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Abstract: Recent work has shown that more research is needed in applying fractal analysis 

to multi-resolution remote sensing data for landscape characterization. The purpose of this 

study was to closely examine the impacts that spatial and spectral resolutions have on fractal 

dimensions using real-world multi-resolution remotely sensed data as opposed to the more 

conventional single resolution and aggregation approach. The study focused on fractal 

analysis of forested landscapes in the southeastern United States and Central America. 

Initially, the effects of spatial resolution on the computed fractal dimensions were examined 

using data from three instruments with different spatial resolutions. Based on the criteria of 

mean value and variation within the accepted ranges of fractal dimensions, it was 

determined that 30-m Landsat TM data were best able to capture the complexity of a 

forested landscape in Central America compared to 4-m IKONOS data and 250-m MODIS 

data. Also, among the spectral bands of Landsat TM images of four national forests in the 

southeastern United States, tests showed that the spatial indices of fractal dimensions are 

much more distinguishable in the visible bands than they are in the near-mid infrared bands. 

Thus, based solely on the fractal analysis, the fractal dimensions could have relatively 

higher chances to distinguish forest characteristics (e.g., stand sizes and species) in the 
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Landsat TM visible wavelength bands than in the near-mid infrared bands. This study has 

focused on a relative comparison between visible and near-mid infrared wavelength bands; 

however it will be important to study in the future the effect of a combination of those bands 

such as the Normalized Difference Vegetation Index (NDVI) on fractal dimensions of 

forested landscapes. 

Keywords: remote sensing; fractal dimensions; spatial and spectral resolutions;  

forested landscapes 

 

1. Introduction 

Essential issues in interpretation and analysis of remotely sensed data are the resolution and scale of 

the observations [1]. Scale is crucial to the characterization of geospatial data because many 

environmental processes are scale-dependent [2]. One of the principal methods that can be used to 

examine scale effects is through the use of fractal analysis. Fractals are based on the concept of  

self-similarity in the geometry of natural objects. Fractal analysis has been used to analyze the scale 

dependence of everything from topographic surfaces [3] to microstructures [4] to the structure of 

rainstorms [5]. 

One area where fractal analysis has recently been found useful is in characterization of surfaces 

using remotely sensed data [1,6-9]. However, problems arise because the computed fractal dimensions 

will be affected by the spatial scale of the remotely sensed data as well as the spectral characteristics of 

the instrument and the bands in which the data are recorded. This has made it difficult to compare 

results across studies that used different instruments. Quattrochi et al. [1], Emerson et al. [6], and Lam 

et al. [7] concluded in their studies that more research is needed in applying fractal analysis to  

multi-resolution remote sensing data for landscape characterization. The purpose of this study was to 

closely examine the impacts that spatial and spectral resolutions have on fractal dimensions using  

real-world multi-resolution remotely sensed data as opposed to the more conventional single resolution 

and aggregation approach or simulated surfaces. Those impacts were studied in terms of the ability of 

fractal dimensions to capture the complexity of forested landscapes at different spatial and spectral 

resolutions. The study focused on fractal analysis of forested landscapes in the southeastern United 

States and Central America.  

2. Fractals 

Spatial patterns in nature are irregular and fragmented [7] such that they cannot be adequately 

described by classical Euclidian geometry. Fractal geometry was developed as a means of 

characterizing such complex natural patterns [10]. The foundation for fractal analysis is  

self-similarity [7,10]. Self-similarity can be defined as a property of a curve or surface where each part 

is indistinguishable from the whole [1,7]. Many curves and surfaces are statistically “self-similar,” 

meaning that each portion can be considered as a reduced-scale image of the whole [1]. In classical 

geometry, a point has an integer topological dimension of zero, a line has one dimension, an area has 
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two dimensions, and a volume has three dimensions [1,7]. The fractal dimension (FD), however, is a 

non-integer value that exceeds the Euclidean topological dimension [7,10]. The fractal dimension 

increases as the form of a point pattern, a line, or an area feature grows more geometrically  

complex [7]. The fractal dimension of a point pattern can vary between zero and one, that of a curve 

can vary between one and two, and that of a surface can vary between two and three [1,7]. FD values 

approach 3.0 as the geometrical complexity of a perfectly flat two-dimensional surface (FD = 2.0) 

increases so that the surface begins to fill a volume [7].  

For a surface, such as raster-based remotely sensed images, FD can be estimated using the isarithm 

method which was evolved from Goodchild [11], Shelberg et al. [12], and Lam and DeCola [13].  

