not necessarily transferable to other locations and periods. 

Thus, at larger scales, more work is required to indentify the best spectral indices, best time 

periods, and best classification methods under different climatological and cultural 

environments. Existing studies at regional scales also establish the fact that both remote 

sensing and national statistical approaches require further refinement with a substantial 

OPEN ACCESS 



Remote Sensing 2010, 2           

   
2275 

investment of time and resources for ground-truthing. An additional challenge in mapping 

irrigation across large areas occurs in fragmented landscapes with small irrigated and 

cultivated fields, where the spatial scale of observations is pitted against the need for high 

frequency temporal acquisitions. Finally, this review identifies passive and active 

microwave observations, advanced image classification methods, and data fusion including 

optical and radar sensors or with information from sources with multiple spatial and 

temporal characteristics as key areas where additional research is needed. 

Keywords: irrigation; agriculture; remote sensing; image classification; resolution 

 

1. Introduction 

The intensification of agricultural practices—under the auspices of the ―Green Revolution‖ that 

includes better seeds, extensive fertilizer use, and irrigation—has dramatically altered the relationship 

between humans and environmental systems across the world. Today many agricultural lands are being 

used much more intensively as opportunities for expansion are being exhausted elsewhere. In the last 

40 years, global agricultural production has more than doubled—although cropland has increased by 

only 12%—in part through increased reliance on irrigation [1,2]. Currently, irrigated agriculture is the 

principal consumer of fresh water resources; it accounts for more than 70 percent of water withdrawn 

from lakes, rivers, and groundwater aquifers [3]. As the earth‘s population continues to increase and 

the demand for food, fuel, and fiber rises, continued agricultural intensification will require at least a 

50 percent increase in water resources, especially in arid and semi-arid regions [4].  

While these modern agricultural practices have successfully increased food production, they have 

also caused significant environmental change in many regions. Accurate information on the extent of 

irrigation is thus fundamental to many aspects of Earth System Science, and global change research in 

general. These aspects include modeling of water exchange between the land surface and 

atmosphere [5-8], analysis of the impact of climate change and variability on irrigation water 

requirements and supply [9-13], management of water resources that affect global food security [14], 

and climatic feedbacks, including the effect that results from evaporative cooling in intensely irrigated 

arid areas [15,16]. 

Despite their significance for food security and the water and energy cycles, the extent and 

distribution of irrigated areas worldwide still remain uncertain [17]. Existing maps, especially those 

covering large areas, have been derived primarily from country-level statistics. The politically charged 

nature of irrigation often sets the stage for under-reporting of water use; this is especially true in 

countries that share resources across borders with their neighbors [18]. Country-level estimates also 

mask the considerable spatial variability in irrigation practices, and simply cannot reflect the location 

or extent of irrigation across large areas [19]. Even in countries such as the U.S., where the extent of 

irrigated areas is known, irrigation-related information exists in disparate sources and cannot be easily 

synthesized into a single continental scale database [20]. Also, information on irrigated areas in many 

countries is reported only from officially recognized management units (or command areas) serviced 
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by large scale irrigation projects. As a result, subsistence-scale irrigation is not reported, although 

these areas could collectively account for a substantial land area and significant amount of water use.  

Satellite remote sensing offers tremendous potential for routine monitoring of irrigation due to the 

synoptic nature of the data and readily available archives of imagery. Yet studies that have used 

remote sensing to map irrigated lands remain relatively rare. This is a direct result of the complexity 

associated with trying to map land use as opposed to land cover. While it may be straightforward to 

detect the high near-infrared signal of mature crops given appropriate spatial, spectral and temporal 

resolution data (i.e., land cover), detecting irrigation requires knowledge of land management, or some 

understanding of where and when humans have provided water or supplemented rain-fed crops 

(i.e., land use). Because of the difficulty in isolating these practices with satellite observations, a 

literature search reveals only 65 peer-reviewed papers that use remote sensing to map irrigation, 

compared to thousands that report agricultural or land-cover mapping activities. Thus, from the remote 

sensing perspective, studies that attempt to map irrigated areas have been rare and scientific consensus 

on mapping methodologies is fragmented and evolving.  

This review seeks to synthesize current studies on identification and mapping of irrigated areas by 

remote sensing. Our goal is two-fold. First, we will provide a reference guide to the spatial, spectral, 

and temporal information requirements for monitoring irrigated areas, derived from case studies that 

have successfully mapped irrigated lands. Second, and more important, we will establish the  

state-of-the-art in this field by providing a comprehensive assessment and a taxonomic synthesis of 

studies to date. This information can provide a foundation for future studies to expand on these 

methods and fill data gaps. The approaches that have been adopted to tackle irrigation are diverse; they 

vary in scale, extent, data inputs and processing requirements. It is also clear that a consensus within 

the scientific community as to the ‗best practices‘ for mapping irrigation are still evolving, although 

certain methods appear to be common among different studies. Moreover, reviews such as this portray 

information needs for timely and accurate monitoring of irrigation. This is necessary in order to form 

the basis for development of sustainable water management practices within the context of what is 

perhaps the greatest human intervention in the hydrological cycle.  

Advantages and disadvantages of remote sensing 

We will begin with a brief discussion of the benefits and drawbacks of remote sensing for mapping 

crop location, productivity, and change in irrigated settings. Remote sensing has been an effective tool 

to monitor irrigated lands in many locations around the world under a variety of environmental 

conditions [19-21,28,33,35,50,60,65]. It provides synoptic coverage of irrigated fields in several 

spectral regions and with temporal frequencies sufficient to assess vegetation growth, maturity, and 

harvest. Archived data that span many years allow comparison of images, thus revealing change. The 

digital nature of satellite data also makes it relatively easy to integrate into a Geographic Information 

System (GIS) for synthesis or comparison with other data sources. Remotely sensed data are also less 

costly and time-consuming than traditional statistical surveys that may require aerial photography over 

large areas. This makes remote sensing particularly valuable for inventories of irrigated land and for 

monitoring in developing countries, where funds are limited and little objective information is 

available. Moreover, remote sensing delivers useful spatial information on the exact locations of 
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irrigated lands rather than mere totals within arbitrary political units. This is important for prioritizing 

water delivery, assessing irrigation performance, providing irrigation intensities (e.g., single crop vs. 

double crop), quantifying environmental impact, objectively assessing irrigation water use and 

understanding changes where irrigation occurs. Finally, remote sensing can provide information on 

timing, both in the number of irrigation-related vegetation peaks and in the length of time irrigation is 

utilized over the course of a year.  

However, satellite imagery also has limitations. Because of the spatial resolution of most 

operational imagery (15–60 m), it is difficult to identify small irrigated areas which, taken together, 

may cover significant parts of the earth. It is also difficult to separate irrigated fields from  

non-irrigated plots in humid areas because of substantial overlap in their spectral signatures. For 

example, the signatures of flooded irrigated fields at certain growth stages may overlap with those of 

natural wetlands, thus limiting accuracy in mapping. Researchers have overcome these limitations by 

using temporal information on crop planting, maturity, and harvest in conjunction with spectral 

information [21]. Unfortunately, the collection of remotely-sensed data is fixed by a given satellite‘s 

orbit and return interval, and thus observations are not always captured at ideal times (e.g., green-up or 

harvest). Optical data availability is also problematic in areas with frequent cloud cover, such as humid 

tropical and sub-tropical environments.  

