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Abstract: Bush encroachment is a form of land degradation prominent worldwide, but 

particularly present in semi-arid areas. In this study, we mapped the spatial distribution of 

the two encroacher species, Acacia mellifera and Acacia reficiens, in Central Namibia, 

based on their different phenological behavior. We used constrained principal curves to 

extract a one dimensional gradient of phenological change from two hyperspectral images 

taken in different seasons. Field measurements of species composition and cover values 

were statistically related to bi-temporal differences in hyperspectral vegetation indices in a 

direct gradient analysis. The extracted gradient reflected the relationship between species 

composition and cover values, and the phenological pattern as captured by the image data. 

Cover values of four dominant plant species were mapped and species responses along the 

phenological gradient were interpreted. 

Keywords: principal curve; constrained ordination; savanna; change detection; vegetation 

index differencing; bush encroachment; tree-grass ratio; imaging spectroscopy 
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1. Introduction  

Bush encroachment is a form of land degradation that can be found worldwide [1], but it has been 

documented for arid and semiarid rangelands much more frequently than for temperate regions [2]. It 

can be described as an increase in biomass and abundance of woody species and the suppression of 

perennial grasses and herbs [3]. Although the causes are still debated, there is evidence that effects of 

poor land management, such as overgrazing by cattle, is a main driver facilitating the spread of 

encroacher species [4,5]. In water-limited ecosystems, this process might be enforced in the future by 

altering precipitation patterns as expected through climate change [6]. 

In semiarid rangelands, bush encroachment leads to dense thickets, often made up of thorny or 

unpalatable bushes which negatively affect the carrying capacity and thus the economic value of 

rangelands [4,7]. If bush encroachment occurs, arboricides are often used as a chemical bush control 

agent, with predominantly negative effects on the environment as well as on the quality of farm 

products such as meat leaving local markets [8]. Furthermore, plant and animal diversity is negatively 

affected through a decrease in vegetation structural diversity [9-11] leading to an overall loss of 

ecosystem functioning.  

Over the last years, management strategies for the quantification of the encroachment process have 

largely benefited from remote sensing. Analysis of time series based on aerial photographs [12,13] or 

satellite imagery [14,15] helped to quantify the encroached area over different time spans. Although 

the quantification of bush encroached areas has made significant progress at all spatial resolutions, 

little effort was made in disentangling the spatial patterns of different encroaching species. However, 

this type of information could help decision makers in applying species-specific management 

strategies, which are often needed to control the encroaching species successfully [16]. 

In Africa, species of the genus Acacia often act as encroaching species. For example in Zanzibar, 

Acacia auriculiformis has been identified as a heavy encroacher [17]. In Botswana, A. tortilis and A. 

erubescens have been reported to increase in rangelands [18]. In Namibia, Acacia mellifera and Acacia 

reficiens are among the main encroacher species [16,19]. They belong to the same genus, do not differ 

in their overall stature, and often occur together in the same habitats. Although both species are 

shedding their leaves in the dry season, they clearly differ in leaf phenology [20]. While A. mellifera 

starts with fresh leaves already in September, the first leaves of A. reficiens do not sprout  

before December.  

In general, seasonal phenological changes are mainly caused by inter-annual climatic variability and 

are reflected through an increase or decrease in green biomass [21]. For remote sensing, phenology 

provides valuable information for distinguishing vegetation types. For example, Hüttich et al. [22] 

used phenological differences based on MODIS data to better separate vegetation types with similar 

life forms. Resasco et al. [23] were able to map an invasive shrub in understorey vegetation based on 

comparisons of seasonal differences in vegetation indices. In several recent studies, phenological 

differences in leaf traits [24] and canopy characteristics [25] allowed discrimination of vegetation at 

the species level based on leaf spectral signatures. In the context of bush encroachment in Namibia, 

known differences in leaf phenology of the encroacher species could facilitate distinguishing between 

the two prevailing Acacia species based on multi-temporal remote sensing imagery. However, no 

spatially explicit mapping of encroacher species has been performed so far.  
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The aim of the present study is to produce species specific cover value maps that reflect the 

distribution pattern of two main encroaching bush species in Central Namibia, A. mellifera and A. 

reficiens, based on their different phenological characteristics. To produce the maps, we will apply a 

constrained ordination analysis, in order to relate field measurements of species composition and their 

cover values with bi-temporal differences in hyperspectral vegetation indices. For this purpose, we will 

extract a one dimensional gradient of phenological change, which is inherent to the difference images 

of the spectral indices. Based on a statistical relationship between species occurrences and the 

phenological gradient, a map of phenological change for the study area will be predicted, indicating 

the distribution of each species.  

