
Remote Sens. 2010, 2, 1575-1588; doi:10.3390/rs2061575 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

On the Exportability of Robust Satellite Techniques (RST) for 

Active Volcano Monitoring  

Francesco Marchese 
1,

*, Maurizio Ciampa 
2
, Carolina Filizzola 

1
, Teodosio Lacava 

1
,  

Giuseppe Mazzeo 
2
, Nicola Pergola 

1,2
 and Valerio Tramutoli 

1,2
 

1
 Institute of Methodologies for Environmental Analysis – CNR, Contrada S.Loja 85050 Tito Scalo 

(Pz), Italy; E-Mails: filizzola@imaa.cnr.it (C.F.); lacava@imaa.cnr.it (T.L.);  

pergola@imaa.cnr.it (N.P.) 
2
 Department of Engineering and Physic of the Environment – University of Basilicata, Via 

dell’Ateneo Lucano 10, 85100, Potenza, Italy; E-Mails: m_ciampa@libero.it (M.C.); 

mazzeo@imaa.cnr.it (G.M.); valerio.tramutoli@unibas.it (V.T.) 

* Author to whom correspondence should be addressed; E-Mail: fmarchese@imaa.cnr.it;  

Tel.: +39-097-120-5138; Fax: +39-097-120-5205. 

Received: 10 April 2010; in revised form: 27 May 2010 / Accepted: 8 June 2010 /  

Published: 17 June 2010 

 

Abstract: Satellite remote sensing has increasingly become a crucial tool for volcanic 

activity monitoring thanks to continuous observations at global scale, provided with 

different spatial/spectral/temporal resolutions, on the base of specific satellite platforms, 

and at relatively low costs. Among the satellite techniques developed for volcanic activity 

monitoring, the RST (Robust Satellite Techniques) approach has shown high performances 

in detecting hot spots as well as in automatically identifying ash plumes, effectively 

discriminating them from weather clouds. This method, based on an extensive,  

multi-temporal analysis of long-term time series of homogeneous satellite records, has 

recently been implemented on EOS-MODIS and MSG-SEVIRI data for which further 

performance improvements are expected. These satellite systems, in fact, offer improved 

spectral and/or temporal resolutions. In this paper, some preliminarily results of these 

analyses are presented, both regarding hot spot identification and ash cloud detection and 

tracking. The potential of RST, to be used within early warning systems devoted to 

volcanic hazard monitoring and mitigation, will also be discussed. 
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1. Introduction  

There are several active volcanoes in the world, located in remote areas, where ground-based or 

traditional monitoring systems are generally difficult to be employed. Especially (but not exclusively) for 

these volcanoes, satellite remote sensing may represent an opportunity, to better understand eruptive 

dynamics, to timely observe changes in the earth’s surface indicating impending events, and to monitor 

large scale and rapidly evolving phenomena, like ash plume injections into the atmosphere [1]. 

Several satellite techniques have been proposed until now to identify and track volcanic ash  

plumes [e.g., 2-11], as well as to detect and monitor volcanic hot spots [e.g., 12-23], using data 

provided by both polar and geostationary satellites. An original multi-temporal approach, named 

RST—Robust Satellite Technique [24], already successfully used to study both volcanic 

phenomena [9-11,25-28], has been implemented in an automatic system developed in IMAA-DIFA 

laboratories (Institute of Methodologies for Environmental Analysis-Department of Engineering and 

Physics of the Environment), to monitor Italian volcanoes in near real time. This approach, originally 

designed and developed for NOAA-AVHRR (National Oceanic and Atmospheric  

Administration-Advanced Very High Resolution Radiometer) records, has recently been updated in 

order to facilitate exportation even to EOS-MODIS (Earth Observing System-Moderate Resolution 

Imaging Spectroradiometer) and MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced 