Lam et al. [14] found that the isarithm method calculates the FD fairly accurately and more so than 

other methods such as the variogram and triangular prism methods. The isarithm method, sometimes 

also called the walking-divider method utilizes the isarithms of the surface as a means in determining 

the FD of the surface [14]. As a flat surface grows more complex, FD increases from a value of 2.0 and 

approaches 3.0 as the surface begins to fill a volume. The final fractal dimension FD of the surface is 

the average of the FD values for those isarithms having a coefficient of determination “R
2
” greater 

than or equal to 0.9 [1,7,8,15]. 

Fractal analysis yield quantitative values on the spatial complexity and information content 

contained within multi-scale remote sensing data because of self-similarity [1]. Thus, different spatial, 

temporal and spectral resolutions remote sensing data acquired from different sensors could be 

compared and evaluated based on fractal measurements. Moreover, a quantitative description of 

surface roughness or complexity may aid mapping and interpretation of landscapes or characterization 

of resources such as forest density or biomass. 

As discussed previously, fractals can be applied to a variety of landscape problems because they 

conveniently describe many irregular, fragmented patterns found in nature [10]. Although the fractal 

technique and other textural analyses have been applied extensively [5,16-28], its use as a spatial 

technique for characterizing remote sensing images needs to be evaluated more thoroughly in terms of 

the affects of spatial and spectral resolution [1,6,7]. This study deals with the utility of fractals to 

characterize the complexity of forest surfaces or canopies at different spatial and spectral resolutions.  

This effect is demonstrated in Figure 1, which illustrates that for a given pixel resolution, as the 

crown width decreases, the image complexity decreases. The values of the adjacent pixels become 

more similar because the pixel values are the integration of the brightness levels within that pixel. The 

image is represented and displayed in a digital format by subdividing the image into small equal-sized 

and shaped areas, called picture elements or pixels, and representing the brightness of each area with a 

numeric value or digital number which is the integration of the brightness levels within that pixel. 

If the two adjacent pixels are covered with small crown trees as in Figure 1(a), the result is two 

homogenous surfaces, and so the integration result of both pixels will be close, and thus the two pixel 

values will be similar in magnitude. If the pixel values do not vary significantly, the result is less 

complexity in terms of fractals and more homogeneity in terms of autocorrelation and so smaller 

Fractal Dimensions. 

On the other hand, if the pixels are covered with large crown trees as in Figure 1(b), the result is 

non-homogenous adjacent pixels, and so the integration result in both pixels will not be similar, and 

thus the two pixel values will not be close in magnitude. If the pixel values vary significantly, this 
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means more complexity in terms of fractals, less homogeneity in terms of autocorrelation, and results 

in higher Fractal Dimension. 

Figure 1. Size class effect on remotely sensed data: (a) small crown trees (b) large crown trees. 

(a)      (b) 

 

3. Spatial Resolution Effects 

The first phase of the study was to determine the effect of spatial resolution of the remotely sensed 

data (i.e., measurement scale) on the estimates of the fractal dimensions used to determine surface 

roughness and complexity associated with forests. In order to address this issue, several remote 

sensing images of different spatial resolution (i.e., multiscale remotely sensed data) were obtained for 

the same forested location. Fractals were used to characterize these images in terms of image 

complexity and roughness associated with forests.  

An important role in employment of remotely sensed imagery has been scale variation and 

sensitivity [29-31]. The problem of selecting appropriate resolutions is complex [32]. The appropriate 

resolution is a function of the kind of information desired, the type of environment, and the techniques 

used to extract information. In order to capture the change in image characteristics due to changes in 
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resolution, and find relationships between accuracy and resolutions, it is necessary to build a 

framework to represent, analyze and classify images from multiple resolutions [32]. This framework 

could be a useful tool for selecting the appropriate spatial resolutions and analysis routines in further 

image classification [31,33-35]. 

Many studies reported in the literature have used multiple resolution remote sensing data to study 

changes in vegetation indices [30,36], surface complexity and variation [1,7-9,37], classification 

accuracy and errors [34,35,38], image representation and storage [31], and ecosystem and landscape 

analysis in general [39,40]. However, much of the previous research has been devoted to exploring  

the magnitude and impact of scale or resolution effects by aggregation of a single data set  

(i.e., re-sampling the data) [32]. Quattrochi et al. [1], Emerson et al. (6) and Lam et al. [7] concluded 

that more research is needed in applying fractal analysis to multi-resolution remote sensing data for 

landscape characterization. This work focuses on a real-world multi-resolution fractal analysis of 

remotely sensed data by analyzing images of the same location at several resolution levels as opposed 

to the more conventional single resolution and aggregation approach.  

