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Abstract: This study identifies areas with ecosystem perforceaanomalies (EPA) within
the Upper Colorado River Basin (UCRB) during 200832 using satellite observations,
climate data, and ecosystem models. The final ERfysTwith 250-m spatial resolution
were categorized as normal performance, underpegioce, and overperformance
(observed performance relative to weather-basedligiiens) at the 90% level of
confidence. The EPA maps were validated using ‘gueege of bare soil” ground
observations. The validation results at locatioith womparable site potential showed that
regions identified as persistently underperforn{iongerperforming) tended to have a higher
(lower) percentage of bare soil, suggesting thatpoeliminary EPA maps are reliable and
agree with ground-based observations. The 3-y&052007) persistent EPA map from
this study provides the first quantitative evaloatiof ecosystem performance anomalies
within the UCRB and will help the Bureau of Land mégement (BLM) identify
potentially degraded lands. Results from this sttaly be used as a prototype by BLM and
other land managers for making optimal land manag¢mecisions.

Keywords. satellite remote sensing; MODIS NDVI; ecosystemfgrenance; ecosystem
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1. Introduction

Ecosystem performance (EPi).e(, a surrogate approaching ecosystem productiptgvides
important information to decision makers for landmagement. Recently, satellite remote sensing has
become an essential tool for measuring and mongderge-area ecosystem performance because of
its wide coverage and high spatial and temporabluéiens [1,2]. The growing season integrated
Normalized Difference Vegetation Index (NDVI) dext/from satellite observations is used as a proxy
for vegetation dynamics and ecosystem performaBiéd. [Ecosystem performance is usually affected
by site condition (e.g., drainage, elevation, slapd aspect, soils, and surface geology) [6-9ate
changes (e.g., precipitation and surface temp&gflif-14], natural disturbances (e.g., wildfiresl a
floods) [12], and anthropogenic effects (e.g., lyeayrazing) [15-16]. Interpreting ecosystem
performance variation or ecological disturbanceamplex because of the influences of weather, site
potential, natural disasters and anthropogenictsfid7].

For moisture-limited rangelands, the interannuaiati@n in vegetation productivity is significantly
related to the local weather conditions, managenpeattices, and disturbances. Wyt al. [1]
developed an approach that separates weather-cenmeather-related annual ecosystem performance
(e.g., growing season NDVI) variations using satetlerived NDVI data, weather data, site potential
and ecological models. This approach allows ecstegand land managers to easily interpret and
identify nonweather-related ecosystem performanoemalies or ecological disturbance (such as
wildfires or heavy grazing). This method also pd®8 historical trend mapping in both weather- and
nonweather-related EP variations, which helps gthéebest management practices. Here, we define
the expected ecosystem performance (EEP) as thectexb growing season NDVI (GSN) in a
particular yeari(e., given the weather conditions of that year anthemabsence of disturbance). The
EEP accounts for variations in productivity basedveeather conditions; that is, favorable weather
years will have higher EEP than those with unfabler&onditions (e.g., too hot or too cold, too wet
too dry). The ecosystem performance anomaly (EBARfyear was derived based on the difference
between the actual EP and the weather-based erpEfteat a 90% level of confidence. Natural
disasters (e.g., wildfires, floods, windstorms) amihropogenic effects (e.g., heavy grazing) uguall
induce significant EPA. A persistent EPA is defined an EPA that is underperforming or
overperforming for multiple years (>2 years in teigdy).

The main objective of this study is to identify aqdantify areas with long-term persistent EPA
within the Upper Colorado River Basin (UCRB) bagsed satellite observations, climate data, and
ecosystem models. Our initial study time perio@0395-2007, which will provide a 3-year persistent
EPA map within the UCRB to the Bureau of Land Maragnt (BLM) and other land managers as a
prototype for making optimal land management densi Four vegetation cover types (grassland, big
sagebrush, pinyon juniper, and salt scrub) wemctsd from the study area for building EP modaeails. |
this paper, we focus on investigating and evalgdiire EPA results from the big sagebrush vegetation
cover as a prototype for this study. Rule-basedepwese regression modeling methods were applied to
predict the expected ecosystem performance [18-P2¢. derived EPA maps were categorized as
normal performance, underperformance, and overpedioce (observed performance relative to
weather-based predictions) at the 90% level ofidente. EPA maps from multiple years are used to
identify persistent negative anomalies and trerfdanomalies i(e., is ecosystem underperformance
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becoming more severe with time?), which are typiaihgnosed as degraded or degrading rangelands.
These preliminary EPA maps are validated usingcgmtage of bare soil” data (an important driver of
range conditions) obtained from the LANDFIRE fielatabase [23].

