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Abstract: The aircraft-based ESTAR soil moisture fields from the Southern Great Plains 

1997 (SGP97) Hydrology Experiment are compared to the simulated ones obtained by 

Bertoldi et al. [1] with the GEOtop model [2], with a particular focus on their capability in 

capturing the critical point behaviour in their space-time dynamics (see [3]). The critical 

point behaviour should denote the transition of soil moisture spatial patterns from an 

unorganized to organized appearance, as conditions become wetter. The study region is the 

Little Washita watershed, located in the southwest Oklahoma, in the Southern Great Plains 

region of the USA. The case study takes place from June 27 to July 16 and encompasses 

wetting and drying cycles allowing for exploring the behaviour under transient conditions. 

Results show that the critical probability value is 0.85 for GEOtop, and 0.80 for ESTAR. 

The GEOtop patterns appear more fragmented, being more reluctant to organization, as 

confirmed by the higher value of critical probability. Such behaviour is probably inherited 

by the model’s parameterization: land use and soil classes impose additional spatial 

structures to those related to the meteorological forcings and the hillslope morphology, 

driving to higher degrees of heterogeneity. 
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1. Introduction 

As noted by Western et al. [4], soil moisture can vary in space in an organized way or randomly or 

in a combination of the two. Soil moisture may exhibit continuity (which is captured statistically by the 

variogram or the autocorrelation function) and connectivity. Connectivity refers to a feature of spatial 

fields when interconnected paths into spatial structure exist. It is different from continuity which 

relates to the smoothness of a spatial pattern. Connectivity is able to capture the extent over which 

connected features are preserved in a hydrological spatial pattern. The hydrologically connected areas 

are important because they are deemed to be the main runoff sources [5]. Incorporating connectivity 

into antecedent moisture patterns has a dramatic effect on simulated runoff, even if the spatial 

correlation structure is unchanged [6]. 

The definition of connectivity comes from percolation theory [7]. Percolation processes undergo a 

phase transition experiencing a switch from a state of local connectedness to one where the 

connections extend indefinitely. A peculiar quality of a phase transition is a sharp change of one or 

more physical properties of a system under a slight change of a system state variable. Such transition is 

defined critical when it is possible to observe a scale-invariant behaviour in the point of coexistence of 

the phases. The critical point denotes the value of system state variable at which such change occurs. 

The state variable is the occupation probability, defined in the following. 

Since in their seasonal time dynamics, soil moisture spatial patterns show the transition between 

spatially random to spatially connected appearances, Di Domenico et al. [3] have proposed a novel 

approach based on percolation theory for investigating whether the soil moisture spatio-temporal 

dynamics behave as a critical point phenomenon. Thus, the critical point denotes the switching from a 

state characterized by unorganized soil moisture structures to one where organized structures appear 

(i.e., the growth of variable source areas), being characterized by scale-invariant behaviour. 

In order to assess any organization in soil moisture patterns, it is necessary to process long series of 

high-resolution data over large areas. Apart from few experimental datasets, e.g., the Tarrawarra  

one [8], such condition prevents from the use of ground-based measurements. With respect to satellite 

remote sensing, nowadays the debate on the capability in capturing soil moisture is still open; 

moreover, spatial resolution and temporal sampling frequency work against each other in operational 

contexts. Soil moisture fields simulated from distributed hydrological models may be considered as a 

viable option, provided that they have the ability to reproduce observed spatial organization. 

In order to assess whether simulated and observed soil moisture fields present similar connectivity 

statistics, we investigate their characteristics by means of the algorithms proposed in [3], based on 

percolation theory and renormalization group method. 

The observed soil moisture fields used in this study come from the aircraft-based soil moisture 

imagery from the Southern Great Plains 1997 (SGP97) Hydrology Experiment [9]. The simulated soil 

moisture fields are obtained from GEOtop hydrologic model [2]. The case study takes place from June 
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27 to July 16 and encompasses wetting and drying cycles allowing for exploring the behaviour under 

transient conditions. Both the datasets are processed by means of the methodology introduced by  

Di Domenico et al. [3] for assessing the datasets’ capability in capturing the critical point behaviour of 

the soil moisture space-time dynamics. 

