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Abstract: For a quick and stable estimation of earthquake damaged buildings worldwide, 

using Phased Array type L-band Synthetic Aperture Radar (PALSAR) loaded on the 

Advanced Land Observing Satellite (ALOS) satellite, a model combining the usage of 

satellite synthetic aperture radar (SAR) imagery and Japan Meteorological Agency  

(JMA)-scale seismic intensity is proposed. In order to expand the existing C-band SAR 

based damage estimation model into L-band SAR, this paper rebuilds a likelihood function 

for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 

(JERS-1)/SAR (L-band SAR) images observed during the 1995 Kobe earthquake and its 

detailed ground truth data. The model which integrates the fragility functions of building 

damage in terms of seismic intensity and the proposed likelihood function is then applied 

to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. 

The accuracy of the proposed damage estimation model is examined by comparing the 

results of the analyses with field investigations and/or interpretation of high-resolution 

satellite images. 
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1. Introduction  

Worldwide remote monitoring from space of natural disasters, such as earthquakes, tsunamis, and 

floods, is becoming more common in recent years with the launch of the ñInternational Charter Space 

and Major Disasterò system. This system has facilitated the immediate observation of disaster affected 

regions using earth observation satellites since around the year 2000, and provides a quick access to 

high-resolution satellite images with a ground resolution finer than 1 m, which is comparable with 

imagery available for commercial use. 

Remote observation and the study of a large variety of worldwide natural disasters, takes advantage 

of several types of sensors. Mainly two types of sensors are used in satellite remote sensing of Earth; 

optical sensors which observe reflective and radiometric characteristics in the visible light, near and 

mid-infrared, and thermal infrared regions, and radar sensors which use microwaves with wavelengths 

between several centimeters to several tens of centimeters. High-resolution optical sensor images can 

be used to assess damage at building level [1,2] or to evaluate damage to ground, such as landslides, in 

regions where field investigation may be difficult [3], making them a promising observation method 

for emergency responses following disasters. Unfortunately, this method is not applicable in regions 

with incidence of cloud cover or cloud shadows. On the other hand, radar sensors are capable of 

observing the ground irrespective of weather conditions or the time of the day, and therefore have been 

gaining prominence as a reliable tool for grasping the overall picture of damage from disasters. In 

particular, crustal deformation monitoring technology [4] based on interferometric processing of the 

synthetic aperture radar (SAR) phase information, has been undergoing refinement through numerous 

case studies [5], and is now reaching a level where it can be utilized at a practical level.  

A prompt investigation of direct damages from disasters to social infrastructure, such as buildings, 

as well as detailed information on their spatial distribution, is crucial for effective disaster response 

and reconstruction efforts. To address this problem, several comparative studies of backscattering 

intensity information or phase information of SAR images with building damage have been actively  

performed [6-9], using a dataset from the 1995 Kobe earthquake. Integration with seismic intensity 

information has also been implemented [10]. Matsuoka and Yamazaki proposed a linear discriminant 

score, that uses as variables the correlation and difference in backscattering coefficient before and after 

the earthquake as an indicator which correlates strongly with areas of building damage, using ERS-1 

(ESA Remote-Sensing Satellite-1)/SAR images from the European Space Agency which observed the 

area hit by the Kobe earthquake before and after the event [11]. Furthermore, in order to evaluate the 

building damage ratio from SAR images, and to allow an integrated analysis with other types of 

information such as seismic intensity information, Nojima et al. derived a regression discriminant 

function that relates to the building damage ratio from the correlation and difference in backscattering 

coefficient, and created a model for quantitatively estimating the severe building damage ratio from a 

modeled likelihood function based on the regression discriminant function [12]. The versatility of this 

model has been qualitatively demonstrated, as it is not very susceptible to the effects of satellite 

observation conditions and regional characteristics, because it uses intensity information in the form of 

backscattering coefficient in order to extract areas of damage [13]. However, Nojima et al.ôs estimation 

model is based on C-band (wavelength of about 5.7 cm) ERS-1/SAR images, which means that it 

cannot strictly be applied to L-band (wavelength of about 23 cm) JERS-1 (Japanese Earth Resource 



Remote Sens. 2010, 2              

 

2113 

Satellite-1)/SAR and ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band 

Synthetic Aperture Radar) images owned by METI (Ministry of Economy, Trade and Industry) and 

JAXA (Japan Aerospace Exploration Agency). This is because at different wavelengths, there are 

variations in backscatter characteristics of target objects originating from their permeability, 

permittivity and surface roughness.  