2. Study Area

The study area focuses on the Upper Colorado Fasm, which covers parts of Wyoming, Utah,
Colorado, Arizona, and New Mexico (Figure 1). Arsfggant portion of the UCRB is managed by the
BLM and the Bureau of Reclamation. More than 50%hefUCRB is covered by scrub and shrub land
(e.g., pinion juniper, big sagebrush, and salt lIscriviore than 20% of this region is covered by
evergreen forest, and approximately 10% is gradsl8abstantial portions of the UCRB are arid or
semiarid systems where vegetation production istcamed by moisture availability. The land cover
types [24] and the study area (within the blueinajlare shown in Figure 1.

Figure 1. Study area and land cover type map.
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3. Methodology and Data

Our methodology was based on a previous successhgdystem performance study [1] and is
summarized in a flowchart (Figure 2).
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Figure 2. Flowchart for mapping ecosystem performance anesiér land management
using satellite observations, climate data, andogomal models.
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The EPA calculation, evaluation, and validationalved the following six steps:

1. Calculate the actual ecosystem performance for 280%/ using satellite-derived GSN from
temporally smoothed 7-day 250-m eMODIS (expeditedoditate Resolution Imaging
Spectroradiometer) NDVI [25-27].

2. Estimate ecosystem performance site potential fer WCRB using 3-year (2005-2007)
averaged GSN, 20-year (1971-2000) climate data, sted condition data (e.g., elevation and
topographic conditions, Soil Survey Geographic (B&D) total site production data) [1,5,8,28].

3. Compute the yearly expected EP (2005-2007) foldB&B using EP site potential, weather
data, and rule-based piecewise regression modeiatigods.

4. Determine ecosystem performance anomalies (therdifte between the actual EP and the
expected EP) for 2005-2007The final EPA maps are categorized as overperfoceanormal
performance, and underperformance according t8@be level of confidence interval.

5. Map areas that have a 3-year persistent negatidef@Rhe UCRB.

6. Evaluate and validate the 3-year EPA maps usingrgt@bservationd.g., percentage of bare
soil obtained from multiple research projects).

The USGS 30-m LANDFIRE Existing Vegetation Typealg9] was used to identify big sagebrush
within the UCRB.
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The site potential map was developed at a 250-miutsn to account for the important effects of
elevation, slope, aspect [8,28], and growing sedsogth. Rule-based piecewise regression modeling
methods (using Cubist software [30]) were apple@dtimate site potential.€., long-term rangeland
productivity). Data used for training rule-basedeqgaeiwise regression modeling for calculating
long-term site potential (Figure 2) included tatahge production derived from the U.S. Departmént o
Agriculture (USDA) Natural Resources Conservatienvi&es (NRCS) SSURGO Database; USGS 30-
m compound topographic index (CTI) and digital elésn model (DEM)LANDFIRE environmental
site potential data derived from USGS national LANIRE project [29]; Major Land Resource Areas
(MLRA) data obtained from the USDA NRCS; north amilith aspect and slope maps calculated from
the USGS DEM map; long-term (1971-2000) averagesgtipitation, maximum temperature, and
minimum temperature derived from the PRISM (Paramelevation Regressions on Independent
Slopes Model) database with 4-km spatial resolufiRiRISM Climate Group, Oregon State University,
http://www.prismclimate.org); and 3-year averagesiNGCcalculated from 2005-2007 eMODIS NDVI
data. The 4-km spatial resolution PRISM data amed3®-m data (e.g., CTl, DEM) were resampled to
250-m resolution using bilinear interpolation (d@waling) or spatial averaging (upscaling) to match
the 250-m eMODIS NDVI data.