2. Material and Methods 

2.1. Study Region 

According to the vegetation map of Giess [26], the study area lies in the Thornbush savanna in 

central Namibia and is situated on the commercial game farm Omatako (Lat: −21.501 Long: 16.729) 

(Figure 1) comprising an area of about 18 km
2
. Climate is semi-arid with an average annual rainfall of 

300–350 mm. The main rainy season is summer (November–May), but the main rainfall occurs 

between December and April. Rainfall patterns show a high interannual and spatial variability. The dry 

season lasts from May to the end of October and often has less than 10 mm rainfall. Vegetation can be 

characterized as open savanna vegetation with a continuous grass and herb layer and a more or less 

dense shrub layer. Thorny shrubs, mostly Acacia spp., may form very dense stands with only little 

understorey growth. On the farm, bush encroachment can be partly explained by grazing effects of the 

former land use strategy of cattle farming. The main soil types are ferralic cambisols and arenosols, as 

well as chromatic luvisols [27]; thus, topsoil colors are either more reddish or bright yellow.  

Figure 1. Localization of the study area on the Omatako Farm in Central Namibia on top 

of a vegetation map by Giess [26].  
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2.2. Vegetation Sampling  

We visited the study area three times; in late October 2005, during the dry season, the area was 

visited in order to observe dry season aspects but no vegetation samples were taken. In April 2006, a 

field campaign was conducted and 40 vegetation samples were taken. Another field campaign was 

carried out in April 2007 when 87 samples were taken. At both sampling campaigns, preferential 

sampling [28] was applied in order to maximize discrimination of different vegetation types. Each 

vegetation sample consisted of an area of 25 m × 25 m (625 m
2
), where all vascular plant species were 

listed and their cover was estimated visually on a percentage scale [29].  

Because the sampling years differed considerably in rainfall, vegetation samples were made 

comparable for both years by deleting all annual species and all species with a cover share of less than 

five percent of all vegetation samples in the dataset. Otherwise, the difference in species composition 

between the years would have confounded further multivariate analyses. To prevent biases introduced 

by a large number of zero cover occurrences or by a small number of very high cover values, the cover 

values in the species data matrix were transformed using the Hellinger distance [30], which is the 

square root of the row totals divided by the row mean values. This distance measure showed good 

performance for abundance data throughout different multivariate ordination methods, especially for 

those relying on a linear gradient structure [31].  

2.3. Image Acquisition  

Two hyperspectral images were acquired for the study area. The first acquisition took place at the 

end of the rainy season in early April 2004 (Figure 2a,c) capturing the vegetation shortly after its 

maximum greenness. The second image was acquired at the end of the dry season in early November 

2005 (Figure 2b,d). Images were taken using the airborne imaging spectrometer HyMap [32]. This 

sensor measures radiance in 126 bands over the 0.44–2.5 µm spectral region with a spectral bandwidth 

between 10 and 20 nm. The operational altitude of 3,000 m resulted in a spatial resolution of 5 m. 

Images were orthorectified using the PARGE software [33] in combination with 15 differential GPS 

measurements (accuracy ~0.5 m). Errors of the rectified images were less than 1 pixel (<5.0 m) in  

x- and y-direction. ATCOR-4 [34] was used for vicarious calibration and for the removal of 

atmospheric effects. For the vicarious calibration, spectroradiometric measurements were taken during 

the first field campaign in 2005 using a portable Fieldspec PRO FR spectrometer (Analytical Spectral 

Devices, Inc.) at four homogeneous dark and bright bare soil targets and converted into reflectance 

units using a Spectralon™ panel as white reference. Depending on wavelength, the deviation of 

ground measured reflectance and HyMap reflectance obtained after atmospheric correction varied 

between 1 and 4% absolute reflectance units. 
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Figure 2. HyMap images and photos from the study area showing the differences between 

rainy and dry season in the study area. (a) Rainy season image (April, 2004, CIR). (b) Dry 

season image (October, 2005, CIR). (c) Rainy season vegetation aspect (d) Dry season 

vegetation aspect. 

 

2.4. Vegetation Index Differencing 

Vegetation index differencing, or univariate image differencing, is the most commonly applied 

change detection technique for analyzing differences between two or more dates [35,36]. Values from 

the second-date vegetation index are subtracted from the first-date vegetation index on a pixel-by-pixel 

basis. This algebraic approach is a straightforward method, allowing an easy implementation and 

interpretation. The resulting image is interpreted in a way that positive values represent a decrease in 

the values between both time points, whereas negative values represent an increase. Values around 

zero only show little change between the two time steps. According to Lu et al. [37], two aspects have 

to be taken into consideration: First, selecting suitable vegetation indices for the purpose of the study, 

and second, selecting suitable thresholds to identify the changed areas. In our case, the latter point was 

not necessary, since we did not intend to interpret the differenced images directly, but to use these in a 

further multivariate analysis. 

We selected six different spectral indices (Table 1) according to their different biophysical 

meaning, their usefulness for savanna ecosystems, and their applicability to hyperspectral data based 

on previous working experience [38]. Furthermore, only spectral indices were chosen that showed 

Pearson correlation values below 0.75 with other spectral indices. In order to calculate the difference 

images, we first calculated the indices for each seasonal image and then subtracted the dry season 

index images from those of the rainy season. Finally, we extracted the difference index values from 
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each pixel at each vegetation sample (25 m × 25 m) and calculated the mean of the pixel values as a 

reference for each sample. 