In this paper we follow the procedure used by Nojima et al. [12] in order to create an estimation 

model for the severe building damage ratio that can be applied to PALSAR images from ALOS, which 

has been conducting several observations of earthquake damage since the launch of the satellite in 

January 2006. We will also determine a modeled likelihood function for the severe building damage 

ratio from JERS-1/SAR images of the 1995 Kobe earthquake, and we will demonstrate that the 

building damage distribution can be accurately estimated through integration with fragility functions 

for building damage in terms of JMA (Japan Meteorological Agency) seismic intensity. Furthermore, 

we apply our new methodology to PALSAR images from ALOS, which observed the areas of the 2007 

Peru earthquake, and assess our model performance by comparisons with field investigations. 

2. Likelihood Function from JERS-1/SAR 

2.1. SAR Images and Ground Truth Data 

The JERS-1 satellite launched by Japan in 1992 was operational until 1998, and made observations 

of the region affected by the 1995 Kobe earthquake. This satellite was equipped with an optical sensor 

(OPS) and a radar sensor (SAR). SAR images for before and after the earthquake (before: May 17, 

1994; after: May 4, 1995) are shown in Figure 1(a,b). For the ground truth data, the GIS-based 

building damage data was provided based on detailed survey results compiled by AIJ (the Architectural 

Institute of Japan) and CPIJ (the City Planning Institute of Japan), and digitized by BRI (the Building 

Research Institute), wherein the building damage level is classified into five categories; damage by 

fire, severe damage, moderate damage, slight damage, and no damage, with the number of damaged 

buildings being totaled for each city block [14]. Severe damage almost corresponds to G5~G4 and a 

part of G3 in the classification of the European Macroseismic Scale (EMS-98) [15]. Using the field 

survey data, severe damage ratio of buildings at a city-block level was calculated as the ratio between 

the number of buildings classified as burnt or severely damaged and the total number of buildings in 

each block. Figure 1(c) shows the data for building damage and areas where the severe damage ratio 

was more than 30% are colored black. There are significant linear noise patterns on the image, due to 

the fact that SAR sensors at the time had a relatively low signal-to-noise ratio. Although the effects of 

noise in the subsequent analysis is unavoidable, we have decided to use this dataset because no other 

earthquake that has been observed by L-band SAR has such an availability of data for building damage 

which is sufficiently detailed for statistical analyses. As a matter of note, the post-quake image was 

taken approximately four months after the earthquake, which means that it is probable that some of the 

buildings which were damaged by the quake had been either partially or fully demolished or 

dismantled; however, this image was chosen so as to allow a comparison with an ERS/SAR image 

which was taken in the same time interval. The size of 1 pixel in the SAR image is about 30 m. 
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Figure 1. JERS-1/SAR images from before and after the 1995 Kobe earthquake and target 

area of analysis. (a) Image taken May 17, 1994 (before). (b) Image taken May 4, 1995 

(after). (c) Building damage data after the earthquake (black areas indicate severe damage 

ratio of over 30%) [14]. 

 

2.2. Derivation of Regression Discriminant Function and Likelihood Function 

Following Nojima et al., the regression discriminant function for building damage is calculated 

from two characteristic values, the correlation coefficient and the difference in backscattering 

coefficient of pre-event and post-event SAR images [12]. First, following accurate positioning of the 

two SAR images, a speckle noise filter with a 21 × 21 pixel window [16] is applied to each image. The 

difference value is calculated by subtracting the average value of the backscattering coefficient within 

a 13 × 13 pixel window of the pre-event image from the post-event image, and the correlation 

coefficient is also calculated from the same 13 × 13 pixel window [11]. 
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(2)  

Here, d represents the difference in backscattering coefficient [dB], r represents the correlation 

coefficient, and N represents the number of pixels within the target window. N is 169 because a  

13 × 13 pixel window is used. Iai, Ibi represent the i-th pixel values of the post-event and pre-event 

images respectively, and Ǭai, Ǭbi are the average values of 13 × 13 pixels surrounding the i-th pixel. 
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Then, the images are superposed with the data for building damage, and 2,000 pixels are randomly 

extracted from areas corresponding to each of the seven damage severity rankings as shown in 