2. Data and Method of Analysis 

2.1. Study Region 

The study region is the Little Washita watershed located in the southwest Oklahoma in the Southern 

Great Plains region of the USA. The watershed, which has a drainage area of 602 km
2
 upstream of the 

USGS stream gauge #07327550 near Ninnekah, OK, has been operated as an experimental watershed 

by the US Department of Agriculture, Agricultural Research Service, since 1961 [10]. The topography is 

rolling, with minimum elevation of about 300 m and maximum elevation of about 500 m (Figure 1(a)). 

Soil textures range from fine sand to silty loam, with more than 75% of the watershed having SCS 

hydrologic soil group B (moderately well to well-drained soils). The more slowly drained soils lie in 

the western and eastern ends of the watershed, with the more sandy soils in the centre (Figure 1(b)). 

Soils are 0.5 to 1.5 m thick and are underlain by sedimentary rocks, primarily sandstone. The 

predominate land uses are grazing and winter wheat production (Figure 1(c)). Climate is considered 

sub-humid, with 760 mm of annual precipitation. We chose to study the Little Washita watershed 

because of its dense network of meteorological sites to force simulations and aircraft-based soil 

moisture imageries to evaluate model performance [11,12]. The study period spans from 27 June to 16 

July 1997, which encompasses two dry-down periods interrupted on 11 July by a convective storm 

with a basin averaged daily precipitation of 53 mm, an amount comparable to the average monthly 

rainfall in July of 56.4 mm [10]. 

Figure 1. Little Washita watershed properties: (a) Digital Elevation Model derived from 

30-m USGS NED digital elevation model dataset; (b) soil texture obtained from  

Mohanty et al. [16]; (c) land use obtained from Goddard Earth Sciences Data and 

Information Services Center. 
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Figure 1. Cont. 

 

2.2. Observations 

The Southern Great Plains 1997 Hydrology Experiment (SGP97) [9] was a cooperative effort 

between NASA, USDA, and several other government agencies and universities conducted with the 

primary goal of collecting a time series of spatial soil moisture data. The core of the experiment 

involved the deployment of the L-band Electronically Scanned Thinned Array Radiometer (ESTAR) 

for daily mapping of surface soil moisture. ESTAR is a synthetic aperture, passive microwave 

radiometer operating at a frequency of 1.413 GHz (21 cm). ESTAR was flown on a P-3B aircraft (at an 

altitude of 7.5 km) operated by the NASA Wallops Flight Facility. The P-3B flew over Little Washita 

at approximately 1600 UTC (1000 CST). The footprint of the raw brightness temperature data is 400 m, 

but the raw data were resampled to 800 m to derive soil moisture maps. Further details on the ESTAR 

instrument and the inversion of ESTAR brightness temperatures to volumetric soil moisture can be 

found in LeVine et al. [11], Jackson et al. [12], Jackson and LeVine [13], and Jackson et al. [14]. 

ESTAR-derived soil moisture estimates were found to be within 3% of estimates of volumetric soil 

moisture from SGP97 ground samples [14]. The ESTAR soil moisture observations [15] have been 

used in this study. The observations cover a large strip of approximately 50 km (West-East) by 250 km 

(North-South), with a pixel size of 800 m × 800 m. We selected a subset of this strip covering Little 

Washita. The observations represent volumetric soil moisture in absolute percent, i.e., percent of the 

800 m × 800 m × 5 cm volume of soil that is occupied by water. 
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2.3. Simulations 

GEOtop [2] is a process-oriented distributed hydrologic model that includes solution of the 

Richards’ equation in three dimensions for evolution of soil water content and pressure, coupled with 

one-dimensional simulation of soil heat transport. Spatial variability in the soil moisture distribution is 

introduced in the model by precipitation, as well as by different evapotranspiration rates, controlled by 

the vegetation properties (i.e., canopy fraction, root depth, canopy aerodynamic resistance) assigned 

following the land cover classification [14], and by the soil properties [16]. Further spatial structure is 

induced by the lateral surface and subsurface water distribution. GEOtop was set up and calibrated for 

Little Washita at the 200-m scale using observations made during SGP97 [2]. The model showed good 

skill in reproducing the pointwise energy and water balance and the catchment-scale runoff production 

during SGP97 [1,2]. The simulations represent relative soil moisture content. 