The expected EP was calculated using a piecewiggession model based on the site potential and
yearly seasonal climate variables. Data used fonitrg rule-based piecewise regression models to
calculate the expected EP (Figure 2) were 2004—-Z0RISM climate datasets (precipitation and
temperature) for four seasons (Winter, Novemberrkael; Spring, March; Summer, April-June; Fall,
July—October); long-term ecosystem site potentehdand 2005-2007 GSN data obtained from the
weekly 250-m eMODIS NDVI time-series data.

4. Resultsand Discussion
4.1. Ecosystem Performance Ste Potential, Expected Ecosystem Performance, and Actual EP Maps

Site potential represents the long-term EP thatames out climatic variations but accounts for
spatial variation in long-term EP associated with sonditions such as drainage, elevation, slogk a
aspect [8,28], soils, domain clusters (with simtlgwographic and climate condition) [9], and suefac
geology. Site potential does not include disturleaeffects (e.g., wildfires, floods, and overgrazing
and will generally reflect moisture gradients aremperature gradients in the UCRB. Highly
productive sites will have higher ecosystem perforoe measures than sites with poorer soils, steeper
slopes, or other conditions not conducive to vegetagrowth.

Figure 3a is the site potential map for big sagerin the UCRB across multiple years. Different
soil, topography, and climate conditions produdteént site potentiald.g., rangeland productivities)
for big sagebrush as shown in Figure 3a. The nortpart of the study area (southwestern part of
Wyoming in brown) has a very low site potentialn@aland productivity) because of the unfavorable
vegetation growth condition (e.qg., soil type, hajavation, and aspect). On the other hand, a vigty h
rangeland productivity region is present in Colargdreen-blue region) because of favorable site
conditions (e.g., soil, topography).
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Figure 3. Examples of site potential map, EEP map, and tteah EP map for big
sagebrush in the UCRBa) Modeled big sagebrush site potential m@y);2006 EEP map
for big sagebrush() 2006 actual EP map.
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Figure 3b,c depicts the weather-based EP and thald€P maps for 2006 for big sagebrush in the
study area. We found that many parts of the stuely bad higher productivity in 2006 than the normal
site productivitiesi(e., site potential) in both the EEP map and theadflP map. Desirable weather
conditions during 2006 (e.g., suitable temperatung humidity for vegetation) led to high production

To illustrate the relationship between the EEP tedactual EP, the scatterplot between EEP and
the actual EP for those pixels randomly selectedhfthe big sagebrush area within the UCRB for
2005-2007 is shown in Figure 4. The regression ilm&igure 4 is used to (1) determine the 90%
confidence intervals, which helps determine thenzalyg, and (2) correct for minor model biases
(i.e., systematic error of the model). We assume that mwiothe model error lies within the confidence
intervals and that the variation of the residuagdmd the confidence intervals represents ecosystem
performance anomaly information. In Figure 4, grpemts represent overperformance (areas are more
productive than expected from weather) and aretgrahan the 90% confidence limit above the
regression line; red points represent underperfocedareas are less productive than expected from
weather) and are greater than the 90% confidenaebelow the regression line.
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Figure 4. Expected ecosystem performance compared with atieial ecosystem
performance for 2005-2007. Pixels were randomlgctetl from big sagebrush areas in the
UCRB. Green points represent overperformance aadyeater than the 90% confidence
limit above the regression line. Red points represaderperformance and are greater than
the 90% confidence limit below the regression line.

140
R2=0.94
120
100 Good condition P
& |
- 80
© I
3
S 60
< over-performance
40 1 normal
1 » under-performance
20 ——
<. Disturbance
7 e .I I I 1 1 "
0 ary wet
0 20 40 60 80 100 120

Expected EP

4.2. Ecosystem Performance Anomaly Maps and Persistent EPA Maps

Annual ecosystem performance anomaly maps were wigahpsing the difference between EP and
EEPR.. EER is the bias-corrected EEP, which is adjusted leyrégression coefficients to account for
any minor model biases for each year. Figure 5 shitwr 2005-2007 EPA maps for big sagebrush in
the UCRB. Yellow-green areas in Figure 5 repressmtrperformance and are greater than the 90%
confidence limit above the regression line. Redk@reas represent underperformance and are greater
than the 90% confidence limit below the regresdina. The underperforming and overperforming
patterns of each year are clearly shown in FigureTtiese annual EPA maps can be used to
dynamically monitor and assess the rangeland donditvithin the UCRB.