Table 1. Overview of the selected vegetation indices and their canopy related feature. For 

index formulas see Dorigo et al. [39]. 

Nr. Index Full name Feature Reference 

1 CARI Chlorophyll Absorption in Reflectance Index Chlorophyll [40] 

2 DGVI Derivative Green Vegetation Index (1st order) Greenness [41] 

3 LWVI Leaf Water Vegetation Index Water [42] 

4 NDLI Normalized Difference Lignin Index Lignin [43] 

5 NDNI Normalized Difference Nitrogen Index Nitrogen [43] 

6 CAI Cellulose Absorption Index Cellulose [44] 

2.5. Constrained Principal Curves 

Principal curves can be described as nonlinear generalizations of principal components analysis 

(PCA), that use nonlinear regression and local smoothers to minimize the sum of squared deviations 

between the response variable and the fitted curve [45]. Principal curves extract one major underlying 

gradient from the data itself by passing through the data cloud in an n-dimensional space, where n 

equals the number of parameters used. This is comparable to an indirect ordination method in ecology 

that searches for latent gradients in the species data [46]. De‘ath [47] extended the indirect ordination 

method to a constrained form of principal curves, allowing a second matrix to be taken into 

consideration during curve fitting. Thus, the analysis becomes a direct ordination, comparable to a 

Canonical Correspondence Analysis (CCA), in which environmental parameters are used to describe a 

relationship between species and habitat characteristics. In our case, the second matrix hosted the 

differenced spectral index values.  

Principal curves are constructed as follows: at the beginning, an initial projection of the species data 

in a multivariate space must be defined. The choice of this initial projection is a crucial step, since all 

later projections will depend on it, and thus the outcome of the final curve. Following 

recommendations for vegetation data [47], we applied a nonmetric-multidimensional scaling (NMDS) 

using Bray-Curtis distance on the Hellinger transformed species data. The scores of the first  

NMDS-axis were used for the initial configuration. The fitting of the curve follows an iterative  

two-step project-expectation algorithm [48]. First, in a projection step, a straight line is drawn as close 

to the points as possible. Each point of the curve is then the average of all data points that project to it. 

In a constrained principal curve analysis, this is the point where the locations of the sites along the 

curve are linearly regressed on the environmental variables. Hence, the site locations on the final curve 

can be explained by the parameters of the constraining matrix. The second step is an expectation step, 

where the straight line is bending to a curve, improving the fit of the curve to the points. These steps 

are repeated until convergence is reached or until a defined number of iterations have passed. For the 

algorithm setup, we set the number of iterations to 20 and chose smoothing splines as the curve fitting 

method. Furthermore, extended dissimilarities with a threshold at 0.75 were chosen for calculating the 

initial configuration. This improves the relationship between species distance and ecological distance 

in cases of high beta-diversity [49], i.e., a large species turnover which we expected for the dataset. 
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Principal curves were calculated using the R-package pcurve [50]. All analyses using the pcurve 

package were carried out in the R-software environment [51]. 

In order to find a model that best explains the relationship between species cover and seasonal 

differences in the images, we used a stepwise backward approach, i.e., we recalculated the curve fitting 

process after iteratively deleting one difference index per step from a full model. We evaluated the 

models resulting from the stepwise procedure by comparing four criteria: First, we controlled the 

percentage variance explained by the curve. This is similar to the variance explained by the first axis of 

a PCA. The model with the highest explained variance was preferred. Second, we investigated the shape 

of the curve, which is an important curve characteristic. Heavily undulating or intersecting curves imply 

overfitting, whereas smooth curves with no or only few bends can be interpreted as a reasonable fit. 

Third, we noted the R
2
 of the linear model resulting from a regression of the site locations on the 

environmental variables and finally, we used the Akaike Information Criterion (AIC) [52] for comparing 

models with different numbers of predictors. AIC is an entropy based information criterion that 

measures the information loss based on the maximized empirical likelihood [53]. We compared the 

AIC differences between all candidate models and chose the model with the smallest AIC, indicating a 

minimal loss of information, i.e. the model with the best statistical fit.  

2.6. Mapping and Validation of Plant Species Cover 

After the best model was found, we applied the resulting intercept and regression coefficients to the 

original difference images in order to create an image representing curve locations along the principal 

curve, i.e., reflecting decreases or increases in the overall phenology. Since the species responses along 

the principal curve were based on smoothing spline regression, it was possible to calculate cover maps 

for species within the model. For the four main dominant species (Figure 2) we extracted their 

respective smoothing spline models from the principal curve model and predicted them onto the new 

curve location image.  