3. Approach Background 

Recently Di Domenico et al. [3] have proposed a novel approach dealing with soil moisture 

organization on the basis of concepts of percolation theory and renormalization group method. 

Soil moisture spatial patterns show a behaviour similar to phase transition processes when 

changing, in their seasonal time dynamics, from spatially random to spatially connected appearances as 

conditions become wetter. Such a phenomenon is driven by the onset of lateral redistribution, which 

provides the conditions for the growth of the contributing areas. Soil moisture dynamics may be 

considered as a system which undergoes a phase transition, consisting of the switch from an 

unorganized to an organized spatial pattern. Hence, the application of percolation theory to soil 

moisture fields in principle should be meaningful. 

The proposed methodology works in analogy to percolation theory [7], though some differences 

exist between a percolation system and a watershed. The more evident differences are due to the 

definition of the system boundaries and of the fluxes exchanged with other systems. A percolation 

system, for instance, can be represented by a rectangular lattice with two open edges; the exchange 

fluxes are represented by a fluid injected into a site on one edge and extracted somewhere on the other 

edge. For our purposes, despite a much more complicated geometry, a watershed can be seen in a 

similar way: the incoming fluxes, the rainfall, once subtracted of all those components not involved in 

soil water content redistribution mechanisms, such as evaporation, deep percolation and surface runoff, 

reach the river network, hence the outlet, as subsurface runoff. 

Another distinction between percolation systems and watersheds is that, in the former, the grid cells 

are randomly filled, whereas, in the latter, certain properties (e.g., soils, topography, meteorological 

patterns) can generate preferential filling of the soils. 

The model consists of four steps, namely Dichotomisation, Individuation of clusters, Scaling 

transformation, and Critical point assessment, which are further described below. By Dichotomisation 

the occupation probability or density probability of each map is computed as p = n/N [7], where N is 

the number of the sites in the map and n is the number of them that are “occupied”. By Individuation of 

clusters the percolation probability or cluster density of each map is computed as 
N

C
pPN )( , where C 

is the number of sites that belong to the “largest cluster” on the map. By Scaling transformation a new 
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occupation probability is computed as the result of the “coarse-graining” procedure, obtaining a new 

map. In the Critical point assessment phase, the value of the critical occupation probability pc  

is determined. 

3.1. Dichotomisation 

The first issue is related to the need to transform a soil moisture map into a binary map. This can be 

made considering the definition of preferred states given by Grayson et al. [17]. The switching 

mechanism between local and non-local control is due to the non-linearity of soil hydraulic 

conductivity (K). A decrease of soil water content () causes a decrease in conductivity and thus a 

reduction in lateral flow. 

The switching value has been set taking into account the K() relation; thus, one assigns zero  

(i.e., “dry”) to pixels below the switching value and one (i.e., “wet”) to pixels above that value. Once 

the one pixels (referred as “occupied” in the percolation theory) have been identified, their frequency 

in each map can be evaluated as p = n/N [7], where N is the number of the sites in the map and n is the 

number of them that are wet/occupied. The thresholding procedure has been applied to each soil 

moisture map once the switching value has been chosen.  

3.2. Individuation of Clusters 

Once the binary map has been generated, the easy up to down percolation scheme controlled by the 

hydraulic gradient has to be adapted to the river basin scheme. Thus, the second step consists of 

finding clusters of one pixels. 

This can be reached considering the role of the orography in controlling the flow pathways; these 

are represented on a grid scheme by the flow direction function: two contiguous wet pixels belong to 

the same cluster if a flow path between them exists. 