Having stated this, it is important to point out the technological advances made in remote sensing. 

For example, satellite constellations such as Rapideye with 5 meter spatial resolution and providing 

data in five spectral bands has already covered nearly 95% of USA geographic area in less than one 

year after launch. Further, multi-sensor data fusion (e.g., IRS, Rapideye, Landsat) are becoming 

increasingly important and feasible. Finally, looking at the limitations of conventional datasets such as 

subjectivity in data collection and varying statistical design in different studies, limitations from 

remote sensing by itself are less certain. 

The final limitation considered here comes from the fact that identification of agricultural fields 

using remote sensing is difficult because irrigated landscapes are a subclass of croplands that 

themselves have traditionally been difficult to map [22-24]. Agricultural fields (and especially 

irrigated fields) are highly dynamic because each field may be at a different stage of development, and 

thus subject to being confused with natural land cover classes. Accuracy of land-cover maps is often 

inversely related to their categorical detail. Since agriculture is already inherently difficult to identify 

and map, the task of identifying irrigated areas as a subclass of cultivation becomes even more 

difficult. Perhaps this is where temporal data profiles will be invaluable to separate irrigation from 

rainfed agriculture as successfully demonstrated by [21,61]. Moreover, ancillary datasets on 

precipitation and evapotranspiration will come in handy when interpreting these temporal profiles [20]. 

Definition of irrigation  

If we are to identify and map irrigation with remote sensing, a precise definition of what is 

considered to be irrigated is needed. In this review, we define irrigated lands as areas that receive full 

or partial application of water by artificial means to offset periods of precipitation shortfalls during the 

growing period. Fully irrigated areas are those where more than 60 percent of crop water requirements 

are met artificially; partially irrigated lands (or supplementally irrigated areas) receive between 30 and 
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60 percent artificially. Note that both surface and groundwater deliveries are included in this definition 

provided human intervention to move water from one location to another is involved.  

Irrigation is practiced in virtually every country, at scales ranging from subsistence farming to 

national enterprise. The precise location is determined by a combination of factors that include climate, 

resource availability, crop patterns, and technical expertise. Climate plays an important role in the 

distribution of irrigation as it determines natural moisture availability (precipitation), crop demand 

(evaporation), and crop schedules. In humid climates, irrigation often takes the form of a supplemental 

water supply to meet the excess demand of crops whose growth cycle may be out of sync with natural 

precipitation. In arid and semi-arid climates, continual irrigation is often necessary to assure 

agricultural production. 

While climate is an important driver of the need for irrigation, it is water availability that primarily 

determines its existence and sustainability. Currently, groundwater is by far the greater source for 

irrigation [25]. In regions where withdrawals for agriculture exceed recharge rates, the quantity and 

quality of groundwater quickly deteriorates, jeopardizing its sustainability. Thus nations may be forced 

to decide between agricultural and domestic use in their allocation of groundwater. Surface water for 

irrigation purposes appears more sustainable, but this is deceptive. It requires large structures 

involving complex engineering such as dams, conveyers, and canals to redistribute the resources. 

Furthermore, most river basins span international boundaries. Diversions of water for irrigation 

upstream often reduce its availability downstream, leading to international conflicts as in the case in 

the Middle East and Central Asia.  

2. Review of Existing Studies 

In this section, we review existing studies on irrigation mapping with remote sensing and assess 

data and methodological features that are common and practical. We have chosen spatial scale to 

categorize these studies. Here spatial scale identifies the scope of the study area and is defined as 

local, regional, or global. Local studies refer to one or more irrigation basins or command areas. 

Regional studies include large river basins and continental areas, while global studies present attempts 

to map irrigation worldwide. This conceptual framework is helpful both to understand the processes 

involved in each category and to classify mapping approaches. Within each category, the discussion is 

further organized around the nature of remote sensing imagery and methods of processing these 

images. In tabular format we describe the advantages and disadvantages of satellite sensors that have 

been used to identify and map irrigated lands for the following imaging systems: Landsat, Satellite 

Pour l‘Observation de la Terre (SPOT), China-Brazil Earth Resources Satellite (CBERS), Advanced 

Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer 

(MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Indian Remote Sensing Satellite 

(IRS) (Table 1). Finally, we provide selected examples from the literature for image classification 

techniques to determine the most successful options in identifying irrigated areas and separating them 

from other land cover types (Table 2). The accuracy of these classifications is included to give an idea 

of each method‘s success.  
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Table 1. Current operational optical sensors and their technical/logistical capacities for 

irrigation mapping. Some of the table headings are adapted from the United Nations 

Collaborative Programme on Reducing Emissions from Deforestation (UN-REDD) 

sourcebook and Forest Degradation in Developing Countries [97]. 

Satellite 

observation 

system/prog

ram 

Technical 

observation 

challenges 

solved 

Access to 

information/

data 

worldwide 

Continuous 

observation 

program with 

global 

coverage 

Pre-

processed 

datasets 

accessible 

Image 

data 

cost 

Technical 

difficulty 

required to 

produce 

maps 

Frequency of 

use in 

irrigation 

studies 

RapidEYE yes no yes yes high medium low 

Landsat yes yes yes yes low medium high 

SPOT yes yes yes yes high medium medium 

AWiFS yes no no yes high medium low 

LISS yes no no yes high medium low 

ASTER yes yes no yes low medium low 

CBERS no no no no low medium low 

THEOS yes no no yes medium medium low 

MODIS yes yes yes yes low high medium 

MERIS yes yes yes yes low high low 

AVHRR yes yes yes yes low high medium 

SPOT VEG. yes no/yes yes maybe low medium low 

Table 2. Summary of spatial scales, sensors, methods, and example applications in the literature. 

Spatial scale Sensors used Method of mapping References 

local Landsat TM/ETM+, SPOT, 

LISS, ASTER, AWiFS, 

CBERS, THEOS 

Photo interpretation, Image arithmetic, 

Image classification, segmentation, 

image fusion 

[26-29,31-33, 

42-44,98] 

regional Landsat TM/ETM+,MODIS, 

MERIS, AVHRR, SPOT VGT 

Times-series analysis, 

Supervised/unsupervised classification, 

masking 

[21,47-50,53] 

continental Landsat TM/ETM+, MODIS, 

MERIS, AVHRR, SPOT VGT 

Times-series analysis with other 

ancillary data, data fusion 

[7,19-21,49, 

52,98] 

global MODIS, MERIS, AVHRR, 

SPOT VGT 

Unsupervised clustering, machine 

learning algorithms applied to time-

series data, also employ other ancillary 

data(statistic, ground truth data…) 

[22,54-57] 

2.1. Local Scale Studies  

To date, most research on remote sensing-based irrigation mapping occurs at local scales for several 

reasons. First, local areas provide familiar environments where investigators have extensive 

knowledge of their study sites. Second, the purpose of a remote sensing study may be to demonstrate 

the utility of a method rather than an operational assessment encompassing all irrigation. In these cases 

a small area suffices. Third, irrigation practices take many forms and this variation increases as the 
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study area becomes larger. Therefore methods developed in one place and time may not be appropriate 

for other locations and durations.  

