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Abstract: For a quick and stable estimation of earthquake damaged buildings worldwide,
using Phased Array type-thand Synthetic Aperture Rad@PALSAR) loaded on the
Advanced Land Observing SatellifLOS) satellite, a model combining the usage of
satellite synthetic aperture rad@¢BAR) imagery and Japan Meteorological Agency
(JMA)-scale seismic intensity is proposed. In order to expand the existrap SAR

based damge estimation model into-hand SAR, this paper rebuilds a likelihood function

for severe damage ratio, on the basis of dataset from Japanese Earth ResourcelSatellite
(JERS1)/SAR (L-band SAR) images observed during the 1995 Kobe earthquake and its
detaled ground truth data. The model which integrates the fragility functions of building
damage in terms of seismic intensity and the proposed likelihood function is then applied
to PALSAR images taken over the areas affected by the 2007 earthguRiseo,Peru.

The accuracy of the proposed damage estimation model is examined by comparing the
results of the analyses with field investigations and/or interpretation ofrésgtution
satellite images.
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1. Introduction

Worldwide remote monitoring from space of natural disasters, such as earthquakes, tsunamis, anc
fl oods, i's becoming more common in recent yeal
andMaj or Di sastero system. This system has faci
regions using earth observation satellites since around the year 2000, and provides a quick access |
high-resolution satellite images with a ground resolutfiner than 1 mwhich is comparal# with
imagery available for commercial use.

Remote observation and the study of a large variety of worldwide natural disasters, takes advantage
of several types of sensors. Mainly two types of sensors are used litesagiote sensing of Earth;
optical sensors which observe reflective and radiometric characteristics in the visible light, near and
mid-infrared, and thermal infrared regions, and radar sensors which use microwaves with wavelengths
between several centaters to several tens of centimeters. Higbolution optical sensor images can
be used to assess damage at building level [1,2] or to evaluate damage to ground, such as landslides,
regions where field investigation may be difficult [3], making thenranising observation method
for emergency responses following disasters. Unfortunately, this method is not applicable in regions
with incidence of cloud cover or cloud shadows. On the other hand, radar sensors are capable o
observing the ground irrespecti of weather conditions or the time of the day, and therefore have been
gaining prominence as a reliable tool for grasping the overall picture of damage from disasters. In
particular, crustal deformation monitoring technology [4] based on interferonpetiessing of the
synthetic aperture radar (SAR) phase information, has been undergoing refinement through numerou:s
case studies [5], and is now reaching a level where it can be utilized at a platical

A prompt investigation of direct damages fralisasters to social infrastructure, such as buildings,
as well as detailed information on their spatial distribution, is crucial for effective disaster response
and reconstruction efforts. To address this problem, several comparative studies of baokscatter
intensity information or phase information of SAR images with building damage have been actively
performed [€9], using a dataset from the 1995 Kobe earthquake. Integration with seismic intensity
information has also been implemented [10htsuoka ad Yamazakiproposed a linear discriminant
score, that uses as variables the correlation and difference in backscattering coefficient before and afte
the earthquake as an indicator which correlates strongly with areas of building damage, using ERS
(ESA RemoteSensing Satellitd)/SAR images from the European Space Agembich observed the
area hit by the Kobe earthquake before and after the event [11]. Furthermore, in order to evaluate the
building damage ratio from SAR images, and to allow an integraedlysis with other types of
information such as seismic intensity information, Nojigtaal derived a regression discriminant
function that relates to the building damage ratio from the correlation and difference in backscattering
coefficient, and creatl a model for quantitatively estimating the severe building damage ratio from a
modeled likelihood function based on the regression discriminant function [12]. The versatility of this
model has been qualitatively demonstrated, as it is not very suseefatithe effects of satellite
observation conditions and regional characteristics, because it uses intensity information in the form of
backscattering coefficient in order to extract areas of damage [13]. However, opinad s e st i ma
model is basedn Gband (wavelength of about 5.7 cm) ERSAR images, which means that it
cannot strictly be applied to-band (wavelength of about 23 cm) JER$®Japanese Earth Resource
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Satellite1)/SAR and ALOS/PALSAR (Advanced Land Observing Satellite/Phased AmpaylLtband
Synthetic Aperture Radar) images owned by METI (Ministry of Economy, Trade and Industry) and
JAXA (Japan Aerospace Exploration Agency). This is because at different wavelengths, there are
variations in backscatter characteristics of target t¢bjewriginating from their permeability,
permittivity and surfaceoughness.