Table 1 (total of 14,000 pixels) to create a training sample. Figure 2 shows a scatter diagram of d and r 

for each damage severity ranking. In areas with more severe damage, the difference in backscattering 

coefficient tends to have a larger absolute value in the negative, and the correlation coefficient tends to 

be smaller. This is because when microwaves hit undamaged pre-event buildings, multiple reflections 

between the ground and the building (cardinal effect) result in a large backscatter returning to the 

satellite; whereas in destroyed buildings and empty plots, microwaves scatter in various directions, 

reducing the amount which returns to the satellite, resulting in a negative difference. In addition, 

damage to buildings increases the spatial variation in backscattering of the post-quake image with 

respect to the pre-quake image, decreasing the correlation coefficient.  

Table 1. Range of severe damage ratios and mean values for each damage severity ranking. 

Damage Rank Severe Damage Ratio D (%)  Mid -value (%) 

ɗ1 D = 0 0.0 

ɗ2 0.0   D  6.25 3.13 

ɗ3 6.25  Ӗ D  12.5 9.38 

ɗ4 12.5  Ӗ D  25 18.75 

ɗ5 25  Ӗ D  50 37.5 

ɗ6 50  Ӗ D  100 75.0 

ɗ7 D = 100 100.0 

Figure 2. Scatter diagram of the difference in backscattering coefficients and correlation 

coefficients for each damage severity ranking. 
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The result of applying regression discriminant function [17], a method of multiple-group 

discrimination, using d and r of the seven damage severity rankings, for a quantitative evaluation of 

the severe damage ratio, is shown in Equation 3. 

 

ZRj=-1.277 d-2.729 r  (3)  

Here, ZRj represents the discriminant score derived from JERS-1/SAR. Figure 2 also shows 

discriminant lines calculated by several ZRj values. Figure 3 shows the distribution of ZRj determined 

from pre-and post-event JERS-1/SAR images. ZRj is fairly large in an area extending in a northeasterly 

direction from Nagata Ward, Kobe. It should be noted that the target area is restricted to urban areas 

where the cardinal effect can be expected; therefore, areas whose pre-event backscattering coefficient 

is small (under ī7 dB) are masked. 

Figure 3. Distribution of discriminant score ZRj obtained from JERS-1/SAR. 

 

Next, the likelihood function for estimating the severe damage ratio from the discriminant score ZRj 

is created. Figure 4 shows the frequency distribution of ZRj for 2,000 pixels for each damage severity 

ranking, modeled using normal distribution. Table 2 shows the average values and standard deviations 

of ZRj for each damage severity ranking. The discriminant score ZRj is larger with higher damage 

severity ranking. However, similar to the case of ERS-1/SAR, the distribution curves cross, for some 

damage severity rankings, in regions with small discriminant scores; therefore, there is a limit to the 

abilities of the discriminant analysis in areas with a low damage severity ranking. Figure 5 shows 

modeled likelihood functions. For the region where ZRj is under ī2.0, a constant value obtained by 

extrapolating the value at ZRj = ī2.0 is used in order to avoid a reversal of sequence of the severe 

damage ratio caused by the distribution curves crossing. The average values and standard deviations of 

the estimated severe damage ratio against the discriminant score ZRj can be obtained from the central 

values of the damage severity rankings in Table 1, Table 2, and the distribution shown in Figure 5. 

Figure 6 shows the curves for the average values and the average values ± standard deviation of the 

severe damage ratio estimated from ZRj. This curve is equivalent to the fragility function for damage 

without seismic intensity information, and the severe damage ratio increases with increasing ZRj. When 

ZRj < ī2.0, the distributions overlap as shown on Figure 4 and Figure 5, and contain an amount of 
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information (average severe damage ratio of 19.4% and standard deviation of 27.1%) which is only 

marginally more in comparison to complete non-information (average severe damage ratio of 34.8% 

and standard deviation of 35.8% at an equal probability of 1/7 for each damage severity ranking). 

Therefore, seismic intensity information is used as supplementary information for a highly accurate 

estimation which includes regions of low severe damage ratio. 

Figure 4. Normal distribution model of discriminant score ZRj frequency distribution. 

 

Table 2. Average values and standard deviations of likelihood function of SAR intensity 

image information. 