Two forms of mapping methods emerge as most common in local area studies. These methods are 

visual interpretation and digital image classification. Early work concentrated on determining the 

utility of remotely sensed imagery using various visual interpretation techniques adapted from the 

airphoto sector to map and update irrigated acreage, mainly in the U.S. and India [26-32]. More recent 

studies have developed digital image classification methods specifically adapted to mapping irrigated 

lands automatically [33-37]. Within each category, several methods have been tested. 

Visual interpretation of satellite imagery 

Early work with satellite imagery at the local scale relied on visual interpretation of large hard-copy 

satellite image prints to identify and map irrigated lands [26-28]. These investigations recognized that 

satellite data provided a cost-effective method of obtaining multiple images during the growing season, 

an important consideration for identifying irrigation. Initially, traditional photo interpretation methods 

were used on Landsat color composite images from multiple dates to draw boundaries of irrigated 

fields by hand. For visual interpretation, particular attributes of satellite data that proved useful were 

spectral availability in several channels including near-infrared, and temporal availability of imagery at 

low cost. Archival image data from multiple years also proved useful because newly irrigated 

croplands showed a color signature distinct from those previously irrigated. Since manual 

interpretation of satellite images is performed by an analyst, it is possible to use shapes of irrigated 

fields as an additional feature for identification [32]. Irrigated acreage inventories based on identifying 

and mapping the characteristic circular pivot system as seen in photographic enlargements of Landsat 

imagery are prime examples of these shape-based interpretation methods in the U.S. While this form 

of detection is simplistic, it provides an excellent example of the practical utility of remote sensing. 

Visual interpretation of satellite data also includes automated approaches [29,30,38,39]. These 

studies benefit from the strong spectral separation of irrigated fields from harvested and fallow fields 

in the visible and near-infrared portions of the electromagnetic spectrum. One study [29] even 

demonstrated that in semiarid areas, croplands irrigated by surface water could be distinguished from 

those irrigated with ground water by visual interpretation of single-date Landsat imagery, although it 

was harder to identify different crop types. 

Studies involving visual interpretation of satellite data also benefit from radiometric enhancements 

and manipulations in the form of spectral indices. Studies that compare these data to automated 

techniques of image classification report superior performance of manual mapping of area estimates 

when compared to reported acreage [30]. For example, by visually interpreting satellite imagery, Rao 

and Mohankumar [40] conducted an inventory of the cropland in a command area while evaluating 

various vegetation indices derived from Landsat-TM in India. The accuracy of the estimated irrigated 

crop area was within five percent of the estimate for the entire command area made by the Directorate 

of Economics and Statistics (DES) of the Indian government. Studies like this demonstrate that remote 

sensing is an effective time-saving technique to provide seasonal assessment of irrigated croplands and 

that the per hectare cost using remote sensing is often between one-half and one-fifth the cost of a 

conventional system based on air-photo interpretation supplemented by ground surveys.  
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While considered simplistic by today‘s image processing standards, the early work with visual 

interpretation of satellite data established several facts that hold true today. First, visual interpretation 

by analysts is by far the most accurate method of mapping land cover, irrigation included. This is 

because the human brain and expertise are the best image processors. However, visual interpretation 

can be expensive, although it is less costly than traditional air photo interpretations of large areas. 

Second, the red and the NIR portions of the electromagnetic spectrum provide tremendous information 

for recognizing irrigation. Third, multiple images during a single growing season increase accuracy 

because of differential growth stage times. Finally, while irrigation identification is possible with 

visual interpretation, identification of crop types is less reliable unless multiple images are available 

from the same growing season.  

Digital image classification 

Although visual interpretation of satellite images is useful, more recent work has emphasized digital 

image classification, partly because the analysis times are shorter and costs associated with mapping 

are lower. Common methods include multi-stage classification [31,41], unsupervised 

clustering [31,33,42], density slicing with thresholds [7,43,44], and decision tree classifications [45].  

The multi-stage approach involves identification of land cover at increasingly refined categorical 

levels following the concept that irrigated areas are a subclass of cultivated lands, which themselves 

belong to vegetated landscapes. As noted, the accuracy of land-cover maps is often inversely related to 

their categorical detail. Thus, categorizing the landscape at each stage into more refined classes 

enables better identification of irrigated areas as a subclass. 

As in visual interpretation, digital image classification benefits from spectral  

transformations [7,33,35,42,44]. In particular, the Normalized Difference Vegetation Index (NDVI) 

proves to be indispensible for identifying irrigated areas in local scale studies, in part because of 

differential spectral response between irrigated and non-irrigated fields. Common use of NDVI would 

include direct insertion into a classification algorithm as an input feature. Thresholds are set to 

distinguish productive fields from non-productive and non-irrigated areas, and also multi-temporal 

NDVI features such as the range and maximum NDVI. When multiple NDVI observations are 

available from the same growing season for several years, it is also possible to identify crop types as 

well as the changes in irrigated areas.  

Multi-temporal data availability has also proved to be very useful in identifying irrigated areas. 

When using data from multiple time periods, the discrimination procedure is based on the different 

spectral responses of crops according to their phenological evolution. A number of studies have 

demonstrated that using spectral information from two consecutive seasons in a crop-year is sufficient 

to identify the irrigated crops, especially when only a few are dominant. However, for each season, the 

estimates require multiple images [36]. This is because single-date analysis in visible cropping 

intensity often does not take into account planting dates that vary from year to year. Therefore,  

multi-temporal analysis has greater potential to define irrigated areas [46]. Ultimately, classification 

results are conditional upon the temporal and spatial variability of the spectral signature of the land 

cover type in question, so suitable images must be available for the temporal approach to provide a 

complete inventory of all irrigated fields in a study area.  
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It is also possible to map irrigation with a single image during the peak irrigation season as long as 

its peak can be identified using a time-series of observations. One technique is to use coarse spatial 

resolution time series data to select the ideal time period where irrigation information is maximized 

and then acquire high resolution data to do the actual mapping at local and regional scales [7]. 

The review of local scale studies suggests that both methods baed on both visual intepretation and 

statistical and non-parametric classifications of image data work equally well in identifying irrigated 

areas. In general accuracies better tht 85 percent hav been achived with both approaches. In terms of 

spectral bands of importance, near-infrared combined with at least one visible light containing band 

have consistently produced higher classification accuracies than mapping applications that do not 

include these bands. It is also possible to map irrigation using single image NDVI data as long as the 

study area contains only a few classes to be distinguished. For example, these forms of classifications 

were more successful in mono cropped areas like the US mid-west when compared with fragmented 

irrigated landscapes of Asia and were quite futile in highly mixed cropping in Africa. 

These studies also indicate that multi-temporal satellite remote sensing is a viable approach for 

identifying and monitoring irrigation. Methods based on multi-temporal NDVI features derived from 

Landsat data were particularly successful in distinguishing healthy irrigated lands from uncultivated 

and nonproductive areas.  

2.2. Regional Studies 

The most common method of mapping irrigated areas at regional scales is to use medium to coarse 

spatial resolution data from many time periods in the form of time series analysis. The image-based 

monitoring in the time domain relies heavily on the monitoring of crop evolution during the growing 

season by means of original spectral bands or vegetation indices. This requires knowledge of the 

growth schedules of crop types common to the area. 