Figure 6 shows the 3-year (2005-2007) ecosystelfiorpgnce anomaly map for big sagebrush.
Areas identified as the 3-year persistent undeop@dince for big sagebrush within the UCRB (dark
red in Figure 6) are mainly located in the southemspart of Wyoming and the northwestern part of
Colorado. This persistent EPA map will be used biYiBor other land managers to identify potentially
degraded rangelands.
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Figure 5. Ecosystem performance anomaly maps for big sagkebareas in the UCRB.
Yellow-green areas represent overperformance aadj@ater than the 90% confidence
limit above the regression line. Red-pink arease®gnt underperformance and are greater
than the 90% confidence limit below the regressioa

Figure 6. 3-year (2005-2007) ecosystem performance anomabyfar big sagebrush in the UCRB.
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4.3. EPA Map Validation and Applications

Our EPA maps were validated using “percentage o bail” ground observations from a selected
subset of the LANDFIRE field database, enablingtagelate anomalies to range conditions. A
regression line is established for the normal perfiog pixels to establish a general relationship
between site potential and percentage of bare dgrdiigure 7). The validation results for big
sagebrush at comparable site potential show tlgabne identified as persistently underperforming
(pink) tended to have a lower range condition (Bigpercentage of bare ground) than normally
expected from site potential; regions identifiecbasrperforming (green) tended to have a highegegan
condition (lower percentage of bare ground). Threselts demonstrate that our EPA maps agree with
ground-based observations (percentage of bare grisuan important driver of range condition) and
provide reliable information for making land manamgmst decisions (e.g., grazing control).

Figure 7. Ecosystem performance anomaly (EPA) validationkigr sage in the UCRB
using “percentage of bare soil” ground observativosy multiple research projects which
represented smaller footprints than 250 m. Regiodsntified as persistently
underperforming (pink) tended to have a higher @aiage of bare soil, and regions
identified as overperforming (green) tended to havewer percentage of bare soil. The
regression is based only on observations withirctiméidence interval (normal) of Figure 4.

90
normal
80 a = under ]
- = over
70 & _
. — Poly. (normal)

60 T

30 \

20

Percentage of bare soil (%)

10

0 T T T T T
35 45 55 65 75 85

Site potential

The validated 3-year persistent EPA map from thigdys will provide the first quantitative
evaluation of ecosystem performance anomalies nvithe UCRB during 2005-2007 using satellite
observations, climate data, and ecosystem modékssel EP and EPA maps will be posted on the
USGS Earth Resources Observation and SciefteBOS) Center Land Cover Application (LCA) Web
page for public access. BLM and other land managkns to use these maps to make optimal land
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management decisions and to minimize economic aatbgical losses associated with degraded
rangelands. The EP and EPA maps described in iy £an also be used for other applications
related to land surface monitoring and assessneamt drought assessment, rangelaotitoring, and
assessments of ecological system and land covagebp

5. Conclusions and Future Work

The first 3-year (2005-2007) persistent EPA maphiwithe Upper Colorado River Basin was
generated based on the satellite observationsatdindata, and ecosystem models in this initial
investigation. Areas in this 3-year EPA map weretegarized as normal performance,
underperformance, and overperformance. The EPAwaepvalidated using “percentage of bare soil”
ground observations. The validation results at cmaple site potential showed that regions idertifie
as persistently underperforming tended to havenerdagange condition (a higher percentage of bare
ground) than normally expected from site poten#al] regions identified as overperforming tended to
have a higher range condition (a lower percentdgeace ground) than the normal condition. The
validation results suggest that our preliminary ERAps agree with ground-based observations and
will provide reliable information to BLM and otheiand managers for making optimal land
management decisions.

Future work for this study includes generating #a+y(2001-2010) EPA maps within the UCRB
using 10-year satellite observations, climate data] ecosystem models, and identifying long-term
(i.e,, 10-year) persistent EPA areas and trends as ageNveather-based variations in vegetation
production. All these products will place this stud a historical and future climate context withire
UCRB. Investigations of ecosystem performance afiemafor other vegetation cover types
(e.g., black sagebrush, mixed desert shrub) arnd @lata collections (e.g., total range production,
presence of species and soil crust) for furthetuaw@mn and validation of EPA maps are also planned
for the future.
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