Visible and Infra-Red Imager) data, for which further improvements of RST performances are 

expected. MODIS offers, in fact, a better radiometric resolution than AVHRR and an improved 

spectral resolution, with two channels in MIR spectral region, one of them assuring an improved 

dynamic range and a higher saturation level (more than 500 K, compared to an average of about 320 K 

saturation brightness temperature for the AVHRR sensors in MIR band), particularly suitable to 

identify high temperature surfaces. Besides, SEVIRI, providing data with a 15 minutes temporal 

resolution, the highest currently available, offers a great opportunity to monitor volcanic phenomena in 

real time, in a quasi-continuous way. Moreover, thanks to a spectral channel in SO2 absorption band 

(around 8.6 µm), both MODIS and SEVIRI should guarantee an improvement of RST performances in 

volcanic cloud detection and tracking.  

In this paper, some preliminarily results of RST implementation on data provided by these satellite 

sensors are presented, discussing RST potential within a possible early warning system devoted to 

volcanic hazard monitoring and mitigation. 

2. RST Approach 

RST is a multi-temporal approach of data analysis that considers every anomaly in space-time domain 

as a deviation from an “unperturbed” state, specific for each place and time of observation [24].  

Long-term historical series of satellite records are processed in multi-temporal sequence, stacked 

according to homogeneity criteria in order to reconstruct the “normal” behavior of the signal, which is 

required to compute a local variation index, named ALICE (Absolute Llocal Index of Change of the 



Remote Sens. 2010, 2                            

 

 

1577

Environment), and used to automatically identify perturbing events. Such an index, defined at pixel 

level, is expressed in its general formulation as: 

In Equation (1), V(x,y,t) represents the satellite signal measured at time t for each pixel (x,y), while 

µv(x,y) and σv(x,y) respectively represent the temporal mean (i.e., expected value) and standard 

deviation (i.e., natural variability) of the same signal, determined processing long time series of 

homogenous satellite records, stratified according to some homogeneity criteria (e.g., same spectral 

channel/s, same month and acquisition time) [24]. These spectral reference fields are calculated after 

the application of a specific cloud detection scheme [29,30], and after the computation of a kσ clipping 

filter, used at pixel level in order to automatically remove possible signal outliers related to residual 

spurious effects [24]. 

Figure 1. Schematic sketch of RST approach. On the left, a generic data-set of satellite 

imagery co-located in the space-time domain. On the right, a time series of a generic signal 

(in green) measured for a specific location (x’,y’) is plotted (top panel); the derived 

expected behavior (e.g., temporal mean, red solid line), together with statistical confidence 

levels (e.g., temporal standard deviations, red dotted lines), are reported (bottom panel). 

 

The ⊗V(x,y,t) index gives an indication of how much the satellite signal at hand deviates from its 

normal behavior. This deviation is then weighted by a factor (i.e., σv(x,y)) representing a measure of 

the natural fluctuation of the signal, historically observed in the analyzed time series, which depends on 

both natural and observational noise contributions.  
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In practice, anomaly detection is intrinsically more difficult in areas (and periods) where natural 

fluctuations are normally high, whereas, in correspondence of very stable and clean series, even a slight 

deviation may be promptly identified and flagged as an anomaly. In general, the higher (in modulus) 

the index value, the stronger the intensity of detected anomaly.  

This general scheme of data analysis, which may be used to study several natural and environmental 

hazards (e.g., earthquakes, oil spills, floods, forest fires, etc.) producing variations in spectral signals 

measured from space, in the specific case of volcanic activity monitoring has already been applied to 

detect hot spots as well as to identify volcanic ash plumes, by using different spectral signatures 

(observed in single channel and/or in band combination).  

In the following sections a brief description of these specific applications is reported.  

2.1. RST Approach for Thermal Activity Monitoring 

The RST approach for volcanic hot spot detection and monitoring has widely been described in 

several papers [e.g., 19,20].  

Briefly, the satellite signal acquired in MIR spectral band, at around 3.5–4µm, the most sensitive to 

high temperature surfaces, is processed in the space-time domain, within the multi-temporal approach 

described above. The specific ALICE index is then computed as:  

where TMIR(x,y,t) is the signal measured in the MIR spectral channel (in terms of brightness 

temperature) at place (x,y) and time t (i.e., t is the acquisition time of the image at hand to be analyzed), 

while µMIR(x,y) and σMIR(x,y) respectively represent the temporal mean and the temporal standard 

deviation of the signal, derived for the same place (x,y) under similar observational conditions,  

following the above mentioned RST prescriptions.  