3.1. Study Area and Data Sets 

In order to study the effect of scale or spatial resolution on fractal dimensions, several remote 

sensing images of different spatial resolution (i.e., multiscale remotely sensed data) were obtained for 

the same forested area. The study site is the Maya Biosphere Reserve of Guatemala‟s department of 

the Petén that is located in northern part of the Central American country of Guatemala. The selection 

of this site was based on the availability of several spatial resolution data sets for it at NASA‟s 

National Space Science and Technology Center in Huntsville, Alabama. 

Spanning approximately 2 million hectares of northern Guatemala, the Maya Biosphere  

Reserve (MBR) is an area of lowland tropical forests and expansive freshwater wetlands, part of the 

largest contiguous tropical moist forest remaining in Central America [41]. In general, the forests can 

be divided into 11 types, according to rainfall and elevation. Guatemala has more than 300  

broad-leafed tree species, with the main commercial species being Dialum spp. and Brosium spp. 

Coniferous forests are particularly prevalent above elevation 1,200 meters and are the dominant forest 

type outside El Petén. Pines (especially Pinus oocarpa, P. psuedostrobus and P. tenuifolia) are the 

most common coniferous species. Montane coniferous forests are often mixed with Quercus spp. and 

Cupressus lusitanica. Mangrove forests occur on both the Caribbean and Pacific coasts.  

The MBR is a complex of delineated management units including five national parks, four 

biological reserves (biotopos), a multiple use zone, and a buffer zone. The training site of this study  

is 11 km by 11 km within the national parks of this reserve (see Figure 2). Three different remotely 

sensed data sets with different spatial resolutions were available for this site (250 m, 30 m, and 4 m) 

captured by three different sensors mounted on three different satellites. The instruments are Moderate 

Resolution Imaging Spectroradiometer (MODIS), Thematic Mapper (TM), and Space Imaging 

(IKONOS), respectively.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of a number of instruments 

carried on board the Terra platform, which was launched in December 1999. MODIS provides 

continuous global coverage every one to two days, and collects data from 36 spectral bands. Two 
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bands (1–2) have a resolution of 250 meters. Three bands (3–5) have a resolution of 500 meters. The 

remaining bands (6–36) have a resolution of 1,000 meters. Band designations of MODIS are shown in 

Table 1. Figure 3 shows the MODIS multiple spectral images of the study area. These data were 

obtained from the NASA Land Processes Distributed Active Archive Center (LP DAAC). Bands 1 

through 7 were the only available data. Bands 6 and 7 were not utilized in the study. 

Figure 2. Guatemala study area location. 
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Table 1. MODIS band designations. 

BAND Wavelength (micrometers) Resolution (meters) 

1 0.620–0.670 250 

2 0.841–0.876 250 

3 0.459–0.479 500 

4 0.545–0.565 500 

5 0.1230–0.1250 500 

6 0.1628–0.1652 1,000 

7 2.105–2.155 1,000 

8 0.405–0.420 1,000 

9 0.438–0.448 1,000 

10 0.483–0.493 1,000 

11 0.526–0.536 1,000 

12 0.546–0.556 1,000 

13h 0.662–0.672 1,000 

13l 0.662–0.672 1,000 

14h 0.673–0.683 1,000 

14l 0.673–0.683 1,000 

15 0.743–0.753 1,000 

16 0.862–0.877 1,000 

17 0.890–0.920 1,000 

18 0.931–0.941 1,000 

19 0.915–0.965 1,000 

20 3.660–3.840 1,000 

21 3.929–3.989 1,000 

22 3.929–3.989 1,000 

23 4.020–4.080 1,000 

24 4.433–4.498 1,000 

25 4.482–4.549 1,000 

26 1.360–1.390 1,000 

27 6.535–6.895 1,000 

28 7.175–7.475 1,000 

29 8.400–8.700 1,000 

30 9.580–9.880 1,000 

31 10.780–11.280 1,000 

32 11.770–12.270 1,000 

33 13.185–13.485 1,000 

34 13.485–13.785 1,000 

35 13.785–14.085 1,000 

36 14.085–14.385 1,000 
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Figure 3. Multiple spectral images of MODIS data for Guatemala study area. 

 

Thematic Mapper (TM) is a multispectral scanning radiometer that is carried on board the Landsat 

platforms. The TM sensors have provided nearly continuous coverage from July 1982 to present, with 

a 16-day repeat cycle. TM image data consists of seven spectral bands with a spatial resolution of 30 

meters for most bands (1–5 and 7). Resolution for the thermal infrared (band 6) is 120 meters. Band 

designations are shown in Table 2. Figure 4 shows the Landsat TM multiple spectral images of the 

study area. The approximate scene size is 11 × 11 kilometers which incorporates 367 × 367 pixels. 

These data were obtained from the EROS Data Center of the United States Geological Survey (USGS). 