A recursive algorithm for searching one pixels by stepping from neighbour to neighbour in the 

whole map has been implemented. As each pixel has eight neighbours, it controls whether (i) at least a 

one pixel exists in the neighbourhood and (ii) it is along a possible flow path. This process labels 

pixels that satisfy both the previous conditions with a unique label, involving looping throughout the 

map. Whenever an unlabeled one pixel is encountered, this latter is labelled with a new label. Finally 

several clusters are identified. 

As discussed, until now the identification of the clusters is due to geometrical and physical 

considerations. The clusters can be interpreted as partial contributing areas which are responsible for 

the runoff generation. 

A further condition on the cluster aggregation has been modelled for representing the  

hillslope-channel system. As the time scale of the water flowing through a cluster, considered as an 

entity related to the sloping processes, is very large with respect to the time scale of the channel flow, 

it is worth considering all the clusters connected to the channel network as a whole cluster directly 

connected to the catchment’s outlet. 

In a catchment-like system there are no borders to connect, as in a percolation lattice [7]. In our 

methodology, we assumed that a percolation cluster always exists, being that of greatest size; hence, 

largest cluster assumes the meaning of percolation cluster. Then, the dimension of largest clusters is 
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evaluated (C) and normalized dividing by N, thus computing the percolation probability 
N

C
pPN )(  

for each map.  

3.3. Scaling Transformation 

The last task is related to the definition of the scaling method. The percolation cluster, or largest 

cluster in our case, is statistically self-similar [7], thus looking at it at a lower resolution the details will 

become blurred, but it will appear similar. The self-similarity leads to scale-invariant behaviour near 

the critical point, so the percolation cluster of the scaled map is qualitatively the same as the original 

map. The scaling does not change the occupation probability p, and therefore a system at pc maintains 

that condition even after the scaling transformation.  

The way the scaling is carried out defines a particular process named coarse-graining. We have 

chosen to work on three by three cells that will become a zero pixel in the scaled grid if there are no 

clusters or a one pixel if a cluster is found. The aggregation of the clusters in each group of three by 

three cells was carried out in the same way throughout the grid map. Finally, the occupation 

probability of the scaled map p1 can be computed. Hence, the result of the scaling procedure is a new 

map with a new concentration of one sites (occupation probability) p1, and more in general pn+1, which 

is a function of p0 (the subscript 0 denotes the original map occupation probability), and more in 

general pn. 

3.4. Critical Point Assessment 

The critical occupation probability pc can be determined from the PN(p) and pn+1(pn) curves, being 

the value of the occupation probability showing an abrupt discontinuity of PN(p) and the change of 

concavity at the intersection with the bisecting line of pn+1(pn). In Figure 2 the typical trend of PN(p) 

and pn+1(pn) for percolation processes within a square lattice are reported.  

In practice, it is possible to assess in an unambiguous way the critical occupation probability pc by 

selecting on the pn+1(pn) curve the value of pn that marks the range of all the points with pn > pc falling 

above the bisecting line (see Figure 2(b)). 

Prior to the analysis, the two datasets have been harmonized by transforming the absolute soil 

moisture values of ESTAR and the relative ones of GEOtop into soil suction (pF). Such representation 

allows to take into account the hydraulic behaviour of the water into the soil matrix and to avoid 

problems related to the differences in soil texture (i.e., the value of relative soil moisture at field 

capacity is different for each soil type, while the pF value is unique). 
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Figure 2. Relations between (a) the probability PN(p) of a site belonging to the largest 

cluster and the occupation probability p, and (b) the occupation probability of an  

(n+1)th-order cell and the occupation probability of an (n)th-order cell for the percolation 

process within a square lattice (see [7]). In (a) the solid curve is obtained for a lattice 

having a side of L = 450, the dash-dot curve for L = 200 and the dotted curve for L = 50; 

the vertical line indicates pc = 0.59275, as obtained by numerical simulation. In (b) the 

critical probability for the appearance of the first percolation cluster is pc = 0.618, as 

obtained by renormalization group method. 