In this paper we follow the procedure used by Nojmhal [12] in order to create an estimation
model for the severe building damage ratio that can be applied to PALSAR imageALfOS, which
has been conducting several observations of earthquake damage since the launch of the satellite i
January 2006. We will also determine a modeled likelihood function for the severe building damage
ratio from JERSL/SAR images of the 1995 kKe earthquake, and we will demonstrate that the
building damage distribution can be accurately estimated through integration with fragility functions
for building damage in terms of JMA (Japan Meteorological Agency) seismic intensity. Furthermore,
we applyour new methodology to PALSAR images from ALOS, which observed the areas of the 2007
Peru earthquake, and assess our model performance by comparisons witkidstldations.

2. Likelihood Function from JERS-1/SAR
2.1. SAR Images and Ground Truth Data

The JERSL satellite launched by Japan in 1992 was operational until 1998, and made observations
of the region affected by the 1995 Kobe earthquake. This satellite was equipped with an optical sensol
(OPS) and a radar sensor (SAR). SAR images for beforaféerdthe earthquake (before: May 17,
1994; after: May 4, 1995) are shown in Figure,daFor the ground truth data, the &&sed
building damage data was provided based on detailed survey results compiled by AlJ (the Architectural
Institute of Japanand CPIJ (the City Planning Institute of Japan), and digitized by BRI (the Building
Research Institute), wherein the building damage level is classified into five categories; damage by
fire, severe damage, moderate damage, slight damage, and no damagee witmber of damaged
buildings being totaled for each city block [14]. Severe damage almost corresponds to G5~G4 and a
part of G3 in the classification of the European Macroseismic Scale @8YIfl5]. Using the field
survey data, severe damage ratidwoildings at a cityblock level was calculated as the ratio between
the number of buildings classified as burnt or severely damaged and the total number of buildings in
each block. Figure 1(c) shows the data for building damage and areas where the@aeage ratio
was more than 30% are colored black. There are significant linear noise patterns on the image, due t
the fact that SAR sensors at the time had a relatively low sigmadise ratio. Although the effects of
noise in the subsequent analysisimavoidable, we have decided to use this dataset because no other
earthquake that has been observed#pahd SAR has such an availability of data for building damage
which is sufficiently detailed for statistical analyses. As a matter of note, thesist image was
taken approximately four months after the earthquake, which means that it is probable that some of the
buildings which were damaged by the quake had been either partially or fully demolished or
dismantled; however, this image was chosensstoaallow a comparison with an ERS/SAR image
which was taken in the same time interval. The size of 1 pixel in the SAR image is about 30 m.
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Figure 1. JERS1/SAR imags frombefore and after the 1995 Kobe earthquake and target
area of analysiga) Imagetaken May 17, 1994before) (b) Image taken May 4, 1995
(after). (c) Building damage datafter the earthquak@lack areas indicate severe damage
ratio of over 30%) [14].
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2.2. Derivation of Regression Discriminant Function and Likelihood Function

Following Nojima et al, the regression discriminant function for building damage is calculated
from two characteristic values, the correlation coefficient and the difference in backscattering
coefficient of preevent and postvent SAR images [12]. First, folving accurate positioning of the
two SAR images, a speckle noise filter with a 21 x21 pixel window [16] is applied to each image. The
difference value is calculated by subtracting the average value of the backscattering coefficient within
a 13 x 13 pixelwindow of the presvent image from the peswvent image, and the correlation
coefficient is also calculated from the same 13 x 13 pixel window [11].

d =10dog,, Ia - 100og,, b (1)