For validation of the species cover maps, we used an external validation dataset which was 

provided by the BIOTA-Africa project [54]. This project monitors vegetation in the study region on an 

annual basis since 2000. Once per year, usually in the end of the rainy season when vegetation cover is 

fully developed, on so called Biodiversity Observatories. The Observatory comprises an area of one 

square kilometer and is subdivided into 100 one hectare plots. Twenty of these hectare plots were 

selected randomly. In the centre of each of the selected hectares a 20 m × 50 m and a nested  

10 m × 10 m plot were used for annual vegetation monitoring First, we extracted the cover values from 

our predicted species cover maps for the areas of the BIOTA-vegetation plots, i.e., 4 pixels for the  

10 m × 10 m and 40 pixels for the 20 m × 50 m plots. Then, we calculated the mean value of the 

extracted values, since we can use only one cover value per plot. In order to assess the quality of the 

species maps, we computed parametric and non-parametric correlation coefficients, i.e., Pearson‘s r 

and Spearman‘s r, to validate if there is a linear correlation between the predicted cover values and the 

measured cover values from the external dataset. Furthermore, we calculated two-tailed probabilities 

that the values are uncorrelated. From the external dataset, we used observed cover values from two 

years in which the hyperspectral images were taken, i.e., 2004 and 2005. For the correlation analysis 

we used the free statistical software PAST [55]. 
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3. Results  

3.1. Constrained Principal Curves 

We conducted direct gradient analysis using constrained principal curves in order to find nonlinear 

relationships between vegetation samples and seasonal differences of vegetation indices. The final 

principal curve explained 26% of the variation in the vegetation data and had a final length of 2.5, 

measured in arc-length [48] (Figure 3). The curve did not show heavy distortions, but followed a slight 

z-shape. Most of the samples were grouped in the middle rather close to the curve, but some samples 

are located at longer distances. At both ends, grouping was less dense and the projected distances from 

points to the curve seemed to be longer than of those in the middle.  

Figure 3. The constrained principal curve, shown in red, is fitted to the initial projection of 

vegetation samples based on a NMDS using Bray Curtis distance explaining 26% of the 

variation in the species composition. Green lines represent projection-vectors that connect 

data points with their respective curve locations. The zero marks the starting point of the 

principal curve, i.e., the left-hand side, while the 2.5 indicates its end, i.e., the right-hand 

side of the curve.  

 

In the best performing regression model used for fitting the curve all six variables were significant 

and linearly related to the locations on the principal curve (Table 2). Although NDLI was only 

significant at the p = 0.1 level, deleting the variable would have led to a considerably higher AIC value 

(0.79 instead of 0.69), hence NDLI was kept in the model. Steepest increase of values along the 

curve was found for LWVI and NDNI, as indicated by their slopes. The final regression model 
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reached a multiple R
2
 of 0.53. For a better interpretation, the six variables were put into two groups; 

Right hand side positive (RHS) and left hand side positive (LHS). RHS positive are CAI, DGVI 

and LWVI, because they were positively related with the curve, i.e., starting with negative values and 

then steadily increased. The indices in this group are mainly related to canopy greenness. Positive 

values at the start of the curve characterize indices from the LHS group. These indices are CARI, 

NDLI and NDNI, which all are mainly related to an increase in non-photosynthetic materials such 

as twigs, branches, and dry leaves.  

Table 2. Regression coefficients of the final partial linear model.  

 slope Std. Error t value   p 

intercept 2.6646 0.3826 6.9647 <0.001 

 CARI −3.7014 0.6685 −5.5365 <0.001 

 LWVI 38.5399 9.4153 4.0933 <0.001 

 CAI 10.3821 4.5146 2.2997 <0.05 

 NDLI −18.3285 13.1827 −1.3903 <0.1 

 NDNI −32.9389 5.589 −5.8935 <0.001 

 DGVI 14.3914 3.4836 4.1312 <0.001 

         R2: 0.53, p => 0.001 

3.2. Species Responses 

Species responses along the curve are shown for the four most dominant species in form of 

nonlinear regression smoothing spline plots (Figure 4). Due to the fact that these species make up most 

of the cover in the study area, we assume that they also contribute substantially to the spectral signal in 

the images. Acacia hebeclada and A .mellifera, both perennial shrubs, showed a strong linear decrease 

from left to right on the curve, both having occurrences of zero cover around the location 1.0 on the 

principal curve. However, point distribution of A. mellifera indicates that the species occurs throughout 

the whole curve, yet showing decreasing cover values with increasing location values. In contrast, A. 

reficiens shows an increase in cover with higher locations on the curve. Zero occurrences are 

distributed between locations 0 and 1.5. However, the distribution is not strictly linearly increasing due 

to two plots in which A. reficiens occurs with only moderate cover values. The perennial grass 

Stipagrostis uniplumis shows a unimodal distribution with an optimum in the middle of the gradient 

around 1.25. Similar to A. mellifera the species is very common in the study area, as indicated by the 

few zero occurrences. 
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Figure 4. Hellinger transformed cover values of four dominant species plotted for each 

location on the curve. The red line represents the smoothing spline used to fit the 

individual response shape. 