The ⊗MIR(x,y,t) index is intrinsically not affected by site effects (i.e., variations of the surface 

emissivity, high reflectivity of exposed soils, natural warming of volcanic rocks, etc.) that may 

represent a possible cause of false identification in automatic detection of volcanic hot spots from 

space. These effects, in fact, generally occur in the same places and under similar observational 

conditions (e.g., around noon and in summer on exposed soils), are considered as “normal” by RST 

and do not produce anomalous values of the ALICE index (because, for example, of high values of 

µMIR(x,y)) and, consequently, do not generate false identifications.  

As previously reported, the ⊗MIR(x,y,t) index gives an indication of how much the TMIR(x,y,t) signal, 

measured at time t, deviates from its normal behavior. Therefore, high values of the ⊗MIR(x,y,t) index 

are expected in the presence of thermal features at high temperature and/or of large extent. 

Different critical levels of the ⊗MIR(x,y,t) index, provided they are statistically significant, are also 

computed to better identify different intensity hot spots, with low values of this index more suitable to 

detect weak anomalous thermal signals, like the ones that sometimes occur before the beginning of 

new eruptive events [20,25]. RST approach has demonstrated in several test cases to perform well, 

although some residual problems and limitations still remain that need to be fully assessed and 

quantified. A specific study, still in progress at time of writing, aims to better quantify RST 

),(

),(),,(
),,(

yx

yxtyxT
tyx

MIR

MIRMIR
MIR

σ

µ−
=⊗  (2)  



Remote Sens. 2010, 2                            

 

 

1579

performances both in terms of reliability and sensitivity in detecting volcanic hot spots. In particular, a 

long term time domain analysis of satellite records is under investigation to validate the daily hot spot 

products with available ground true. Preliminary results seem to confirm that residual RST 

inaccuracies arise from cloud edges in daytime data and/or from natural signal fluctuation effects.  

In Section 3, some preliminary results of RST implementation on MSG-SEVIRI data, achieved 

analyzing the eruptive Mt. Etna eruptive events of February 2005, will be shown and discussed, 

evaluating advantages expected by the use of geostationary satellite images. 

2.2. RST Approach for Ash Plume Detection and Tracking 

RST approach was also proposed and applied for volcanic ash cloud detection, demonstrating to be 

capable of overcoming some limits of traditional, fixed threshold based, methods [11,12]. 

The method strongly relies on the traditional ash detection scheme formerly proposed by Prata [2]. 

Main differences are: (i) it considers relative rather than absolute signals; (ii) a three-channel scheme 

(adding signal measured in MIR band) is implemented. Briefly, taking into account the inverse 

behavior of volcanic ash particles at spectral wavelengths of 11 µm and 12 µm in comparison with 

atmospheric water vapor, due to acid component and ash particles, and considering that even the 

spectral difference of the signal measured at around 3.5 µm and 11 µm may provide useful indications 

about ash plumes [5,6,9,10], two local variation indexes are computed as: 

where T3(x,y,t), T11(x,y,t) and T12(x,y,t) respectively represent the brightness temperatures measured at 

around 3.5 µm, 11 µm and 12 µm, µT11-T12(x,y,t) and µT3-T11(x,y,t) are the temporal means, and  

σT11-T12(x,y,t) and σT3-T11(x,y,t) the temporal standard deviations, of the correspondent temperature 

differences determined processing long-term time series of homogeneous satellite records, according to 

RST prescriptions [11,12].  

Negative values of the ⊗T11-T12(x,y,t) index are expected in the presence of volcanic ash clouds, 

while positive values of the ⊗T3-T11(x,y,t) index, with different intensity depending on the base of 

observational conditions, should characterize the same volcanic features [9,10].  