Those Landsat TM scenes were originally processed with the Standard Terrain Correction (Level 1T) 

Band 1 Band 2 

Band 3 Band 4 

Band 5 Band 7 
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which provides systematic radiometric and geometric accuracy by incorporating ground control points 

while employing a Digital Elevation Model (DEM) for topographic accuracy. 

Figure 4. Multiple spectral images of Landsat TM data for Guatemala study area. 

 

Space Imaging‟s IKONOS imagery data consists of four spectral bands with a spatial resolution  

of 4 meters for all bands. Band designations are shown in Table 3. Figure 5 shows the IKONOS 

multiple spectral images of the study area. The scene size is 11 × 11 kilometers which incorporates  

2,750 × 2,750 pixels. These data were obtained from NASA‟s Scientific Data Purchase Program.  

Previous work employing spatial statistical techniques, particularly fractal analysis of remote 

sensing data, have found that the influence of atmospheric effects on the overall statistical analysis 

results is very little [1,6,9], thus atmospheric correction of the satellite data for the analysis of this 

study was not deemed necessary. 

A visual study of the Figures 3 through 5 can show that the images of IKINOS which have the 

finest spatial resolution are the clearest images, followed by Landsat TM images, while the images of 

MODIS which have the coarsest spatial resolution were the least clear images. This is due to the fact 

Band 1 Band 2 

Band 3 Band 4 

Band 5 Band 7 
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that the finer the resolution, the more pixels the satellite image which covers a certain area will have, 

and the more details the satellite image will pick up. 

Table 2. Thematic Mapper (TM) band designations. 

Band Wavelength (micrometers) Resolution (meters) 

Band 1 0.45–0.52 30 

Band 2 0.52–0.60 30 

Band 3 0.63–0.69 30 

Band 4 0.76–0.90 30 

Band 5 1.55–1.75 30 

Band 6 10.40–12.50 120 

Band 7 2.08–2.35 30 

Table 3. IKONOS band designations. 

Band  Wavelength (micrometers) Resolution (meters) 

Band 1 0.445–0.516 4  

Band 2 0.506–0.595 4 

Band 3 0.632–0.698 4 

Band 4 0.757–0.853 4 

Figure 5. Multiple spectral images of IKONOS data for Guatemala study area. 

 

 

Band 2 Band 1 

Band 3 Band 4 
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3.2. Methodology 

Only the images of similar wavelength channels among the three different resolution data sets 

should be used in order to focus on studying the effect of spatial resolution alone without any 

interference by the effect of spectral characteristics. After comparing the ranges of wavelengths of the 

bands in all data sets, it turned out that the visible bands were the ones that the three different spatial 

resolution data sets had most in common. The visible bands 1, 3, and 3 of MODIS, Landsat TM, and 

IKONOS respectively have the most similar wavelengths and were used in the analysis of this study. 

The GIS module ICAMS [9,37] was used to perform the fractal analysis of the remotely sensed data. 

ICAMS provides the ability to calculate fractal dimensions of remotely sensed images using the 

isarithm, variogram [3] and triangular prism methods [42]. The advanced geographic image processing 

software ER Mapper 6.2 was used to display and enhance raster data. The GIS software, ARCINFO 

8.2, was used to overlay vector and raster data as well as link data from geographic and land 

information systems. The isarithm method was employed within the ICAMS software to compute the 

fractal dimensions of the image samples. 

Thirty samples were collected randomly from each image making sure to obtain equal coverage of 

all parts of the forest. Criteria for the selection of sample size were based on the resolution, minimum 

mapping unit size, and nature of the classes to be identified [43]. A smaller window size does not 

necessarily convey sufficient spatial or texture information to characterize land use types. On the other 

hand, if the window size is too large, too much information from other land use types could be 

included and hence the algorithm might not be efficient. Myint [43] and Zhao [44] used sample sizes 

from 30 × 30 pixels to 120 × 120 pixels for Landsat TM data. Since this study area is only 11 

kilometers square and in order to collect as many samples as possible, the sample size for Landsat TM 

images was chosen to be 1 kilometer square. The selected sample size covers 32 × 32 pixels. In order 

to cover the same area and location of each sample in MODIS and IKONOS images, the window sizes 

of each sample were 4 × 4 pixels and 250 × 250 pixels, respectively. Table 4 shows the results of the 

fractal calculations for all three instruments and Figure 6 shows the FD plots. The table and figure 

show the FD for the single visible bands used in the analysis for each instrument. 