 

3.3. Mapping of the Principal Curve and Species Cover 

The regression coefficients of the final model were used to predict curve locations on the base of 

the HyMap imagery. This resulted in a new image representing predicted curve location per pixel with 

values ranging from −4.1 to 3.6, thus extrapolating beyond the original length of the curve (Figure 5). 

However, very high or low values were only found in few extreme values and did not distort the main 

spatial pattern. The different colors represent different sections on the curve, going from the left hand 

side of the curve (black to violet) to the right hand side of the curve (bright green to red). The light 

blue to dark green colors indicates the central section of the curve. While black and violet colors 

dominate in the northern part of the image, bright green and reddish colors are more prominent in the 

southern part. However, one larger spot dark red spot and several smaller are also located in the 

northern part. The areas showing locations from the central part of the curve (light blue to dark green) 

appear throughout the image. 
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Figure 5. Predicted image of curve locations. Continuous colors from black to red 

represent the phenological change gradient from left to the right hand side of the curve. 

 

Based on the curve location image, we predicted species cover maps using the species specific 

response model, i.e., the smoothing regression spline (Figure 6). The four plant species show different 

centres of dominant cover. A. hebeclada and A. mellifera have highest values in the northern part of 

the study area. A. mellifera is more common throughout the whole study area with values well above 

zero. A. reficiens occurs throughout the study area overlapping with A. mellifera, yet with a center of 

dominance in the south of the study area while not occuring close to areas with higher values of A. 

hebeclada. However, predictions of cover values for A. reficiens show a large range from 0.00 to 0.60. 

S. uniplumis occurs throughout the whole study area as well, having highest cover values in the north 

and north-western part of the study area. 
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Figure 6. Predicted species cover maps of Hellinger-transformed cover values. Included 

are the positions of the permanent plot monitored by the BIOTA-Africa project, the source 

of the external validation dataset. Observatory marks the total covered area of 1 km
2
 by the 

monitoring design. Images are stretched between minimum and maximum values. 

 

3.4 Validation of Species Cover Maps  

We validated the species cover maps by calculating parametric and nonparametric correlations 

between predicted and observed cover values. The resulting correlation values are presented in Table 
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3. The cover map for A. hebeclada did not show any significant correlations below 0.05. The A. 

mellifera cover map showed relatively high correlation values on both plot sizes, except for the  

non-parametric test on 10 × 10 m. The two-tailed p-values support the correlation coefficients. The A. 

reficiens cover map performed best in the non-parametric tests, supported by p-levels significant at the 

5% level, while no significant correlation was found in the parametric tests. The S. uniplumis cover 

map showed reasonable Pearson correlation on the 20 m × 50 m plot, however with only a weak 

support by the two-tailed p-values. 

Table 3. External validation of the species cover maps for two plot sizes. The number of 

plots where a species occurs (n) is given per plot size. Parametric (Pearson) and  

non-parametric (Spearman) correlation values are shown. The p-value is based on a  

two-tailed probability test for correlating values. The column ‗year‗ marks the year with 

the highest correlation values found. 

Size Species n Pearson‘s r p year Spearmann‘s r p year 

10 × 10 A.hebeclada 3 −0.11 0.642 2004 −0.27 0.248 2004 

 A.mellifera 12 0.54 0.014 2005 0.21 0.375 2005 

 A.reficiens 9 0.23 0.333 2005 0.46 0.043 2004 

 S.uniplumis 20 0.37 0.105 2005 0.32 0.174 2005 

         

20 × 50 A.hebeclada 6 0.13 0.592 2004 0.18 0.443 2004 

 A.mellifera 19 0.45 0.047 2004 0.45 0.049 2004 

 A.reficiens 17 0.32 0.165 2005 0.52 0.020 2005 

  S.uniplumis 20 0.38 0.099 2004 0.26 0.262 2005 

4. Discussion  

4.1. Phenological Gradient 

Information on vegetation phenology is increasingly used for distinguishing between vegetation 

types in remote sensing studies [22,56,57]. In this study, we were able to identify a phenological 

gradient of change using a constrained principal curve that was fitted to data from a vegetation survey 

constrained by a set of differenced spectral indices. Spatial distribution patterns of four dominant plant 

species, including two known bush encroacher species, were identified based on their known 

phenological differences, i.e., a different onset of shoot growth [20]. 

The relationship between the extracted principal curve and the spectral indices, as expressed by 

their regression coefficients in the linear model (Table 1), describes the found phenological pattern. 

The two identified groups of indices (LHS and RHS) summarize the general phenological trend in the 

data. Locations situated on the LHS of the curve, have more negative values in greenness related 

difference indices in the November image (dry season) than in the April image (rainy season). 

