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Abstract: Tillage information is crucial for environmental modeling as it directly affects 

evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and 

water erosion from agricultural fields. However, collecting this information can be time 

consuming and costly. Remote sensing approaches are promising for rapid collection of 

tillage information on individual fields over large areas. Numerous regression-based models 

are available to derive tillage information from remote sensing data. However, these models 

require information about the complex nature of underlying watershed characteristics and 

processes. Unlike regression-based models, Artificial Neural Network (ANN) provides an 

efficient alternative to map complex nonlinear relationships between an input and output 

datasets without requiring a detailed knowledge of underlying physical relationships. 

Limited or no information currently exist quantifying ability of ANN models to identify 

contrasting tillage practices from remote sensing data. In this study, a set of Landsat TM-

based ANN models was developed to identify contrasting tillage practices in the Texas High 

Plains. Observed tillage data from Moore and Ochiltree Counties were used to develop and 

evaluate the models, respectively. The overall classification accuracy for the 15 models 

developed with the Moore County dataset varied from 74% to 91%. Statistical evaluation of 

these models against the Ochiltree County dataset produced results with an overall 

classification accuracy varied from 66% to 80%. The ANN models based on TM band 5 or 
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indices of TM Band 5 may provide consistent and accurate tillage information when applied 

to the Texas High Plains.  

Keywords: tillage mapping; Landsat; Texas high plains 

 

1. Introduction 

Knowledge on prevailing adoption rate of conservation tillage practices in relation to topography 

within a watershed is important for targeting critical areas to reduce soil erosion. It is also helpful to 

evaluate the success of soil conservation programs that promote adoption of conservation tillage 

practices. Conservation tillage includes no-till, ridge-till, strip-till, mulch-till and reduced till. 

Collecting tillage information manually on individual fields at a regional scale can be time consuming, 

labor intensive, and costly. Moreover, tillage data from few fields in a watershed provide limited 

capabilities for environmental assessment as they provide point rather than area-based information. 

Remote sensing techniques promise considerable improvements in providing such spatial data over a 

large area in a time and cost-effective manner. Conventional methods of mapping tillage practices over 

a large area include field survey and manual interpretation of film products derived from sensors 

mounted on aerial or satellite platforms. In a 5-year study, DeGloria et al. [1] manually interpreted the 

Landsat Multi-Spectral Scanner (MSS) data for identifying land under conventional and conservation 

tillage practices in the central coastal region of California. They achieved an overall classification 

accuracy of 81%. Motsch et al. [2] derived a crop residue map showing four tillage categories from 

Landsat Thematic Mapper (TM) data for Seneca County in northern Ohio with an accuracy of 68%. 

However, accuracy of their maps was a function of a human interpreter’s ability to identify tillage 

patterns on the image. 

In recent years, numerous regression-based spectral models have been developed to measure crop 

residue cover or identify contrasting tillage practices [3-7]. These models were based on the 

differences in the magnitude of spectral responses in visible and near infrared wavelengths for 

different residue covers. Daughtry et al. [8] evaluated numerous spectral models for estimating crop 

residue cover using Landsat TM data. They found weak relationships between Landsat TM indices and 

percentage crop residue cover. Similar results were reported in Minnesota [4]. However, these studies 

reported higher prediction accuracy when crop residue cover was broadly classified into two 

categories, (>30% and <30% of residue cover) indicating that Landsat TM indices are useful in 

identifying contrasting tillage practices.  

Linear logistic regression modeling is the most common approach used for mapping tillage 

practices. A number of studies [9-11] have successfully used this technique to develop remote sensing 

based models for classifying contrasting tillage practices at a regional scale and reported varying 

degree of accuracy. However, these models should be thoroughly evaluated before using them in 

different geographic regions to adjust the cut-point probability values in order to attain acceptable 

classification accuracy or new models may need to be developed when existing models are insensitive 

to tillage classes [7]. Yet another concern in using logistic regression method for mapping the tillage is 

that the available data is forced to conform to a predefined model form. Note that the relationship 
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between the sensor data and tillage features is highly nonlinear and unknown. Forcing data to confirm 

to a predefined model may result in prediction errors.  Consequently, most of the regression-based 

models currently in use often fail to accurately capture this relationship. In this context, data-driven 

models may be preferable to discover relationships from input-output data even when the user does not 

have a complete physical understanding of the underlying processes.  

The objective of this study was to develop and evaluate Artificial Neural Network (ANN) models to 

identify contrasting tillage practices in the Texas High Plains. Development of these models is 

expected to provide a rapid and cost effective approach for mapping contrasting tillage practices over a 

large agricultural region. 

2. Artificial Neural Network (ANN) 

An ANN is a nonlinear mathematical structure capable of representing arbitrarily complex 

nonlinear processes. It can be used to relate inputs and outputs of any system [12]. ANN models have 

been used successfully to model complex nonlinear input/output time-series relationships in a wide 

variety of fields including finance [13], medicine [14], physics [15], engineering, geology, and 

hydrology [16,17]. The main advantage of this approach over traditional methods is that it does not 

require information on complex processes under consideration to be explicitly described in a 

mathematical form.  