One of the most cost effective ways of monitoring irrigation in large areas is to use freely available 

vegetation index data from coarse resolution sensors like AVHRR and MODIS [19,21,47-52]. There 

are various ways to translate multi-temporal information to a map of irrigation. For example,  

Xiao et al. [48] developed a paddy rice mapping algorithm that uses time series of three vegetation 

indices, namely the Land Surface Water Index (LSWI), the Enhanced Vegetation Index (EVI) and 

NDVI, derived from MODIS images. This method relies on identification of the initial period of 

flooding and transplanting in paddy rice fields by exploiting the sensitivity of LSWI to the increased 

surface moisture during this period  

It is also possible to use the results of multi-temporal vegetation indices directly in modern 

classification algorithms such as decision trees [20,49,51]. Classification accuracies in such 

applications range from 60 percent to better than 90 percent [20,21,48,51]. Notable regional 

differences in irrigated areas estimated this way stem from climate factors, localized precipitation 

patterns, and specific cropping practices [51]. Moreover, this form of classification benefits greatly 

from a multi-stage approach where the land cover is progressively classified [51] and from using 

ancillary information on climate, surface moisture status, elevation, natural land cover cartography, 

and crop area and water masks [20,21,53]. 

There are indications that multi-temporal image classification using the original spectral bands in 

addition to the band transformations leads to better classification results when satellite data with high 
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temporal and spectral dimensionality such as MODIS are used [21,52]. For example,  

Thenkabail et al. [21] developed innovative approaches to obtain precise information on the onset, 

peak, senescence and duration of each irrigated and rainfed land use class. In particular, their results 

demonstrated that the value of the MODIS band 5 centered at 1,240 nm provided the best separability, 

followed by bands 2 (859 nm), 7 (2,130 nm), 6 (1,640 nm) and 3 (648 nm). 

Algorithms that can automatically identify the location and the number of vegetation peaks in a 

time series plot improve classification accuracies. For example, Kamthonkiat et al. [53] developed a 

Peak Detector Algorithm to identify the number of vegetative peaks based on time lag between peak 

rainfall and peak NDVI. Their results indicate that in rainfed rice there is high correlation at a  

40–50 day lag between peak rainfall and a single peak NDVI, while in irrigated rice there are multiple 

peaks and multiple correlations with low values for at least 90 days after peak rainfall.  

One of the limitations of time series analysis of coarse spatial resolution data is the imprecise irrigated 

area estimates, especially in locations with small cultivated plots and fragmented landscapes. In these 

types of environments, remotely sensed estimates are generally higher than reported estimates because 

of: (a) inadequate accounting of irrigated areas in reported statistics, especially minor forms of irrigation; 

(b) definition issues involved in mapping using both remote sensing and statistics; (c) difficulties in 

arriving at precise estimates of irrigated area fractions; and (d) imagery resolution [19-21,52]. 

One approach to overcome these issues is to use high spatial resolution data such as Landsat to 

calibrate irrigated area from coarse resolution observations using regression [46,49]. Results from 

these calibration-based approaches to area correction suggest that while calibration seems to work well 

for homogeneous areas, for heterogeneous areas, where irrigated fields are scattered against a 

predominantly non-vegetated background, coarse resolution vegetation index values become rather 

low and consequently the regression relations are less reliable. However, comparison of multiple data 

sources improves confidence in the classification and identifies areas requiring more intensive 

fieldwork [49]. Another approach directly from the remotely sensed observations is to use a regression 

algorithm to derive the fraction of irrigated area within each pixel that had been identified as having 

irrigation [20]. However, both approaches establish the fact that both remote sensing and national 

statistical approaches require further refinement with a substantial investment of time and resources for 

ground-truthing. 

2.3. Global Studies 

In recent years, there have been several attempts to determine the spatial extent of irrigation at 

global scales. These attempts stem particularly from the crucial need for accurate estimates of irrigated 

areas for water use assessments and food security studies. One such attempt is the USGS Global Land 

Cover Map [22] that was generated based on 1km AVHRR observations between April 1992 and 

September 1993. Among several land-cover legends that the database contains, the Global Ecosystems 

Legend identifies four irrigated classes: irrigated grasslands, rice paddies and fields, hot irrigated 

cropland and cool irrigated cropland. When combined, these classes provide one of the few sources of 

remotely-sensed information on spatial distribution at the global scale. The major shortcoming of the 

USGS map, however, is that irrigated areas were determined as part of a broader classification scheme. 

Thus the emphasis was primarily on other land-cover types while irrigated classes received less 

attention and thus lower classification accuracy. Vörösmarty and Sahagian [14] compared irrigated 
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lands depicted by the USGS map to the country level reports of irrigated areas [54] and pointed to 

major uncertainties in classification and inventory due to the highly politicized nature of FAO data 

reports, as well as to the technical limitations of the more objective datasets made from  

remote sensing.  

More recently, the European Space Agency (ESA) produced a moderate spatial resolution (300 m) 

global land cover product (GlobeCover) using Medium Resolution Imaging Spectrometer (MERIS) 

data acquired between mid-2005 and mid-2006 [55]. Several thematic classes within the GlobeCover 

legend identify irrigated crops, including flooded rice. The classification process includes 

unsupervised clustering of selected mosaics that are then temporally characterized based on 

computation of phenological parameters (start, end and duration of the vegetation period), using the 

time series of MERIS mosaics. In the last step, the classes were labeled with help from regional land 

cover experts, who advised on the interpretation of the spectral-temporal classes, and defined the 

improved labeling rules. 

Thenkabail et al. [56] evaluated the utility of spectral matching techniques to determine historical 

land use and land cover (LULC) and irrigated area classes using the historical time series 0.1-degree 

AVHRR data without ground truth comparison. By using monthly continuous time series AVHRR 

data, they established the LULC for the period 1982–1985 and for the period 1996–1999. They used 

quantitative and qualitative spectral matching methods to identify and label LULC classes, including 

spectral similarity value, spectral correlation similarity, Euclidian distance, and modified spectral 

angle. The results show that spectral similarity was the best method, followed by spectral correlation. 

The other methods were more complex, and provided results that were either uncertain or no better. 

They used data from India‘s Central Board of Irrigation and Power for validation.  

The 1982–1985 irrigated area was 2,975,800 hectares, which was 8.5 percent higher than the  

non-remote-sensing-based area estimate by the Central Board for 1984 (2,743,638 hectares). These 

results helped establish the strengths of the spectral matching techniques in identifying and labeling 

LULC and irrigated area classes from the historical satellite sensor data for which little or no ground 

truth data are available. The spectral matching methods can be further strengthened by additional 

research involving a rich ground-based knowledge base. The study also implied that future application 

of this method at global scale is promising but may require a better potential irrigation index and the 

use of remotely-sensed skin temperature measurements. 

Thenkabail et al. [57] also produced a Global Irrigated Area Map (GIAM) for the end of the last 

millennium. They used multiple satellite sensor and ancillary data including AVHRR 3 band and 

NDVI; SPOT VGT NDVI; monthly rainfall and temperature; elevation; Japanese Earth Resources 

Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) data for the rain forests; and a map of global tree 

cover. In the first phase, the global land surfaces were segmented based on elevation, temperature and 

precipitation zones. Next, classification was performed within these segments using class spectra 

derived from unsupervised classification; these were matched with ideal or target spectra. Finally, the 

mixed classes were resolved based on decision tree algorithms and spatial modeling. Whenever that 

did not work, the problem class was used to mask and re-classify the original input data and the class 

identification and labeling protocol was repeated. The sub-pixel area calculations were performed by 

multiplying full-pixel areas with irrigated area fractions for every class. 
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The most important property of this methodology is that it delineates areas most likely to be 

rainfed. Such mapping is essential in the entire classification process as it can be overlaid with a map 

of green areas and only the non-rainfed green areas can then be considered to be irrigated. The 

methodology described here to create a map of Potentially Irrigated Areas (PIA) is based on Droogers 

and Aerts [10]. 