N NN
Na lalb - a Ia,-a Ib

r= i=1l i=1 i=1
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Here, d represents the difference in backscaitgrcoefficient [dB], r represents the correlation
coefficient, andN represents the number of pixels within the target winddwis 169 because a
13 x 13 pixel window is useda;, Ib; represent thé-th pixel values of the pogtvent and prevent
images respectively, an@;aQ;lare the average values of 13 x13 pixels surrounding-theixel.
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Then, the images are superposed with the data for building damage, and 2,000 pixels are randomly
extracted from areas corresponding to each of the seven damage severity raskstgsvn in
Tablel (total of 14,000 pixels) to create a training sample. Figure 2 shows a scatter diagrandof
for each damage severity ranking. In areas with more severe damage, the difference in backscatterin
coefficient tends to have a largersahute value in the negative, and the correlation coefficient tends to
be smaller. This is because when microwaves hit undamagexygme buildings, multiple reflections
between the ground and the building (cardinal effect) result in a large backseattamg to the
satellite; whereas in destroyed buildings and empty plots, microwaves scatter in various directions,
reducing the amount which returns to the satellite, resulting in a negative difference. In addition,
damage to buildings increases the spatariation in backscattering of the pagtake image with
respect to the prguake image, decreasing the correlation coefficient.

Table 1.Range of severe damage ratios and mean values for each damage severity ranking.

Damage Rank Severe Damage Rati® (%) Mid -value (%)

di D=0 0.0
o 00 D 6.25 3.13
s 6.25E D 12.5 9.38
ds 125E D 25 18.75
ds 25E D 50 375
ds 50 E D 100 75.0
oy D =100 100.0

Figure 2. Scatter diagram athe difference in backscattering coefficients and elation
coefficients for each damage severity ranking.
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The result of applying regression discriminant function [17], a method of mudfiplep
discrimination, usingl andr of the seven damage severity rankings, for a quantitative evaluation of
the sevee damage ratio, is shown in Equation 3.

Zy=-1277d- 2729r (3)

Here, Zg; represents the discriminant score derived from JEAR. Figure 2 also shows
discriminant lines calculated by severa} values. Figure 3 shows the distributionZxf detemined

from preand postvent JERSL/SAR imagesZg; is fairly large in an area extending in a northeasterly
direction from Nagata Ward, Kobe. It should be noted that the target area is restricted to urban area:
where the cardinal effect can be expectbdrdfore, areas whose greent backscattering coefficient

is small (under 7 dB) are masked.

Figure 3. Distribution of discriminant scorég; obtained from JER3/SAR.

Next, the likelihood function for estimating the severe damage ratio from the discriminanZgcore
is created. Figure 4 shows the frequency distributiodgofor 2,000 pixels for each damage severity
ranking, modeled using normal distribution. Table 2 shows the average values and standard deviation:
of Zg; for each damage severity ranking. The discriminant sggyés larger with higher damage
severity ranking. However, similar to the case of ERSAR, the distribution curves croder some
damage severity rankings regions with small discriminant scores; therefore, there is a limit to the
abilities of the discriminant analysis in areas with a low dansmyerity ranking. Figure 5 shows
modeled likelihood functions. For the region whé&kgis underi 2.0, a constant value obtained by
extrapolating the value a&g; = 12.0 is used in order to avoid a reversal of sequence of the severe
damage ratio caused Hye distribution curves crossing. The average values and standard deviations of
the estimated severe damage ratio against the discriminantZgoen be obtained from the central
values of the damage severity rankings in Table 1, Table 2, and thbutiistr shown in Figure 5.
Figure 6 shows the curves for the average values and the average values *standard deviation of thi
severe damage ratio estimated frdm This curve is equivalent to the fragility function for damage
without seismic intensitynformation, and the severe damage ratio increases with increagikgen
Zgi< 12.0, the distributions overlap as shown
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information (average severe damage ratio of 19.4% and standard deviation of @hitPo)s only
marginally more in comparison to complete Apformation (average severe damage ratio of 34.8%
and standard deviation of 35.8% at an equal probability of 1/7 for each damage severity ranking).
Therefore, seismic intensity information is dsa&s supplementary information for a highly accurate

estimation which includes regions of low severe damage ratio.

Figure 4. Normal distribution model of discriminant scatg frequency distribution.