(a)  (b)  

4. Results and Discussion 

We begin the analysis by examining the time series of spatial mean rainfall and soil suction for 

ESTAR observations and GEOtop simulations (Figure 3). We note that both ESTAR observations and 

GEOtop simulations respond to the temporal occurrence of rainfall events, with the spatial mean soil 

suction decreasing after storm events and increasing during dry periods, suggesting that both ESTAR 

observations and GEOtop simulations represent realistic patterns of temporal variability of soil 

moisture at the watershed-scale. The correlation between the time-series of spatial mean ESTAR 

observations and GEOtop simulations is 0.91, confirming agreement in temporal fluctuation 

behaviour. However, there are differences in the actual values between ESTAR observations and 

GEOtop simulations. From the limited dataset here available, the ESTAR data seem to react faster than 

the GEOtop ones, being wetter after rainfall events, then turning through steeper paths to dry 

conditions afterwards. This behaviour is typical of thin soil layers as compared to deeper layers. This 

suggests that perhaps ESTAR observations represent soil moisture for a shallower depth compared to 

the GEOtop simulations, which represent the soil moisture within the first 5 cm of the soil column. 

This needs to be further verified since the general assumption is that ESTAR observations represent 

the first 5 cm soil moisture [18,19]. Because of this and other possible inconsistencies between the data 

and the soil texture map used for the transformation, we also observe that the ESTAR pF sometimes 

goes below the wilting level. 
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Figure 3. Time series of watershed averaged soil suction and mean daily rain rate for the 

Little Washita watershed from June 27 to July 16, 1997. The soil moisture data are from 

ESTAR observations (squares) and GEOtop simulations (diamonds); the rain rate data are 

obtained from a dense network of rain gauges. 

 

In order to apply the methodology for assessing the critical behaviour of soil moisture dynamics, it 

is necessary to determine the two thresholds on soil suction and flow accumulation. The soil suction 

threshold provides the switching value to transform a soil moisture map into a binary map; the flow 

accumulation threshold provides the value to discriminate between hillslopes and channel networks. 

When defining the pF threshold, it is necessary to take into account the need for a thorough spacing of 

the samples in terms of occupation probability to explore all the possible critical values. Provided that 

the available data represent rather dry conditions, it has been necessary to select soil suction threshold 

values of 4 and 4.5 for ESTAR and GEOtop, respectively. In order to obtain a suitable delineation of 

the river network, we chose a flow accumulation threshold of 25.6 km
2
, which has been used for 

processing both the ESTAR and GEOtop data. 

Using the above soil suction and flow accumulation thresholds, we calculated the time series of 

percolation probability (PN(p0)), (Figure 4) and the occupation probability before (p0) and after (p1) the 

scaling procedure. The (p0, PN(p0)) scatterplots are reported in Figures 5(a) and 6(a), the (p0, p1) curves 

in Figures 5(b) and 6(b). In the curves related to the ESTAR data (Figure 5), five additional samples 

related to the period from the 18th to the 26th of June have been used. Although the number of 

available soil moisture maps is limited, the datasets encompass an initially-dry drydown period and an 

initially-wet drydown period, thus the whole spectrum of p and of PN(p) is covered. 
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Figure 4. Time series of occupation probability, percolation probability, and mean daily 

rain rate for the Little Washita watershed from June 27 to July 16, 1997. The data are 

related to ESTAR observations (squares) and GEOtop simulations (diamonds). 