By combining the above mentioned local variation indexes, if different critical levels of the signal 

are analyzed, volcanic ash clouds may be correctly discriminated from meteorological ones, and 

automatically identified in their correct shape and extent [10].  

In Section 4, some preliminary results of RST implementation on EOS-MODIS data for ash cloud 

detection, obtained studying the Mt. Etna eruptive events of October 2002, will be shown  

and discussed. 

3. Hot Spot Detection Using SEVIRI Data 
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Aiming at “continuous” satellite monitoring, rapid alert and early warning capabilities, RST has 

recently been implemented on MSG-SEVIRI data, providing information from the best observational 

frequency presently available (i.e., 15 minutes). SEVIRI, like GOES that was already used to determine 

eruption onset with fairly good results [31], offers a great opportunity to follow space time evolution of 

volcanic phenomena, thanks to the above mentioned unique temporal resolution. Furthermore, the 

natural collocation of satellite images, the invariance of view angles among different images together 

with the constant and precise acquisition times from day to day, all factors reducing the observational 

noise, should further increase RST sensitivity to subtle hot spots [32].  

In this section, the results achieved by using RST approach on MSG-SEVIRI records, acquired on 

17 February 2005, during an eruption in progress at Mt. Etna, are reported. This study was carried out 

in order to verify RST/SEVIRI system capability to automatically detect abrupt changes in thermal 

volcanic activity. Moreover, the assessment of RST performances, even with a scarcely populated 

series of historical satellite records, was another objective of this work. Only two years of satellite 

records were, in fact, available at the time of the event in order to construct the spectral reference field 

of temporal mean and standard deviation, (i.e., SEVIRI operational since 2003).  

The RST approach was implemented on SEVIRI data computing the ⊗MIR(x,y,t) index, for the first 

time, on 96 different time slots (24 hours at 15 minute steps), and analyzing its temporal trend for the 

pixels covering the volcano edifice of Mt. Etna.  

As can be seen from Figure 2, where the trend of the ⊗MIR(x,y,t) index from 08:00 GMT to 19:00 

GMT is reported for a pixel of the volcano edifice, starting from quite a stationary condition (with 

⊗MIR(x,y,t) ≤ 2) recorded until 15:15 GMT, a sudden increase of ⊗MIR(x,y,t) index (⊗MIR(x,y,t) ≅ 4) was 

observed, this was significant since it occurred between two SEVIRI acquisitions rather than over a 

longer time period of an hour. Although, in this case, the reference fields are likely to suffer from a 

poor data set population, this value represents a statistically significant anomaly that, in case of a 

normal distribution, corresponds to a probability of occurrence lower than 0.1%.  

Therefore, this sudden increase in thermal signal indicated the occurrence of a perturbing event at 

Mt. Etna on the afternoon of 17 February 2005. The ⊗MIR(x,y,t) index, in fact, continued to 

significantly increase at 15:45 GMT, up to a very anomalous value (⊗MIR(x,y,t) ≅ 13), and still 

maintained such high values even over the following few hours, confirming the presence of a forcing 

thermal source at very high temperature at the surface. Such an abrupt increase, from ⊗MIR(x,y,t) ≅ 4 up 

to ⊗MIR(x,y,t) ≅ 13 represented the most intense variation observed in the volcanic area. Even 

surrounding pixels, in fact, (like the ones that were characterized by a different thermal activity in 

progress at volcano), showed a thermal variation, measured by the ALICE index, but with a relative 

intensity less significant from a statistical point of view.  
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Figure 2. 15-minute temporal variation of the ⊗MIR(x,y,t) index for a pixel including an 

eruptive vent that emitted a lava flow on 17 February 2005. On the top, two magnifications 

of the SEVIRI products of 15:30 (left) and 15:45 (right) are reported. On the bottom, the 

zooms of the volcanic area, and plot of temporal fluctuations of ⊗MIR(x,y,t), with black 

arrows indicating pixel for which time series was computed. 
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As can be seen from the figure, the peak in ⊗MIR(x,y,t) index value was reached at 18:00 GMT 