3.3. Results and Discussion 

A one-way ANOVA test was conducted using the means of the fractal dimensions among the three 

different spatial resolution data sets (4 meters, 30 meters, and 250 meters). The mean FD and standard 

deviation of the data are given at the bottom of the data columns for each instrument on Table 4. The 

ANOVA test showed that the three means are significantly different at the 0.05 significance  

level (p value < 0.001) in fractal dimensions (FD). The significance level was chosen to be 0.05  

based on the research literature in the areas of remote sensing at different scales and land 

characterization [8,45-47]. As shown in Table 4 and Figure 6, the finest resolution data (i.e., 4 meters) 

had the highest fractal dimensions among samples (average FD = 2.95), followed by the 30-meter 

spatial resolution data (average FD = 2.78), and the most coarse spatial resolution data  

(i.e., 250 meters) had the lowest fractal dimensions (average FD = 2.47). 

Even aside from the statistical significance, these differences can be considered large. For instance, 

even in the case of different land covers (i.e., urban, forest, or agricultural), investigators have found 
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that the differences in FD are of the same magnitude as given above. For example, Zhao [44] found, 

using Landsat TM data (30-meter resolution), that the average FD for an urban study area was 2.69, 

the average FD for a forest study area was 2.81, the average FD for an agricultural study area  

was 2.62, and the average FD for a coastal study area was 2.73. In another study, Emerson et al. [8] 

found, using ATLAS data (10-meter resolution), that the average FD for an urban study area was 2.74, 

the average FD for a forest study area was 2.86, and the average FD for an agricultural study area  

was 2.61, and the average FD for a coastal study area was 2.73.  

Table 4. Fractal dimension results of Guatemala study area for different resolution data.  

Sample 

Number 

 

  IKONOS 

 (4-m resolution) 

 

Landsat TM 

(30-m resolution) 

 

MODIS 

(250-m resolution) 

 
1 2.9385 2.7401 2.4482 

2 2.9808 2.7295 2.3846 

3 2.9310 2.7488 2.5721 

4 2.9682 2.8996 2.5277 

5 2.9760 2.8290 2.2712 

6 2.8102 2.7972 2.4103 

7 2.9828 2.8138 2.6507 

8 2.8734 2.8304 2.5402 

9 2.9661 2.8416 2.3777 

10 2.9800 2.8772 2.6066 

11 2.9589 2.7318 2.4584 

12 2.9412 2.8161 2.4855 

13 2.9774 2.9283 2.4857 

14 2.9786 2.7356 2.5165 

15 2.9356 2.6980 2.4528 

16 2.9529 2.7347 2.5698 

17 2.9590 2.7467 2.6343 

18 2.9793 2.7262 2.5749 

19 2.9718 2.7110 2.3860 

20 2.9815 2.8275 2.4622 

21 2.8933 2.7747 2.3647 

22 2.9765 2.6507 2.4330 

23 2.9292 2.7990 2.3608 

24 2.9646 2.7842 2.4082 

25 2.9373 2.8063 2.4375 

26 2.9250 2.7210 2.5292 

27 2.9054 2.8278 2.4564 

28 2.9512 2.7569 2.5435 

29 2.9300 2.7139 2.5190 

30 2.9259 2.6807 2.3747 

Average: 2.9461 2.7759 2.4747 

Std. Dev.: 0.0382 0.0655 0.0903 
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Figure 6. Fractal dimension results of Guatemala study area for different spatial resolution 

data sets. 

 

The results of this study (i.e., the fractal dimension was the highest for the finest spatial resolution 

(4 meters) and the lowest for the coarsest spatial resolution (250 meters)) are due to the fact that the 

finer the resolution, the more details the satellite image will pick up within an area, and so the more 

complex it will become. These results agree with the results of Emerson et al. [8] who found that 

larger pixel size in the forested scene decreases the complexity of the image as individual clumps of 

trees are assimilated into larger blocks. Emerson et al. [8] also concluded that it is likely that the 

tortuosity of isarithms of gray values in the forested image, as indicated by a higher FD value, would 

be greater if the sensor were able to resolve individual trees within the scene. That is why the 4-m 

resolution IKONOS data had much higher fractal dimensions than the 30-m resolution Landsat and  

the 250-m resolution MODIS data sets in this study. 