3. Emerging Patterns from Existing Studies  

Spatial resolution requirements  

Irrigation is practiced in many forms around the world and the spatial resolution requirements go 

hand in hand with its heterogeneous distribution. Figure 1(A–C) shows ground level photographs of 

several landscapes from very heterogeneous small plot sizes in SE Asia to vast expanses of irrigated 

fields in the U.S. The purpose of these pictures is to illustrate the great variation in irrigation presence 

from subsistence farming to major enterprises. This diversity directly affects our ability to map 

irrigation with remote sensing. In general, to map irrigated croplands accurately, the spatial resolution 

of the sensor should be at or below the size of the fields of interest. However, enhanced information 

brought about by high spatial resolution data does not tell the whole story—automatic identification of 

irrigated lands also relies heavily on temporal availability of information. If the low spatial resolution 

option is chosen, then frequent observations are available, but the low resolving power of pixels would 

lead to the mixed pixel problem. Consider a single AVHRR 10 km pixel, which encompasses an area 

of 10,000 hectares, while a MODIS 500 meter pixel covers 25 hectares. Obviously in many cases only 

a fraction of a coarse resolution pixel falls in a particular land cover category, such as irrigation. We 

also know that spatial resolution of a sensor is supply driven, that is, spatial resolution is fixed because 

of sensor design and flight characteristics.  

Research has shown that the finer the spatial resolution, the greater the accuracy of irrigated area 

class designations [7,58]. For example, a recent study of the irrigated areas of the Ogallala Aquifer in 

the United States based on Landsat imagery and 364 ground truth points has shown that 18.5 percent 

of the areas actually irrigated were not included (errors of omission) in the GIAM dataset at 10 km 

resolution but 20.4 percent of the non-irrigated areas were included as irrigated areas (errors of 

commission) [59]. The reason for the errors of omission was that at coarser resolutions, smaller, more 

fragmented patches of irrigated croplands could not be delineated. In contrast, the errors of 

commission resulted because the large pixel sizes of coarse resolutions can at times map patchy  

non-irrigated areas that surround irrigated areas as if they too were irrigated. In either case, the need 

for finer spatial resolution is essential to resolve the confusion. 

To overcome the mixed pixel issue present in low spatial resolution data, several researchers have 

developed schemes to ―unmix‖ land cover classes—including irrigation—from the remotely sensed 

signal to estimate the sub-pixel areas of irrigated lands. Two approaches are common in the literature 

to estimate these irrigated area fractions. The first is a two-stage approach and determines the subpixel 

composition of a class label following initial categorical labeling with a classification algorithm [7,58]. 

For example, Thenkabail et al. [58] developed innovative methods to compute sub-pixel areas from 

coarse resolution data. They used the global GIAM dataset at 10km resolution based on AVHRR data 

and the irrigated area map for India at 500 m based on MODIS data to test and verify their methods. 
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The sub-pixel irrigated areas from coarse-resolution satellite sensor data were estimated by multiplying 

the full pixel irrigated areas with irrigated area fractions. The results indicated that the sub pixel areas 

provided significantly better correlation with the national statistics than full pixel areas, which were 

also shown to grossly overestimate reported areas. 

Figure 1. Near ground photographs of irrigation practices in three different irrigated 

locations. (A) Irrigated rice paddies with a bore well in the background in north-central 

India. The complex nature of this landscape with multiple land cover types surrounding 

irrigated fields illustrates the need for high spatial resolution data which may come at a 

cost of frequency of observations needed to map paddy fields. Image is provided courtesy 

of Eby Heller from McGill University. (B) A large irrigated alfalfa field in Utah (USA) 

and a rotating drum irrigation system. In these types of environments, the spatial 

requirements for irrigation mapping can be relaxed but the spectral properties of the image 

signal must be enhanced to distinguish irrigation. Photo courtesy of USDA NRCS. (C) A 

large irrigated landscape interspersed with multiple land cover types in Idaho (USA). This 

photograph illustrates the fact that even though many landscapes may be heterogeneous, 

the size of individual landscape elements (e.g., cultivated fields) determines the spatial 

resolution requirements of an irrigation mapping exercise. Photo courtesy of USDA NRCS. 

 

A 
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Figure 1. Cont. 
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The second approach attempts to derive the information on subpixel composition of irrigated pixels 

directly from the remotely sensed signal using a pixel decomposition method. For example, the authors 

in [20,62] reported on the use of land surface temperature data, especially the diurnal difference 

(day vs. night) in land surface temperature, and how this may relate to irrigated area intensity. As an 

example, Figure 2 shows that as the difference between minimum and maximum land surface 

temperatures decreases, irrigated crop intensity increases due to increased modulation of radiative 

temperature by vegetation/moisture presence. This information can be used to directly map the 

intensity of irrigated areas using land surface temperature sensors at high observation frequencies. 

Figure 2. The relationship between diurnal difference (day minus night) in land surface 

temperature and subpixel intensity of irrigated area at a location in western US as observed 

by MODIS. As the irrigation intensity increases, the modulating effect of evaporation and 

associated cooling of the land surface becomes more pronounced. This indicates that the 

land surface temperature difference data which is routinely available from remote sensing 

could be used to map fractional coverage of irrigation using coarse resolution sensors. 

Ozdogan unpublished data. 

 

The spatial resolution dependent changes in irrigated area were also explored by Velpuri et al. [63] 

who determined how irrigated areas change with resolution (or scale) of imagery in the Krishna River 

basin in India. The irrigated areas were mapped using satellite sensor data at four resolutions:  

(a) AVHRR (10,000 m); (b) MODIS (500 m); (c) MODIS (250 m), and (d) Landsat (30 m). The 

proportion of irrigated areas relative to Landsat derived irrigation figures (9.36 million hectares for the 

Krishna basin) were (a) 95 percent using MODIS 250 meter data, (b) 93 percent using MODIS 
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500 meter data, and (c) 86 percent using AVHRR at 10,000 meters. The study also found that the 

precise locations of the irrigated areas were better established using finer spatial resolution data. This 

study suggested that ―the finer the spatial resolution of the sensor, the greater was the irrigated area,‖ 

since at finer spatial resolutions fragmented areas are better detected. Accuracies and errors were 

established consistently across the four resolutions mentioned above for three classes: surface water 

irrigation, ground water/conjunctive use irrigation, and no irrigation. The results showed that Landsat 

data provided significantly higher overall accuracy (84 percent) when compared to MODIS 500 m 

(77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). 