Although there was an overall decrease in greenness in the study area in the beginning of November 

2005, canopy greenness at locations on the LHS of the curve is relatively higher than at locations on 

the RHS. Locations are less green and less moist there, but they have higher values in dry matter lignin 

and nitrogen. Because of their functional and spectral similarity, cellulose and lignin are often lumped 

together as dry-matter or nonphotosynthetic vegetation [58]. High values of lignin normally go 
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together with higher values in cellulose due to ageing processes in cell wall structure, which negatively 

affects digestibility and thus fodder values of vegetation [59,60]. However, in our case, the cellulose 

absorption index (CAI) is positively related with locations on the curve, in contrast to the NDLI  

(Table 2). We interpret this contrast as different stages in the lignin-cellulose ratio in the canopy due to 

phenological differences. This ambiguity might also explain why the regression coefficient of the 

NDLI is less significant. Locations in the middle of the curve show only little positive or negative 

change in both directions. To summarize, we can interpret the extracted principal curve as a gradient of 

phenological change, from mainly fresh-leaf (LHS) to leaf-less (RHS) canopies, and locations on the 

curve are placed according to the relation between species composition and spectral indices. 

4.2. Species Responses 

We found that the four major plant species have distinct responses along the phenological gradient. 

Woody species have high cover values at both ends of the curve, i.e., Acacia mellifera and A. 

hebeclada are on the LHS, while the abundance of A. reficiens is highest on the RHS of the curve. 

Stipagrostis uniplumis and many other herbaceous species have highest cover values in the middle of 

the curve. The location of those species on the curve can be best explained by their phenological 

behavior. The Namibian Tree Atlas [20] is a valuable source of information on the phenology of many 

woody species in Namibia. According to the Tree Atlas, A. reficiens does not have any leaves in 

October and November, which goes along with the trend of decreased greenness, and increased  

dry-matter content in the November image. This is expressed by the spectral indices that were 

identified to be positively related with the RHS locations on the curve. In the same time period, A. 

mellifera and A. hebeclada carry already leaves, and thus are located at the LHS of the curve, going 

together with a relatively higher amount of greenness in the image.  

The effect of leaf shedding on the spectral response can be mainly explained by the change in the 

amount of visible soil affecting the signal. This seems to be especially true for encroaching species that 

usually lack a well developed understorey vegetation [11,61]. Species with general high cover values 

that have no leaves will allow soil signals to be superior to the vegetation signal in the image.  

In the middle of the phenological gradient, perennial grasses dominate in cover while Acacias and 

other larger shrub species occur only in small abundances. Evergreen trees, such as Boscia albitrunca 

also occur here in larger abundances. We assume that evergreen trees contribute only little if any to 

changes in the phenology and thus are situated in the middle of the curve. In contrast to the situations 

at the ends of the curve, here the often discussed tree-grass ratio of savanna ecosystems [62] is shifted 

towards the herbaceous component. Chidumayo [63] pointed out that the pattern of leaf phenology in 

savanna vegetation is influenced by the differential leaf phenology between the woody and the 

herbaceous component. While shoot growth of the woody component is triggered at the end of the dry 

season, grass growth is restricted to the rainy season due to water availability in the upper soil  

layer [63,64]. However, not all tree species share the same leaf sprouting rhythm, hence the pattern 

found in this study confirm the general findings of Archibald and Scholes [64] and the phenological 

pattern described for the species in the Namibian Tree Atlas [20].  

Several studies showed that the leaf-flush of the herbaceous component of savannas considerably 

increases greenness as measured by spectral indices [63,64]. However, in our study, the vegetation 

samples with a larger herbaceous component did not strongly change in any spectral index. In 2004, in 
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the beginning of April when the rainy season image (Figure 2a) was taken, grasses had already dried 

out. Hence, we conclude that greenness of the herbaceous component was already rather similar 

between dry and rainy season and therefore only little change was found between the two images. 

Furthermore, perennial grasses do not shed any leaves but remain with their dried standing biomass 

throughout the dry season, i.e., keeping a constant value of cover. Hence, they always provide a 

minimum of reflectance leading to higher values in the vegetation indices than in those areas where 

only leafless A. reficiens without understorey occurs. We conclude that the effect of a dominating 

perennial grass sward stabilizes the reflectance signal when images from the end of rainy seasons are 

compared with dry season images by providing a constant, yet drier, vegetation signal. In other words, 

leaf shedding shrubs without a grass layer in the understorey, often found in bush encroached areas, 

will provide a higher change in the signal due to the resulting contrast of leaves and soil signals over 

the seasons. 

4.3. Mapped Vegetation Pattern 

We created a map of the phenological pattern by predicting the curve locations onto the differenced 

index images (Figure 5). Interestingly, the right hand side of the curve forms rather broad island-like 

patterns while values from the left hand side seem to follow a topographic pattern, e.g., a water course. 

The locations from the center of the curve build the matrix in which the other patterns are embedded. 

The species cover maps (Figure 6) emphasize species specific patterns. While A. hebeclada seems to 

be more restricted to specific landscape features, the other three species show broader distribution 

patterns yet with different centers of dominance. A. mellifera and A. reficiens do partly overlap mainly 

in the southern parts of the study area. S. uniplumis occurs in the whole study area showing no values 

below zero, yet with higher values in the northern areas. 