A Bartlett‟s χ
2
 test [48] on the variances of the three data sets revealed that they are also different at 

the 0.05 significance level (B > 5.991). Comparisons of the results show that the 4-meter resolution 

IKONOS data have the lowest variation in the fractal dimensions (standard deviation = 0.0382) 

followed by the TM (s.d. = 0.0655) and then the MODIS (s.d. = 0.0903). In interpreting these results, 

it is convenient to make use of previous research on fractal analysis from remote sensing data. It has 

been demonstrated by numerous investigators [1,6,7,9] that fractal dimensions derived from remotely 

sensed data fall within a practical range of 2.5 to 3.0, with a value of 2.5 effectively representing a 

water body and 3.0 corresponding to a three dimensional image. Thus, for the FD to effectively 

capture the variation in surface complexity of a remotely sensed image, one would like for the 

computed sample values to freely range within those bounds. Now, in the case of the 4-m resolution 
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IKONOS data, the fine spatial resolution revealed so much detail on the image that the fractal 

dimension remained near the upper bound (range = 2.81–2.98). On the other hand, although  

the 250-meter resolution image resulted in the highest variation in the fractal dimensions (standard 

deviation = 0.0903), the relative lack of detail in those images resulted in FD values that fell below the 

optimum range (range = 2.27–2.65). Based on results gained from previous experience, it would be 

very difficult to interpret values in that range, particularly those below 2.5. However, the 30-meter 

resolution image evidenced a variation in the fractal dimensions that fell fairly in the accepted range 

(range = 2.65–2.928). In other words, the Landsat TM images resulted in FD values that would 

ultimately be of more practical use than MODIS and more sensitive to changes in landscape 

complexity than IKONOS. Thus, the conclusion is that Landsat TM 30-meter resolution data would be 

better than IKONOS 4-meter and MODIS 250-meter data for the purpose of detecting potential 

differences in forest characteristics using fractal dimensions. 

4. Spectral Characteristics Effect on Spatial Indices 

The results of the previous section appear to indicate that, among the spatial resolutions tested,  

the 30-m TM data were best suited for evaluation of forested landscapes using fractal dimensions. It 

should be remembered that the FD results analyzed in the previous section were average values 

computed from particular visible bands of the three instruments. The next question to be answered then 

is, among the spectral bands available on the TM instrument, which are most suitable for fractal 

analysis? This section is designed to illustrate the effect of spectral characteristics of the different TM 

bands on fractal measurements in forested landscapes. However, this time four different Landsat TM 

images were obtained for four forested areas in the southeastern United States. The forests analyzed 

were the Talladega, Oakmulgee, and Bankhead National Forests in Alabama, and the Chattahoochee 

National Forest in Georgia (Figure 7). The forests are operated by the U.S. National Forest Service and 

encompass areas of 61,904 ha, 128,638 ha, 148,475 ha, and 26,209 ha respectively. The forests contain 

a mixture of softwood and hardwood species with softwoods (longleaf slash pine, shortleaf loblolly, 

cypress) predominating by about 58.5% to 41.5% in all of the forests except Talladega where the 

hardwoods (white oak, hickory, ash, yellow poplar) barely predominate (52% to 48%). Elevations vary 

among the areas from a low of 60–170 m above mean sea level in the Oakmulgee forest to a high  

of 210–538 m above mean sea level in the Talladega forest. Landsat TM images of these forests were 

obtained representing the Summer 2000 period for the Talladega and Chattahoochee forests and for the 

Summer 1999 window for the Oakmulgee and Bankhead forests. Figures 8–11 show images of the 

visible and infrared TM bands for all study areas. 

The data were processed in much the same way as described in the case of the spatial resolution 

analysis. After initial processing, samples were randomly selected from the image for each forest, 

again making sure to cover the entire forest each time. The selected sample size was 100 × 100 pixels 

based on reported literature [43,44]. The total numbers of collected samples were 36, 52, 32, and 31 

for the Talladega, Oakmulgee, Bankhead, and Chattahoochee National Forests respectively. The raster 

data of the samples were then imported into ICAMS where the fractal dimensions were computed for 

each band. The FD results are plotted in Figures 12–15. The descriptive statistics of the FD values for 

all bands are given in Tables 5–8 for each study area. 
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Figure 7. Location of Bankhead, Oakmulgee, Talladega, and Chattahoochee National Forests. 
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Figure 8. Multiple spectral images of Talladega National Forest, AL, USA. 
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Figure 9. Multiple spectral images of Oakmulgee National Forest, AL, USA. 
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Figure 10. Multiple spectral images of Bankhead National Forest, AL, USA. 
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Figure 11. Multiple spectral images of Chatahoochee National Forest, GA, USA. 
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Figure 12. Fractal dimension values of samples within Talladega National Forest:  

(a) visible bands (b) near and middle infra red bands (c) all bands. 
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Figure 13. Fractal dimension values of samples within Oakmulgee National Forest:  

(a) visible bands (b) near and middle infra red bands (c) all bands. 
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Figure 14. Fractal dimension values of samples within Bankhead National Forest:  

(a) visible bands (b) near and middle infra red bands (c) all bands. 
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Figure 15. Fractal dimension values of samples within Chattahoochee National Forest:  

(a) visible bands (b) near and middle infra red bands (c) all bands. 
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Table 5. Descriptive statistics of fractal dimensions for all bands: Talladega  

National Forest. 