Even if the satellite sensor has sufficient spatial resolution to map irrigated areas in a particular 

location, the pre-processing of the sensor data may distort the original resolution. For example,  

Tan et al. [64] showed that gridding artifacts between satellite observations and predefined grid cells 

strongly influence the local spatial properties of MODIS images. The sensor observation in any grid 

cell is only partially derived from the location of the cell, with the average overlap between 

observations and their grid cells being less than 30 percent. This mismatch between grid cells and 

observations has important implications for the use of reference data for the validation of MODIS 

products or the training of MODIS algorithms. When generating multi-date composites, gridding 

artifacts also introduce bias when spectral compositing criteria are used. The band-to-band registration 

for the different spatial resolutions of gridded MODIS data can be poor if the different resolutions of 

data are gridded before aggregation. In all cases it is imprecise to characterize the subpixel properties 

of the coarser resolution bands using the finer resolution bands due to poor correspondence in the areas 

from which the observations are derived. All of the band-to-band registration problems are minimized 

when the MODIS data are aggregated to coarser resolutions. When validating algorithm accuracy, data 

on the observation dimensions and the offsets between the grid cell and the observation should be 

included to ensure the quality of validation results. If this information is not available, MODIS data 

should be aggregated to coarser resolutions to improve the correspondence between the location of 

observations and grid cells. 

Although the choice of remote sensing measurements today is from a wider variety of sensors than 

at any time in the past, the selection of a sensor for irrigation mapping is still primarily dictated by the 

geographic range of the study. For large areas such as continents, the primary sources of data have 

typically been coarse resolution sensors such as AVHRR, MODIS, MERIS, and SPOT 

VEGETATION with wide area coverage [24,65-67]. Similarly, data from high spatial resolution 

sensors like Landsat and SPOT have been used in support of local and regional scale applications that 

require increased spatial detail. What is less known, however, is the magnitude of errors incurred in 

irrigated area estimates as a function of the spatial resolutions of different sensors. Previous studies 

show that while coarsening the spatial resolution clearly leads to a loss of spatial detail [68], the 

magnitude of errors in area estimation as pixels increase in size is dependent on the spatial structure of 

the landscape [69,70].  

Spectral data requirements 

Remote sensing of irrigated lands over different geographic regions involves significant challenges, 

first in selecting spectral bands or indices that contain the maximum amount of irrigation-related 

information, then in relating this information to complex forms of irrigation presence. For instance, 



Remote Sensing 2010, 2           

   
2290 

while satellite-derived indices are extremely useful in detecting vegetated areas in agricultural lands, 

the cause of spatial and temporal variability in biomass, whether as a result of rainfall or irrigation, is 

much less straightforward, hence more difficult to determine. A further complication may arise when 

only supplemental irrigation is practiced [71]. While, the characteristic shape of the fields where center 

pivot irrigation is practiced is obvious, this visual discrimination is neither evident nor can it easily be 

incorporated in automated image classification.  

To overcome these challenges the characteristic attributes of irrigated lands, especially those 

characteristics that are observable with remotely sensed measurements must first be identified. One 

such attribute is related to vegetation ―greenness.‖ There is an overwhelming consensus that the NDVI 

is an important tool to monitor vegetation, including irrigated lands [65,72-75]. Studies of agricultural 

lands have shown that in many semi-arid regions, NDVI alone is a good indicator of 

irrigation [30,33,36,37], as well as irrigation status [35], crop condition [76] and large-scale vegetation 

dynamics [77].  

While the NDVI signal associated with irrigation allows identification of irrigated lands, 

particularly in semi-arid areas characterized by a single irrigation period and simple land cover types, 

in many areas of the world there are multiple irrigation periods and several crop types with different 

schedules. In these locations, the NDVI signal associated with irrigation might be more subtle. 

Frequent observations of the NDVI from sensors like MODIS may help to map these lands and thus 

determine acquisition times for high spatial resolution imagery. However, difficult cases for 

distinguishing irrigated from non-irrigated crops occur in locations where the same crop type is grown 

with and without irrigation during the same growing season. Temporal NDVI profiles of both irrigated 

and non-irrigated crops in these locations may exhibit an identical pattern. While irrigated fields often 

exhibit greater greenness due to the constant availability of moisture, the NDVI difference between 

irrigated and non-irrigated fields is small and probably useless in distinguishing them. Thus, a more 

sensitive index may be required to make this distinction. 

A large body of research of spectral remote sensing of vegetation canopies indicates that moisture 

stress in vegetation is strongly manifested in spectral indices related to chlorophyll content [78,79]. 

One such index, suggested by Gitelson et al. [80] to be used with the MODIS sensor, is the Green 

Index (GI) defined as:  

greennirGI  /         (1) 

where green is the reflectance in the green spectral region. The theoretical foundations of the GI are 

given in Gitelson et al. [78]. Briefly, it is based on evidence that in the green spectrum (centered 

around 510 nm) the specific absorption coefficient of chlorophylls is very high while green leaves are 

absorbing more than 80 percent (e.g., [81]). In contrast, depth of light penetration into leaves in the 

blue and red spectral ranges is one-fourth to one-sixth as much (e.g., [82]). Therefore, in the green 

spectrum, absorption of light is great enough to provide high sensitivity of the GI to chlorophyll 

content but much lower than in the blue and red to avoid light saturation [78]. 

The theoretical foundation for using the GI for irrigation assessment is that irrigated crops with very 

little or no soil moisture stress will exhibit higher chlorophyll content than non-irrigated crops that 

potentially experience moisture stress. To test this hypothesis and the sensitivity of the GI to the 

presence of irrigation (moisture), Ozdogan and Gutman [20] compared four vegetation indices in the 
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midwestern US: NDVI, Enhanced Vegetation Index (EVI) [81], Wide Dynamic Range Vegetation 

Index (WDRVI) [82], and the GI, using the following Relative Sensitivity Index (RSI): 

(min)(max) nonnon

nonirr

II

II
RSI




        (2) 

In Equation (2), Iirr and Inon are the irrigated and non-irrigated values for each index, I, at each time 

period, normalized by the seasonal amplitude (maximum–minimum) of non-irrigated values of each 

index. RSI represents the difference between irrigated and non-irrigated index value compared to the 

seasonal maximum change non-irrigated value of the same index. Comparison of relative sensitivity of 

all four indices reveals that the GI shows the greatest sensitivity to irrigation presence during peak crop 

growth (Figure 3). Similar results were obtained by Gitelson et al. [83] in the same location. 

Recognizing the increased sensitivity to irrigation, we suggest that future mapping studies include the 

GI in the classification process. 

Figure 3. Sensitivity of four vegetation indices, namely NDVI, EVI, GI, and WDRVI, to 

irrigation presence as measured by Relative Sensitivity Index (RSI) in Nebraska for 2002. 

Each index was generated from an average response using a sample of approximately five 

individual sites. Please see the text for details on the RSI. Adapted from Ozdogan and 

Gutman [20]. 

 

As noted, irrigated areas are very dynamic in time and space and thus their spectral signatures 

quickly change across the growing seasons. Thenkabail et al. [21] exploited this feature of irrigated 

areas in a two-dimensional near infrared versus red band spectral reflectivity plots of different land 
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cover types including that of irrigation (Figure 4). Typically, classes that have high near-infrared 

reflectivity and low red reflectivity are forests, agricultural lands and natural vegetation. Classes that 

occupy bright areas with high near-infrared and high red reflectivity are likely to be open/barren areas, 

sparse vegetation, dry vegetation, clouds and built-up areas. Classes that occupy wet areas have low 

near-infrared and low red reflectivity and are likely to be wetlands, moist lands, water bodies, cloud 

shadows and swamp forests. From irrigation perspective, these two dimensional spectral time curves 

provide very useful information on class behavior. For example, irrigated areas occupy the largest 

territory and the two dimensional plots provide very good indications of class temporal and  

spectral characteristics. 