0.6

0.5

—p— G D

0.4

0.3

Likelihood

0.2

0.1

- 0%

= 100%
- <100%

— <25%

Table 2. Average values and standard deviations kélihood function of SAR intensity

image information.
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Standard Deviation
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Figure 5. Modeled likelihood functios by discriminant scor&g;.
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Figure 6. Relationship between the discriminant scadgJERS) andZr (ERS), andhe
severe damage ratio (average values and standard deviations).
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3. Damage Ratio Estimation by Integration with Seismic Intensity Inform&on
3.1. Integration of SAR Images and Seismic Intensity Information

Already, the fragility function of damage rank in terms of J8fale seismic intensity information
(Figure 7) and the relationship between seismic intensity and average and stand=sdiakvere
damage ratio (Figure 8) have been creq1]. The average value is red color and the values of its
plus and minus standard deviation are shown in dadkight yellow colors, respectively.

Figure 7. Fragility function derived from the Kobearthquake dataset [12].
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Figure 8. Relationship between seismic intensity and severe damage ratio (average value
[red], with plus and minus standard deviations [dark and light yellow]) [12]. The modified
curves (average [green], with plus and minusdsash deviations [dark and light blue]) are

also shown fothe Peru earthquake case.
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Using Bayesian updating theory, we can calculate posterior probability from the modeled likelihood
function of Zgj (see Figure 5) and the fragility function of seismitensity (see Figure 7) for each
damage rankoy following the procedure developed by Nojietaal [12]. Figure 9(gb), respectively
shows the average values and the standard deviations of the severe damage ratio after probability
updates for the 49 comiations of the two indices as examples.

Figure 9. Estimated severe damage ratio from integration of SAR information and seismic
intensity information(a) Average valuegb) Standard deviations.
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3.2. Estimation of Severe Damage Ratio in the Kobe Eaatte

An example of integration in the Kobe earthquake is shown in this section. The seismic intensity
information is estimated by multiplying the seismic intensity on stiff soil layer with the amplification
factor of the subsurface layer. A model by Wald] was used for the locations of the fault lines, and
the attenuation relationship of peaéocity by Si and Midorikawécrustal earthquake, using shortest
distance to fault plane) [19] were used for the seismic intensity on stiff soil layer. For thigcatigm
distribution of the surface layer, the average shear wave velocity for the ground was calculated from
the 250 m gridversion[20,21] of the Japan Engineering Geomorphologic Classification Map [22] and
the amplification was estimated using a fafan[23]. The values for peak ground velocities (PGV) at
the surface thus obtained were converted to seismic intensity using the relationship [24] by Fujimoto
and Midorikawa.

Seismic intensity distribution and the severe damage ratio (average valuelsiitthst estimated
from the fragility function for damage, overlaid onto a shaded relief map, is shown in Figure 10. It can
be seen that seismic intensity tends to be larger on lower ground. Additionally, we can estimate, purely
from the seismic intensitiynformation, that the severe damage ratio is likely to be large in the coastal
regions of Kobe. However, because this is based on a simple nwttiod does notake intoaccount
factors such as the direction of fault rupture, the estimated seismidtieteage lower than the actual
intensities in the area around Takarazuka where the effect of such factors was significant.

Figure 10. Distribution of estimated seismic intensities (left) and distribution of estimated
severe damage ratios from seismiceirgity information (average values) (right) for the
Kobe earthquake.

Figure 11 shows the estimated severe damage ratio (average values) obtained through an integratio
of discriminant score<g; of the SAR images (Figure 3) and seismic information (EigL®©).
Compared to the severe damage ratio estimation using seismic intensity information only, the contrast
between severely damaged areas and lightly damaged areas is more pronounced, and a distributic
which resemblesthespa |l | ed fAeart Hhdwalke odna niKkoogpee teo Ni shin
Figure 1(c)) is obtained. As for Takarazuk#hose seismic intensity has been underestimated, the
severe damage ratio estimated by the integration is also underestimated due to small discriminant scor
Zgj from the SAR data (see Figure 3). The requirement for more accurate seismic intensity estimation