Statistic Fractal Dimension (FD) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Average 2.8885 2.8486 2.8386 2.7610 2.8040 2.6274 2.8328 

Max 2.9999 2.9998 2.9935 2.8717 2.9968 2.7825 2.9999 

Min 2.6973 2.6434 2.6235 2.6386 2.6220 2.4391 2.6327 

Std. Dev. 0.0771 0.0706 0.1013 0.0513 0.0900 0.0746 0.1044 

CV 0.0267 0.0248 0.0357 0.0186 0.0321 0.0284 0.0369 

Table 6. Descriptive statistics of fractal dimensions for all bands: Oakmulgee  

National Forest. 

Statistic Fractal Dimension (FD) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Average 2.8102 2.7960 2.7756 2.7591 2.7481 2.5731 2.7506 

Max 2.9999 2.9904 2.9998 2.8331 2.8757 2.7279 2.9243 

Min 2.6790 2.6787 2.6151 2.6118 2.5992 2.4795 2.5856 

Std. Dev. 0.0840 0.0803 0.0886 0.0437 0.0638 0.0663 0.0796 

CV 0.0299 0.0287 0.0319 0.0158 0.0232 0.0258 0.0289 

Table 7. Descriptive statistics of fractal dimensions for all bands: Bankhead  

National Forest. 

Statistic Fractal Dimension (FD) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Average 2.9046 2.8646 2.8343 2.8241 2.8347 2.6507 2.8448 

Max 2.9536 2.9268 2.9052 2.9070 2.9098 2.7833 2.9364 

Min 2.8116 2.7502 2.7777 2.7086 2.7626 2.5710 2.7691 

Std. Dev. 0.0294 0.0374 0.0291 0.0453 0.0329 0.0546 0.0383 

CV 0.0101 0.0130 0.0103 0.0160 0.0116 0.0206 0.0135 

Table 8. Descriptive statistics of fractal dimensions for all bands: Chattahoochee  

National Forest. 

Statistic Fractal Dimension (FD) 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Average 2.8980 2.8453 2.8475 2.7887 2.8129 2.6301 2.8353 

Max 2.9999 2.9759 2.9999 2.9594 2.9127 2.7371 2.9999 

Min 2.7362 2.6807 2.6671 2.6270 2.6493 2.5037 2.6410 

Std. Dev. 0.0839 0.0849 0.0959 0.0738 0.0705 0.0713 0.0982 

CV 0.0289 0.0298 0.0337 0.0265 0.0251 0.0271 0.0346 

4.1. Statistical Analysis 

One-way ANOVA tests were conducted for the FD results of similar bands among all study areas 

(i.e., Band 1 results from all study areas were compared to each other, Band 2 results from all study 
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areas were compared to each other, etc.). The ANOVA results showed that, at the 0.05 significance 

level, the FD values were significantly different in all visible bands. The p values for Band 1, Band 2, 

and Band 3 were 0.04, <0.001, and 0.01, respectively. The results also showed that, at the 0.05 

significance level, the FD values were not significantly different for the infrared bands Band 5,  

Band 6, and Band 7. The p values for Band 5, Band 6, and Band 7 were 0.102, 0.232,  

and 0.273, respectively. 

The results given above agree with the results of Quattrochi et al. [1] in which the authors found 

that as TM spectral band wavelength increases, Fractal Dimension values become more similar. These 

results also agree with the research done by Huang [49] who found that the variance of radiance over 

forest canopies with varying Leaf Area Index (LAI) were larger in the visible bands than in the mid 

and thermal infrared bands. Also, even for plants with similar LAI, reflectance in the visible 

wavebands with a higher chlorophyll content is lower than that of plants with a lower chlorophyll 

content. In contrast, reflectance in the near-mid infrared wavebands is almost identical [50]. So this 

suggests that the spectral responses from vegetation chlorophyll have a bigger influence on the Fractal 

Dimension (FD) (which is a measure of spatial heterogeneity) in the visible bands than would be the 

case in the near-mid infrared bands. 

Figure 16 shows the average FD of the different bands for the four national forests. An examination 

of the average FD values from visible to middle-infrared bands for each study area indicates that the 

visible bands 1, 2, and 3 had the highest average FD values. The near and middle infrared bands 4 and 

5 had the lowest average FD values. While the middle-infrared band 7 had average FD values that 

were in between. This could be attributed to the larger variance of radiance over forest canopies in the 

visible bands than in the near-mid infrared bands as explained previously rendering the images in those 

bands more heterogeneous or less homogonous. The more heterogeneous the remotely sensed image 

the more complex the surface will get in terms of fractals and the higher the fractal dimension will be. 