(⊗MIR(x,y,t) > 20). From 18:00 GMT, a reduction of ⊗MIR(x,y,t) index value was observed because of a 

clouds passage that progressively contaminated the Region of Interest, as shown in Figure 3. The 

observation of an abrupt increase in thermal signal at Mt. Etna on 17 February 2005 was in agreement 

with a newly documented lava effusion that took place from an eruptive fracture which opened on 10 

September 2004 at 2,620 m altitude. The ground based observations, carried out the day after at 

volcano, confirmed, in fact, the presence of a new lava flow that reached 1,950 m, moving towards 

Serra Giannicola Grande [32]. This retrospective analysis of high-temporal resolution data shows the 

potential of the ⊗MIR(x,y,t) index in timely detecting increases in thermal signal occurring at beginning 

of new eruptive events.  

Figure 3. 15-minute temporal sequence of SEVIRI thermal infrared images (Ch9) of 17 

February 2005 acquired between 18:00 GMT and 19:00 GMT showing a progressive cloud 

cover (dark pixels in the scenes indicate clouds) of the Mt. Etna area (green box). 
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Afterwards, other similar results were obtained by the same detection scheme even in different 

geographic areas and using longer time series of historical satellite records [27,33].  
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These studies seem to show that the higher signal-to-noise ratio offered by SEVIRI in comparison 

with polar satellite sensors, related to natural collocation of the images and to the invariance of 

acquisition time slots, may offer a wider range of critical levels of the signal more suitable to better 

discriminate volcanic hot spots, and to identify the beginning of new eruptive events. 

4. Ash Plume Detection Using MODIS Data 

MODIS sensor offers a high radiometric resolution (12 bit) in 36 spectral channels, ranging in 

wavelength 0.4–14.4µm, with a spatial resolution up to 250 m for visible bands (2 channels at 250 m, 5 

at 500 m, and the remaining 29 channels at 1 km).  

Some of these channels, being centered in MIR and TIR spectral bands are particularly suitable to 

detect hot spots, as well as to identify and track volcanic ash plumes. In this section, some 

preliminarily results of RST implementation on this sensor data for ash cloud detection and tracking 

are reported.  

Starting from 27 October 2002 a new flank eruption took place at Mt. Etna emitting a significant 

amount of lava. An impressive ash cloud was also generated, forcing the closure of Fontana Rossa 

Catania’s International airport for several days [32].  

Such an eruption was monitored in near real time by RST, previously named RAT (Robust AVHRR 

Technique), processing NOAA-AVHRR records to detect hot spots [20] as well as to identify and track 

volcanic ash plumes [10].  

In this work, the RAT approach for ash cloud detection and tracking is, for the first time, applied to 

MODIS data (moving from RAT to RST), in order to confirm its intrinsic exportability to whatever 

satellite system, saving its performances. If confirmed, in fact, RST independence on specific satellite 

sensors and platforms, will allow for its implementation within an integrated, multi-sensor approach 

that will guarantee improved monitoring capabilities.  

A large data-set of satellite images was processed with this aim in mind. More than 1,000 MODIS 

data, covering the period 2000–2008, were analyzed following RST prescriptions. In particular, data 

were stratified in two data-sets, one including all the diurnal pass of Terra and Aqua satellites over the 

Mt. Etna Region, and the other collecting all the night-time data, both used to generate the spectral 

reference fields required for the local variation indexes computation, as described in paragraph 2.2. 

In Figure 4, a time sequence of MODIS ash products, derived over the Region of Interest (centered 

over Mt. Etna area) for 28 October 2002 at different time passes, are reported. 

These products demonstrate RST capabilities in detecting space-time evolution of volcanic ash 

clouds also when applied to MODIS data and even in different observational conditions (i.e., 

processing both night- and day-time satellite records). It should be noted that these results are in very 

good agreement with the ones formerly achieved by using NOAA-AVHRR records, which confirmed 

the improvement offered by RAT/RST in comparison with traditional split window products in 

effectively discriminating ash from weather clouds with a good accuracy [10].  