Figure 4. Space-time spiral curves (ST-SCs) in class identification and labeling. The  

ST-SCs track changes of time series over time and across space. The numbers seen in each 

class represent Julian date and each class moves around a ‗territory‘ in 2D feature space 

over time. Adapted from Thenkabail et al. [57]. 

 

Another approach to spectral identification of irrigation is to compare each pixel‘s greenness value 

to its regional mean as measured by an index. Here region is loosely defined and can include a 
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command area or an agro-ecological zone, and applies only to the same land cover type  

(e.g., agriculture). The assumption is that the pixels representing irrigated fields will have greater 

greenness than their non-irrigated counterparts within any region. 

Although it‘s examples are rare and far in-between in irrigation mapping studies, there is also 

significant value in considering hyperspectral narrow band indices for further improving our 

understanding and accurate identification of irrigated areas. Also known as imaging spectroscopy, 

hyperspectral imaging has been used under laboratory conditions for over 100 years for identification 

of materials and their composition. Spectroscopy can be used to detect individual absorption features 

due to specific chemical bonds in a solid, liquid, gas including vegetation. The key to a successful use 

of narrow band spectrometers in identifying irrigation status of vegetation canopies will be through 

detection of moisture stress (which is often non-existent in irrigated areas) and through leaf chemical 

properties that are unique under artifical watering conditions. 

Temporal data requirements 

The mapping of irrigated lands with remote sensing is strongly affected by the timing of image 

acquisition and the number of images used [84]. The image-based monitoring relies heavily on the 

temporal monitoring of crop evolution during the growing season by means of vegetation indices. 

Thus, precise timing of image capture is necessary to effectively distinguish irrigated crops from each 

other and from other land cover types [37]. This requires knowledge of the growth schedules of crop 

types common to the area. For example, Pax-Lenney et al. [35] concluded that in addition to the 

number of images needed, timing of those images within the agrarian calendar proved to be more 

important than expected for lands under continuous cultivation in the Nile delta. In that study, 

nonproductive lands could not be identified with adequate accuracy by using images from low-growth 

seasons and their areas were overestimated by at least 400 percent with data sets consisting of two, 

three, or four low-growth-season images. Thus, even large multi-temporal datasets do not entirely 

mitigate the effects of timing interactions between images. Timing and image combinations restrict the 

accuracy of the identification of irrigated lands even with large image data sets. In some locations this 

is unfortunate, because low vegetation imagery is often the only cloud-free imagery available. 

Most studies at local scales show that irrigated area overestimation problems decrease as more 

peak-season images are incorporated into the data sets. However, given data sets of equal numbers of 

images, peak-growth imagery may not always perform as well as combinations of peak and low 

growth-season imagery. The result is that in some cases, incorporating the variability or range of the 

NDVI values across seasons delineates irrigated from non-irrigated lands more accurately than 

maximum NDVI data alone can do [35].  

These studies also suggest that the number of images needed to achieve a predetermined level of 

accuracy will differ between geographic regions. This emphasizes the fact that the number of images 

needed to monitor irrigated lands will vary by location, regional agricultural practices, and the feature 

of interest.  

As stated, the quality of irrigation maps derived from remote sensing partly depends on the number 

and timing of images used. While there is a need for multi-temporal imagery in distinguishing summer 

crops, this analysis shows that in the study area, methods such as NDVI thresholding based on single 

images produces useful results, especially if guided by high frequency remote sensing observations 
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like MODIS. This is particularly important for incorporating remote sensing technology into the future 

irrigation management practices in many of the world‘s semi arid areas. While remote detection of 

summer irrigated lands by this means may be simplistic, it provides an excellent example of the 

practical utility of remote sensing for summer irrigation monitoring. 

4. Areas that Require Further Research 

Use of Radar data 

To form the basis for developing sustainable water management practices requires knowledge of the 

current extent, area, and the status of irrigated agricultural landscapes. Advances in remote sensing 

based mapping technologies have partially contributed in documenting and monitoring irrigated land 

use types. There are, however, several unresolved problems associated with mapping irrigated areas at 

regional to continental scales in regions with frequent cloud cover. As described in previous sections, 

optical remote sensing has been successfully used for classification of irrigated areas from local to 

global scales using visual interpretation and classification as their primary approach for extracting 

thematic information. 

During the past decade, several radar sensors have been deployed in space. Though none were 

designed specifically for irrigation mapping, several investigations have demonstrated that the data 

provide unique information about the characteristics of irrigated landscapes [85-87]. First, the radar 

data can be acquired as frequently as possible without atmospheric interference and solar angle 

variations. Second, depending on the wavelength, the radar backscatter signal carries information 

about the moisture status of vegetated landscapes. For example, [85] discovered that the radar 

backscatter coefficient of rice fields, appears to have a significant temporal variation and that this 

variation can be used to identfy paddy rice fields. Similarly, [86] report a strong relationship between 

L-band backscatter and plant growth in manually planted rice areas although the radar response is 

strongly dependent on parameters related to the spatial distribution of the plants. Despite these 

artifacts, however, a correlation between plant growth and backscatter has been observed for all fields, 

independent of plant spacing and field orientation [86]. While these investigations established the 

physical foundation for understanding the relationship between radar backscatter in paddy rice fields, 

another study [87] suggests that rice production estimates require at least three radar acquisitions taken 

at three crop growth and development stages. However, if multi-parameter radar data are available, 

only two acquisitions may be sufficient. 

Note that the combination of radar data together with optical data has not yet been exploited to its 

fullest extent. Radar is useful because of its sensitivity to soil moisture status, even in complex 

environments. Furthermore, radar data can be collected in almost all weather conditions, a 

characteristic that is especially important in areas with frequent cloud cover.  

Use of passive microwaves for moisture status 

Irrigated areas, by definition, contain increased soil moisture due to artificial watering of fields. 

Microwave remote sensing can be used to estimate soil moisture and, by extension, irrigation, on the 

basis of the large contrast that exists between the dielectric constant values for dry and wet 

soils [88,89]. Temporal monitoring of water availability at the soil root zone during growth periods 
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could provide a way to pre-determine irrigated and non-irrigated fields. This information can then be 

refined using optical or radar sensors at increased spatial resolutions. Because microwaves penetrate 

clouds, microwave remote sensing also presents a good alternative to optical remote sensing for 

monitoring irrigation distribution, as well as the health and water needs of irrigated areas in humid 

locations with frequent cloud cover. One limitation of passive microwave data is their coarse spatial 

resolution (on the order of 25 km on a side). Nevertheless, these data can be used to pre-determine the 

locations of irrigated areas in a broader context using remote sensing. 