Damage Rank Average of ZRj Standard Deviation 

ɗ1 ī1.399 0.747 

ɗ2 ī1.390 0.809 

ɗ3 ī1.233 0.955 

ɗ4 ī1.110 1.018 

ɗ5 ī0.733 1.107 

ɗ6 ī0.241 1.134 

ɗ7 0.151 1.457 

Figure 5. Modeled likelihood functions by discriminant score ZRj. 
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Figure 6. Relationship between the discriminant scores ZRj (JERS) and ZR (ERS), and the 

severe damage ratio (average values and standard deviations). 

 

3. Damage Ratio Estimation by Integration with Seismic Intensity Information 

3.1. Integration of SAR Images and Seismic Intensity Information 

Already, the fragility function of damage rank in terms of JMA-scale seismic intensity information 

(Figure 7) and the relationship between seismic intensity and average and standard values of severe 

damage ratio (Figure 8) have been created [12]. The average value is red color and the values of its 

plus and minus standard deviation are shown in dark and light yellow colors, respectively. 

Figure 7. Fragility function derived from the Kobe earthquake dataset [12]. 
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Figure 8. Relationship between seismic intensity and severe damage ratio (average value 

[red], with plus and minus standard deviations [dark and light yellow]) [12]. The modified 

curves (average [green], with plus and minus standard deviations [dark and light blue]) are 

also shown for the Peru earthquake case. 

 

Using Bayesian updating theory, we can calculate posterior probability from the modeled likelihood 

function of ZRj (see Figure 5) and the fragility function of seismic intensity (see Figure 7) for each 

damage rank, by following the procedure developed by Nojima et al. [12]. Figure 9(a,b), respectively, 

shows the average values and the standard deviations of the severe damage ratio after probability 

updates for the 49 combinations of the two indices as examples.  

Figure 9. Estimated severe damage ratio from integration of SAR information and seismic 

intensity information. (a) Average values. (b) Standard deviations. 
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3.2. Estimation of Severe Damage Ratio in the Kobe Earthquake 

An example of integration in the Kobe earthquake is shown in this section. The seismic intensity 

information is estimated by multiplying the seismic intensity on stiff soil layer with the amplification 

factor of the subsurface layer. A model by Wald
 
[18] was used for the locations of the fault lines, and 

the attenuation relationship of peak velocity by Si and Midorikawa
 
(crustal earthquake, using shortest 

distance to fault plane) [19] were used for the seismic intensity on stiff soil layer. For the amplification 

distribution of the surface layer, the average shear wave velocity for the ground was calculated from 

the 250 m grid-version
 
[20,21] of the Japan Engineering Geomorphologic Classification Map [22] and 

the amplification was estimated using a formula [23]. The values for peak ground velocities (PGV) at 

the surface thus obtained were converted to seismic intensity using the relationship [24] by Fujimoto 

and Midorikawa.  

Seismic intensity distribution and the severe damage ratio (average values) distribution estimated 

from the fragility function for damage, overlaid onto a shaded relief map, is shown in Figure 10. It can 

be seen that seismic intensity tends to be larger on lower ground. Additionally, we can estimate, purely 

from the seismic intensity information, that the severe damage ratio is likely to be large in the coastal 

regions of Kobe. However, because this is based on a simple method, which does not take into account 

factors such as the direction of fault rupture, the estimated seismic intensities are lower than the actual 

intensities in the area around Takarazuka where the effect of such factors was significant.  

Figure 10. Distribution of estimated seismic intensities (left) and distribution of estimated 

severe damage ratios from seismic intensity information (average values) (right) for the 

Kobe earthquake. 

 

Figure 11 shows the estimated severe damage ratio (average values) obtained through an integration 

of discriminant scores ZRj of the SAR images (Figure 3) and seismic information (Figure 10). 

Compared to the severe damage ratio estimation using seismic intensity information only, the contrast 

between severely damaged areas and lightly damaged areas is more pronounced, and a distribution 

which resembles the so-called ñearthquake damage beltò from Kobe to Nishinomiya (black areas in 

Figure 1(c)) is obtained. As for Takarazuka, whose seismic intensity has been underestimated, the 

severe damage ratio estimated by the integration is also underestimated due to small discriminant score 

ZRj from the SAR data (see Figure 3). The requirement for more accurate seismic intensity estimations, 