In order to better appreciate RST performances in correctly detecting and discriminating volcanic 

ash plumes from meteorological clouds, the satellite overpass of 30 October acquired at 12:05 GMT 

has been reported in Figure 5. This figure (RGB image) shows that even in the presence of conspicuous 

and diffuse meteorological clouds over the scene, the volcanic ash cloud was successfully identified 
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without any misdetection. These results suggest that the integration of AVHRR and MODIS records, 

within the proposed detection scheme, is actually feasible in order to increase the frequency of 

observation in active volcanic areas, improving temporal sampling for a more effective satellite 

monitoring of volcanic phenomena.  

Figure 4. Temporal sequence of RTS ash products (grey pixels) generated processing all 

the MODIS records acquired on 28 October 2002 over Mt. Etna area (the white triangle in 

the figure). Red lines represent coastlines. 

 

These results encourage the full implementation of RST on different satellite sensors, like SEVIRI, 

in view of an actual implementation of such a technique within a possible operational scenario. 
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Figure 5. EOS-MODIS RGB image of 30 October 2002 at 12:05 GMT. The ash plume 

detected by RST is marked in red. 
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5. Conclusions  

In this paper, the RST—Robust Satellite Technique exportability on different space systems  

(EOS-MODIS and MSG-SEVIRI) and its potential in detecting and monitoring volcanic hot spots, as 

well as in identifying and tracking volcanic ash plumes, has been analyzed. 

As shown in previous papers, SEVIRI, thanks to natural collocation of satellite images and the 

native stability of view-angles (peculiar to geostationary satellites), reducing the observational noise, 

may further increase RST sensitivity in detecting subtle hot spots. Moreover, its temporal resolution of 

15 minutes (the best currently available) offers a unique opportunity to promptly identify abrupt 

changes in thermal signals possibly related to the beginning of new eruptive events.  

In this work, the first promptly and timely hot spot detection performed using RST on SEVIRI data 

has been reported and discussed. Analyzing the temporal trend of ⊗MIR(x,y,t) index computed at 96 

different time slots, over Mt. Etna area, an abrupt increase in thermal signal was clearly observed in the 

early afternoon of 17 February 2005, corresponding with a new lava effusion from an eruptive fissure 

opened since September 2004. The unique temporal resolution, together with the high sensitivity 

offered by SEVIRI, confirms that the RST scheme applied to these data, may represent a powerful tool 

for volcano monitoring, especially in terms of early warning and rapid detection purposes. This study 

has also demonstrated that RST may be successfully implemented even when only a scarcely populated 

time series of historical satellite records is available. However, in order to obtain the best 

performances, the use of a more dense multi-year series of satellite records  

is preferable.  

Some preliminarily results of RST implementation even on MODIS data, regarding ash plume 

identification and tracking, have also been reported and discussed in this paper. The Mt. Etna eruption 

of October 2002, already successfully monitored and investigated using NOAA-AVHRR records, was 
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analyzed here using EOS-MODIS data, by implementing the RST approach for the first time for this 

kind of application. Preliminarily results here confirm the RST capabilities in detecting and tracking 

volcanic ash plumes using different satellite sensor data. Moreover, this study suggests that AVHRR 

and MODIS records, within the RST scheme, may potentially be integrated in order to increase the 

frequency of observations in areas like Mt. Etna, for a more effective and continuous satellite 

surveillance of active volcanoes.  

The methodology may easily be implemented on whichever kind of satellite sensor data, without 

requiring any ancillary information, and is practical in a global sense. This method offers some 

important advantages both in terms of reliability and efficiency, and is, in principle, suitable to be used 

within operational contexts. It is mainly based on data which are freely available on the web, thus the 

costs for reference fields computation are only related to labor efforts and computing times. Finally, it 

should be stressed that, in terms of cost-benefit, the possible major costs required for an operational 

use of this method in comparison to traditional ones, are likely to be balanced by the high 

performances assured in monitoring volcanoes. 
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