Classification algorithms with many-to-one mapping capabilities 

Because of the number of images to be processed and the need for multi-temporal data, the use of 

more automated methods based on supervised classification using machine learning algorithms is 

important. Neural networks (specifically Fuzzy ARTMAP: [90-92]), decision trees [24], and support 

vector machines (SVM) [93] are particularly powerful in handling information from multiple sources 

or dates to generate reliable classification results. One of the strengths of these machine-learning 

algorithms is the "many-to-one" mapping capability, meaning that any given output class can have 

many spectral manifestations, each of which is preserved internally within the trained set. For 

irrigation mapping, this is particularly useful, as most studies use only a limited number of classes and 

the non-irrigated class could encompass multiple land cover classes. The idea of many spectral 

manifestations can also be extended into the temporal domain, where irrigated productive agricultural 

fields and barren non-irrigated fields each with particular multi-date NDVI trajectories can be fed into 

a training set as individual training samples to classify the amount of irrigated land per study period.  

Object-oriented classification 

When using high spatial resolution data to map irrigated agricultural lands, traditional spectral 

based methods may result in rather poor or incorrect classification. This is because in this type of data, 

much information is contained in spatial relations of pixels and not in their spectral response or 

temporal change. Therefore, methods that exploit the relationship between a group of pixels in an 

attempt to generate improved classification are promising when analyzing high resolution data in 

fragmented environments. This form of classification is called the object-oriented approach. 

Unfortunately, there are no examples of application of object-oriented classification methods to map 

irrigated landscapes in the literature, although a few examples exist for mapping land cover types in 

cultivated settings. 

In an object-oriented classification process, image objects (e.g., agricultural fields) can be created 

by means of automatic segmentation algorithms, or by ancillary sources of information such as 

cadastral cartography. In general, a segmentation algorithm would produce a space division 

conditioned by sensor attributes instead of geographic characteristics. Image classification by parcels 

has been widely used for agricultural applications [94,95]. Object-based image analysis can be 

accomplished following two different approaches: prior to classification (per-parcel) and after  

per-pixel classification. In the first approach, descriptive features of each parcel are first calculated and 

then parcels are classified as a whole using any of the available classification algorithms. In the latter 

approach, the frequency of the classified pixels within each parcel using either the majority pixel class 

as the assigned pixel label or a mixed label describing the heterogeneity of the parcel assigned [94,96]. 
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Data Fusion 

Information about the agricultural areas is currently being captured by a number of satellite-based 

sensors of different spatial, spectral, temporal, and radiometric characteristics. It would be beneficial to 

utilize information from multiple sources to more effectively map irrigated areas and the concept of 

merging data for the same scene from different sensors is called data fusion. The motivation behind 

data fusion is to generate an interpretation of the scene not obtainable with data from a single sensor, 

or to reduce the uncertainty associated with the data from individual sensors [98]. For example, for an 

image segmentation or classification task, the goal of fusing data from different sensors is to reduce 

the classification error rate obtained by single source classification.  

Pohl and Van Genderen [98] suggest that before being able to implement and use an image fusion 

approach some critical questions need to be answered by the user including: What is the 

objective/application of the user? Which types of data are the most useful for meeting these needs? 

Which is the `best‘ technique of fusing these data types for that particular application? What are the 

necessary pre-processing steps involved? Which combination of the data is the most successful? These 

and other questions comprise a large number of parameters to be considered. 

While there are not many examples of data fusion for classification problems in irrigated 

agricultural settings, a small review of the existing methodologies here is useful. In general, data 

fusion techniques can be grouped into two classes: (i) Colour related techniques, and  

(ii) Statistical/numerical methods [98]. The first comprises the color composition of three image 

channels in the RGB color space as well as more sophisticated color transformations. Statistical 

approaches, on the other hand, are developed on the basis of channel statistics including correlation 

and filters. Techniques like PCA and regression belong to this group. The numerical methods follow 

arithmetic operations such as image differencing and ratios but also adding of a channel to other image 

bands. A form of sophisticated numerical approach uses wavelets in a multiresolution environment. 

For example, [99] uses this wavelet approach to merge Radar data with information from optical 

sensors to improve the classification accuracies. The premise here is that while each of these data types 

are not sufficient in identifying irrigated areas alone, their joint information is powerful and improve 

classification accuracies [98,99].  

In addition to these forms of traditional image fusion methods, there is an emerging trend in the 

literature of what would be called ―information merging‖ from different satellite sources. The main 

difference here is the goal of image or information fusion is not to generate pixels with improved 

information content from multiple data sources but rather to use information from multiple sources to 

make informed decisions. Some of the best examples of this new form of data fusion are provided 

by [7,21,56]. For example, Ozdogan et al. [7] used information from coarse resolution high temporal 

frequency observations as a guide to determining the ideal acquisition timing of high spatial resolution 

data for mapping purposes. While irrigated area mapping was accomplished solely based on high 

resolution data, the fact that an additional sensor data with different capabilities was used to steer the 

acquisition times is sufficient to consider this application a form of data fusion. Another great example 

is provided by [21] who used temporal profiles from one set of observations to interpret land cover 

type in another sensor data. This form of information fusion is important in irrigated area mapping 

since the phenology (temporal profiles) of crops are crucial to their identification and mapping—not 

only from other crops, but also from other vegetation.  
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As noted, single date imagery might suffice (if acquired at right time of crop phenology) to map 

irrigated areas at local scales (e.g., corn vs. soybeans during critical growth phases in U.S. mid-west) 

but when the extent of mapping in regional/continental/global this will be highly inadequate. Here is 

where data fusion, along with non-optical data from microwave remote sensing and numerous 

secondary data, included in data fusion, will be invaluable. 

5. Conclusions 

Satellite data offer tremendous advantages for irrigated area mapping problems at various temporal 

and spatial scales. However, for more effective use of remote sensing, the analyst should be aware of 

the limitations and advantages of satellite data and should choose from the available irrigation 

mapping options accordingly. For example, methods that work in local areas may not lend themselves 

easily to regional and global applications. Although satellite remote sensing cannot provide the 

detailed information available from aerial photography or field studies, it can provide complimentary 

information to these conventional mapping techniques. It can also identify areas where changes are 

occurring and where more detailed information must be gathered.  

Techniques for improving the identification of irrigated areas using remote sensing data include the 

use of multi-temporal imagery and ancillary data and these methods hold true across all spatial scales 

considered here. In general, it was found that multi-temporal imagery and ancillary information such 

as climate, soils, or slope improved irrigation classification. Multi-temporal imagery provides the 

greatest accuracy for delineating irrigation from other land cover types. While the ideal dates will 

differ depending on the type and location of irrigation being studied, it is possible to make use of high 

frequency observations at coarse spatial resolutions even in local area investigations. In general, 

ancillary data, when available, improves irrigation classification. Machine learning and rule-based 

classification methods generally provide better results than conventional statistical classification 

approaches. If detailed information is required at a finer spatial resolution than the satellite sensor can 

provide, then a subpixel classification scheme should be used. Several methods have been developed 

for this purpose. In conclusion, mapping of irrigated areas with satellite imagery is difficult but 

possible. As with many remote sensing problems, satisfactory results may require techniques specific 

to the location on a case by case basis. 

Finally, multisensor data fusion provides an effective paradigm for remote sensing applications by 

synthesizing data from multiple sensors or sources. For example, high-resolution Landsat style 

observations can be integrated with low-resolution high temporal frequency observations to 

complement each other for the improved information extraction in irrigated settings. High spatial 

resolution images can also be processed by the state-of-the-art image segmentation algorithms to 

generate individual objects that often correspond to physically meaningful entities, e.g., a cropland unit 

growing wheat.  
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