How can the different spatial patterns be explained in terms of phenology? We found that A. 

hebeclada and A. reficiens do not occur together in the same areas. Since water availability is a crucial 

factor in savannas [62], the spatial separation of the species might be explained due to differences in 

abiotic components controlling water storage such as soil texture. The spatial pattern observed in the 

northern part of the image (Figure 5) can be explained with a topographic depression in the landscape 

allowing better water availability. This seems to favor A. hebeclada and A. mellifera, but not A. 

reficiens. According to Curtis and Mannheimer [20] and Coates-Palgrave [65], A. hebeclada is mainly 

found on sandy soils with good water availability, while A. reficiens is mainly found on gravel or 

rocky substrate, sometimes with a clayey texture, but occurs only seldom in sandy habitats. In contrast 

to the encroaching species, A. hebeclada is mainly represented by solitary individuals and does not 

form dense stands, but rather single large shrubs. A. mellifera is prominent throughout the whole study 

area and mixes with the other Acacia species, thus not showing any preferences for soil conditions. In 

the plots where A. hebeclada is present, A. mellifera reaches highest cover values (Figure 6a&b). In 

combination with A. reficiens, A. mellifera appears only with moderate cover values often below those 

of A. reficiens. Many studies have dealt with the ecology of A. mellifera [19,66-68], but few papers can 

be found on the ecology or biogeography of A. reficiens. However, a similar co-occurring pattern of 

those two species was documented by Schultka and Cornelius [69] who studied bush thickening in 

Kenya. They found that in A. reficiens dominated areas A. mellifera was always co-occurring, but with 

clearly less cover, similar to our study. This pattern might indicate that A. reficiens is more competitive 
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on rocky or clayey soils than A. mellifera. Hence, the spatial pattern of the A. reficiens dominated areas 

is interpreted as an effect of soil texture. A comparison of the original Hymap images (Figure 2a&b) 

with the species specific results (Figure 6) clearly shows the relation of soil color to the species 

specific pattern. While perennial grasses occurred in the A. hebeclada-A. mellifera plots, they did only 

show moderate cover values of around 30%) in the understorey of the A. reficiens thickets. Areas 

where perennial grasses dominate in cover while all other Acacia species appear only with minimal 

cover can be interpreted as a phenological transition zone between areas of increasing and decreasing 

greenness. Samples are mainly situated in the middle of the curve, indicating relatively minor or no 

change in phenology. The strong presence of the herbaceous component and a lack of a closed shrub 

layer can be mainly referred to a lack of water availability in deeper soil layers. Other reasons may be 

the fire history (Fires do occur infrequently every 5–10 years after good rainy seasons.), historical 

grazing patterns or the farm management practice of de-bushing. 

Our study showed that identifying larger stands of encroaching species, is possible using 

phenological differences, allowing practitioners to choose selective management strategies. Two third 

of the study area can be considered as encroached by both species. While the northern part consists 

mainly of A. mellifera, in the southern part both species occur but with predominantly A. reficiens. 

Areas with dominant grass cover and only little cover of A. mellifera cannot be considered as an 

encroached area, since bush encroachment areas generally lack a well developed understorey.  

4.4. Validation of Species Cover Maps 

The validation of the species cover maps was accomplished using an external validation dataset and 

comparing the correlation of predicted Hellinger cover values and field observed species cover. This 

comparison is not optimal, yet reasonably reflects the trends in cover values. This assumption is 

justified when the Hellinger transformed values are compared with original values using a Pearson r, 

resulting in correlation values of around 0.97 for all four species. Species cover maps for A. mellifera, 

A. reficiens and S. uniplumis were confirmed by the external dataset, while validation for A. hebeclada 

failed. One reason for the bad performance of the A. hebeclada map could be the limited covered area 

of the external dataset. The area covered by the permanent plots is mainly concentrated in the south of 

the image, where A. hebeclada occurs with lower frequency (Figure 6). Furthermore, the external 

dataset was not gathered for validation purposes but for biodiversity monitoring. Finally, we were only 

able to compare mean cover values per plot and not the absolute cover values. Nevertheless, 

considering our expert-knowledge from field observations over nine years throughout the study area 

we are confident that the predicted species patterns generally reflect the real trend in species cover.  