 

The typical (p, PN(p)) relationship of a critical phenomenon shows very low values of percolation 

probability PN(p) below pc and a fast rise with a leap into 1 above pc. In a watershed the values of the 

percolation probability are always higher than zero for p < pc as its spatial organization lets the largest 

cluster be far from zero also in dry periods. For p > pc the values of percolation probability are located 

along a bisecting line, as in Di Domenico et al. [3]. Looking at Figure 5(a), the critical probability for 

the ESTAR dataset can be estimated as pc = 0.80. This value seems to be confirmed also by the 

intersection of the (p0, p1) curve and the bisecting line in Figure 5(b)). In the same way, the critical 

probability for the GEOtop dataset can be estimated as pc = 0.85 (Figure 6). 
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Figure 5. Relation between the percolation probability PN(p) and the occupation 

probability p (a), and occupation probability values before (p0) and after the scaling (p1) 

for the ESTAR data (b). 

(a)  (b)  

Figure 6. Relation between the percolation probability PN(p) and the occupation 

probability p (a), and occupation probability values before (p0) and after the scaling (p1) 

for the GEOtop data (b). 

 (a)  (b)  

By observing together Figures 4, 5, and 6, we notice that the points below pc indicate the drydown 

period following the initially dry period (June 29–July 3), while the initially-wet drydown period (July 

11–July 14) is located above pc in the upper-right part of the (p0, PN(p0)) and (p0, p1) plots. 

Di Domenico and Laguardia [20], working on a yearly time series of 20 sub-catchments of the Red 

and Arkansas rivers, found that the critical probability values range between 0.78 and 0.94. Provided 

that we are dealing with data related to a single catchment, the difference between the ESTAR and 

GEOtop critical point values should be considered as significant. By observing the maps obtained from 

the methodology (the samples of the 27th of June and of the 13th of July are reported in Figure 7), the 
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GEOtop patterns appear more fragmented than the ESTAR ones. In previous experiences we observed 

that the critical point value is partly determined by catchment morphology, which imposes a lower 

limit to the critical probability, deemed to be the optimal one for that morphological configuration, 

partly by other perturbing causes occurring at the hillslope scale, which could prevent the system to 

reach the optimal value. This could be the case of the GEOtop data: the model’s parameterization, e.g., 

land use, vegetation type, and soil maps, impose additional spatial structures to those related to the 

meteorological forcings and the hillslope morphology, driving to higher degrees of heterogeneity. 

Figure 7. Sample binary maps from the methodology proposed by Di Domenico et al. [3]. 

“Dry” stands for zero, the other classes for one, with the largest cluster identified as 

“Cluster”. (a) ESTAR, 27th of June; (b) GEOtop, 27th of June; (c) ESTAR, 13th of July; 

(d) GEOtop, 13th of July. 

(a)      (b) 

 

(c)      (d) 

 

Recently, Gebremichael et al. [21] compared the ESTAR observations and GEOtop simulations in 

Little Washita using continuity statistics. They found that ESTAR and GEOtop give contradictory 

results regarding the relationship between the variogram parameters which measure spatial 

organization and average soil water content: the drying process was seen to reduce the short-range 
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spatial correlation of the GEOtop simulations while increasing the long-range, while it increased the 

spatial correlation of the ESTAR observations. 

5. Conclusions 

GEOtop simulations and ESTAR observations of near-surface soil moisture fields have different 

degrees of organization in connectivity patterns. The critical probability value is 0.85 for GEOtop, but 

0.80 for ESTAR. The GEOtop patterns appear more fragmented, being more reluctant to organization, 

as confirmed by the higher value of critical probability. Such behaviour is probably inherited by the 

model’s parameterization: land use and soil classes impose additional spatial structures to those related 

to the meteorological forcings and the hillslope morphology, driving to higher degrees of 

heterogeneity. We conclude therefore that soil moisture fields simulated from hydrologic models, 

which have been calibrated solely on the basis of point observations and streamflow hydrographs at the 

outlet of the watershed, do not accurately reproduce the connectivity patterns observed in ESTAR. Our 

results are consistent with Gebremichael et al. [21] who reached at the same conclusion based on 

continuity patterns. Our results emphasize the need for examining connectivity statistics of spatial soil 

moisture fields in general, and critical point values in particular, as a more refined means of validating 

distributed hydrologic models, as compared to the traditional approach of just comparing the 

streamflow hydrographs. 
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