The thermal infrared (Band 6) has the lowest FD values among all bands for all study areas. As a 

matter of fact, FD values for Band 6 were very much lower than for all other bands. This dramatic drop 

in fractal dimension, and hence, image complexity, is believed to be due to the fact that TM Band 6 

(i.e., thermal infrared band 10.42–12.50 µm) is different from the other six TM bands because it has a 

spatial resolution of 120-m, while the other TM bands have a 30-m spatial resolution. Also, this 

thermal infrared band is an indicator of the surface temperature, which is relatively constant for trees, 

resulting in a homogonous surface and low FD. These trends in the average FD values among all 

Landsate TM spectral bands agree with the results of Zhao [44] that used fractals for the analysis of 

Landsat TM data to compare among different land cover types and forest was one of them. And they 

also agree with the results of Lam et al. [9] that have used fractals for the analysis of Landsat TM data 

for environmental assessment purposes. 

An examination of the average fractal dimension (FD) values for each band indicates that the 

Bankhead National Forest image bands have the highest fractal dimensions among all the images, 

followed by Chattahoochee National Forest, Talladega National Forest, and Oakmulgee National 

Forest image bands. Additionally, a decrease in FD values is observed within the visible light 

wavelength region in all study areas, while an increase is observed in the near-infrared and  

middle-infrared regions. This corroborates the findings from previous studies [1,9,44] that have used 

fractals for the analysis of Landsat TM data. 
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Figure 16. Descriptive statistics of fractal dimensions for all bands: (a) average  

(b) standard deviation. 

  

Finally, an examination of the average FD values for each band also indicates that the overall trend 

of the average FD values of all study areas (i.e., national forests) is fairly constant throughout the 

entire spectral range (see Figure 16). However, the differences in FD values are noticeable among the 

four national forests except between Talladega National Forest and Chattahoochee National Forest 

which have the highest variation in elevation. That suggests that rough terrain could mask the effect of 

the differences in stand characteristics. Therefore, it appears that topographic factors are major 

contributors to spectral variation in high relief areas while the topographic effects are minimal and 

canopy characteristics are the primary determinants of spectral response in areas of gentle terrain. 

However, future research using more topographic parameters such as slope and slope aspect to 

evaluate the effect of topography on spectral variation and fractal dimensions in more detail is needed. 

5. Summary and Conclusions 

This study was aimed at determining the spatial resolution and spectral characteristics of remotely 

sensed instruments that would best characterize forested landscapes through the use of fractals. 

Initially, the effects of spatial resolution on the computed fractal dimensions were examined using data 

from three instruments with different spatial resolutions. Based on the criteria of mean value and 

variation within the accepted ranges of fractal dimensions, it was determined that 30-m Landsat TM 

data were best able to capture the complexity of a forested landscape in Central America compared to 

4-m IKONOS data and 250-m MODIS data. This conclusion was based on the observation that the TM 

derived fractal dimensions were centered well within the desired range of 2.5–3.0 and that the sample 

values varied better within that range than did the fractals derived from the other data sets.  

Next, among the spectral bands available on the TM, tests showed that the spatial indices of fractal 

dimensions are much more distinguishable in the Landsat TM visible bands than they are in the 

Landsat TM near-mid infrared bands. Thus, based solely on the fractal analysis, the fractal dimensions 

could have relatively higher chances to distinguish forest characteristics (e.g., stand sizes and species) 

in the Landsat TM visible wavelength bands than in the near-mid infrared bands. That could be 

attributed to the larger variance of radiance over forest canopies with varying Leaf Area Index (LAI) 

in the visible bands than in the near-mid infrared bands. Also, even for plants with similar LAI, 
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reflectance in the visible wavebands with a higher chlorophyll content is lower than that of plants with 

a lower chlorophyll content. In contrast, reflectance in the near-mid infrared wavebands is almost 

identical. Therefore, spectral responses from the vegetation chlorophyll have a bigger influence on the 

fractal dimension (which is a measure of spatial heterogeneity) in the visible bands than in the case of 

the near-mid infrared bands. This study has focused on a relative comparison between visible and  

near-mid infrared wavelength bands; however it will be important to study in the future the effect of a 

combination of those bands such as the Normalized Difference Vegetation Index (NDVI) on fractal 

dimensions of forested landscapes as well as the ability of fractal dimensions to help classify forest 

characteristics. Finally, additional work is also needed in order to confirm that the findings of this 

paper are generally evident in other forested landscapes with other species and canopy characteristics 

than those used in this study. 
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