4.5. Remote Sensing and Bush Encroachment  

The most frequently applied remote sensing technique used in bush encroachment studies is aerial 

photo interpretation. In many studies, either single or multiple aerial photos were compared for the 

spatial extent of bush encroachment [13,18,70]. Spectral indices derived from satellite imagery are also 

increasingly used for either determining the change in woody cover [15] or for the discrimination of 

encroached vegetation types [14]. In order to be able to discriminate plant species by remote sensing, 

common sense is that a high spatial resolution is needed. However, as pointed out by Nagendra and 

Rocchini [71], ―in contrast to hyperspatial data which seem best suited to the accurate location of 
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features such as tree canopies, hyperspectral data appear capable of significantly increasing the 

accuracy of identification of features such as species identity‖. A high spectral resolution seems to be 

valuable for calculating phenological differences that are not only based on an increase or decrease of 

greenness from the visual near infrared (VNIR) to the near-infra red (NIR) but also underline the 

importance of changes in dry-matter related indices. In our case, the best correlating indices were the 

SWIR based indices LWVI and NDNI, the first strongly positive, the second, strongly negative 

correlated with the curve as induced by their regression coefficients (Table 2). With only multispectral 

data, these indices could not have been calculated. However, if hyperspectral imagery is not available 

also multispectral data can provide already important information as most prominent changes are 

observed in the greenness pattern. Furthermore, multispectral data is often much cheaper and more 

easily available for larger areas. Regarding the best phenological discrimination, it seems logical that 

the right point in time where the two images are taken is more important than the question which 

sensor should be used for calculating the spectral differences. In real world applications of remote 

sensing, a precise timing is of highest importance [72,73]. Nevertheless, the application of this 

technique with the use of multispectral data would make the approach more robust. 

According to Reed et al. [57], phenological metrics derived from remote sensing are becoming 

increasingly used in vegetation mapping studies and similar approaches. Studies on bush 

encroachment would certainly benefit from incorporating phenological metrics, such as the  

Time-integrated NDVI (TINDVI) [57] or using multivariate approaches like the proposed principal 

curve approach. It has to be concluded that the possibilities of remote sensing for contributing to 

investigations in bush encroachment have not been fully addressed yet. We suggest a comprehensive 

review on this topic would be a first step in identifying research gaps and stakeholders needs for 

specialized products supporting management decisions. 

4.6. Principal Curves  

Principal curves have been already applied in various fields of research such as image  

processing [74], spatial point pattern analysis [75] or classification [76]. De‘Ath [49] suggested this 

technique for ecological applications and extended the algorithm with a constrained approach. In the 

examples of his introductory article [49], constrained principal curves explained 68 % (soil-vegetation 

dataset) and 78% (spider-habitat dataset) of the variation in the datasets. The extracted curve in the 

present article explained only moderate 26% percent variance. However, this result can still be 

considered as reasonable when one admits the fact that the datasets used by De‘Ath included only very 

few species, e.g., 12 spiders and eight grasses, while the vegetation dataset used in our study consisted 

of 53 selected savanna plant species making it harder to explain total variance. Furthermore, remote 

sensing data seems to be limited in explaining the species composition in semi-natural habitats. 

Only a few studies applied spectral data such as spectral bands or vegetation indices in constrained 

ordination techniques (CCA or RDA) in order to explain species composition patterns [77]. However, 

considering only the first axis, i.e., the longest ‗gradient‘ found in the data as explained by spectral 

information, none of the mentioned studies reached very high eigenvalues. Nevertheless, when one 

clear environmental gradient is present in a study area, and thus in the image, species composition and 

vegetation structure will most likely change along this gradient. This in turn, is likely to affect the 

spectral response allowing discrimination of vegetation types along the gradient [78,79]. 
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Despite their strong capability of extracting one nonlinear major gradient principal curves have 

been widely neglected in ecological research. In our case, the principal gradient we found was the 

phenological difference in the vegetation based on species-specific phenological behavior. The 

possibility to predict the pattern found by the principal curve to an image allows visualizing the spatial 

pattern of the studied phenomenon. This makes the (constrained) principal curve a powerful tool for 

detecting major nonlinear patterns in phenological datasets. We recommend exploring further the 

usability of this technique for combining remote sensing and ecological datasets. 

5. Conclusion  

In this study, we used constrained principal curves to extract a gradient of phenological change 

from bi-temporal hyperspectral data, based on the phenology of dominant savanna species. The spatial 

distributions of four dominant plant species, from which two were encroaching bushes, were mapped. 

Our findings indicate that the found phenological patterns are reflected by the spatial pattern of major 

plant species. Their occurrence is driven by the species-specific ecological niche, i.e., preferences for 

abiotic and biotic factors. In a bush encroachment context, we stress the importance of analyzing the 

phenology of areas with different tree-grass ratios using remote sensing data with a high spatial and 

possibly high temporal resolution. However, we are aware that such kind of data is cost intensive and 

requires expert knowledge, but on the level of national agencies, this kind of data might be useful to 

provide land managers with detailed maps of potentially encroached areas, allowing control strategies 

that will prevent high costs for human and the environment caused by bush encroachment. We agree 

with Palmer and Fortescue [80], who point out that the most important challenge for remote sensing 

science will be to better communicate their products as well as further decreasing the costs for 

remotely sensed data. Finally, we encourage scientists from ecology and remote sensing in applying 

principal curves, as they are an important tool for ordering sites along a one dimensional nonlinear 

synthetically gradient.  
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