ANNs can be characterized as massive parallel interconnections of simple neurons that function as 

a collective system. The network topology an ANN consists of a set of nodes (neurons) connected by 

links and usually organized in a number of layers. Each node in a layer receives and processes the 

weighted input from a previous layer and transmits its output to nodes in the following layer through 

links. Each link is assigned a weight, which is a numerical estimate of the connection strength. The 

weighted summation of inputs to a node is converted to an output according to a transfer function 

(typically a sigmoid function). Most ANNs have three or more layers: an input layer, which is used to 

present data to the network; an output layer, which is used to produce an appropriate response to the 

given input; and one or more intermediate or hidden layers, which are used to act as a collection of 

feature detectors. Determination of appropriate network architecture is one of the most important, but 

also one of the most difficult tasks in the model-building process. Unless carefully designed, an ANN 

model can lead to over parameterization and result in an unnecessarily complex network. 

An ANN model of a physical system can be considered as a form of highly complex and nonlinear 

regression model of undefined structure. For instance, consider an ANN model with n input neurons 

(x1, …, xn), h hidden neurons (z1, …, zh), and m output neurons (y1, …, ym). Let i, j, and k be the indices 
representing input, hidden, and output layers, respectively. Let j be the bias for neuron zj and φκ be the 

bias for neuron yk. Let wij be the weight of the connection from neuron xi to neuron zj and βjκ be the 

weight of connection from neuron zj to yk. The function that an ANN calculates is: 
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where gA and fA are activation functions, which are usually continuous, bounded, and non-decreasing. 

The usual choice is the logistic function for a variable s is defined as: 
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The training of an ANN involves finding the optimal weight vector for the network. Many training 

techniques are available. The aim of network training is to find a global solution to the weight matrix, 

which is typically a nonlinear optimization problem [18]. Consequently, the theory of nonlinear 

optimization is applicable to the training of ANNs. The suitability of a particular method is generally a 

compromise between computation cost and performance, and the most popular is the back propagation 

algorithm [19]. 

3. Study Area and Data 

This study was conducted with tillage data collected from 76 commercial operated farms (31 in 

Moore and 41 in Ochiltree Counties) in the Texas High Plains (Figure 1). Moore County is located in 

the north-central part of the Texas High Plains and has a total area of 236,826 ha. Two-thirds of the 

land is in the nearly level, smooth uplands of the High Plains [20] and most of it under row crop 

production. Corn, sorghum, and wheat are the major crops in the Moore County. In 2004, it ranked 5th 

in corn production and accounted for about 5.7% of the total corn production in Texas [21]. Ochiltree 

County is 234,911 ha in area with more than 70% of the land under crop production. Sorghum, wheat 

and corn are the major crops in the county. In 2004, Ochiltree County ranked 8th in Texas in sorghum 

production and accounted for about 2.4% of the state total sorghum production [21]. Typical planting 

dates for major summer crops in the study area vary anywhere from the 2nd week of April to the 3rd 

week of May. Annual average precipitation is about 481 and 562 mm for Moore and Ochiltree 

Counties, respectively. Crop water needs are supplemented with groundwater from the underlying 

Ogallala Aquifer. Nearly level to gently sloping fields with silty clay soils of the Sherm series occupy 

nearly the entire crop lands in both Moore and Ochiltree Counties. Conventional tillage practices in 

these counties usually consist of offset disk in the fall. Common conservation tillage practices are no 

plowing in the fall, and sweep or disk plowing at planting that leaves at least 30% of the surface 

covered with crop residue after planting. 



Remote Sens. 2010, 2                            

 

 

583

Figure 1. Location of Moore and Ochiltree Counties in the Texas High Plains, USA. 

 

4. Materials and Methods 

In this study, the development and evaluation of tillage models consisted of four steps: (1) remote 

sensing data acquisition, (2) ground-truth data collection, (3) development of ANN models, and  

(4) evaluation of models using percent correct and kappa (k) statistic. Two, Level-1 processed 

precision corrected Landsat TM scenes acquired during the 2005 pre-planting season were used for 

model development and evaluation purposes. One scene was acquired by the satellite on May 10, 2005 

for Ochiltree County (Path 30 / Row 35) and the other scene was acquired on May 17, 2005 for Moore 

County (Path 31 / Row 35). Ground-truth survey of prevailing tillage practices in Moore and Ochiltree 

Counties were scheduled to coincide with satellite overpass days. Tillage data was collected from 35 

and 41 randomly selected commercial fields in Moore and Ochiltree Counties, respectively.  

Ground-truth data included geographic coordinates obtained using a handheld Global Positioning 

System (GPS), infrared images of residue cover taken at 2-m height using the Agricultural Digital 

Camera [Dycam Inc. (Mention of trade or commercial products in this article is solely for the purpose 

of providing specific information and does not imply recommendation or endorsement by the US 

Department of Agriculture.), Chatsworth, CA, USA], and digital pictures of residue cover taken with  

a 5 Mega pixel digital camera. 

The crop residue cover was estimated by classifying the infrared images using Multispec© image 

processing software developed by the Purdue Research Foundation. Tillage practices were assigned a 

class value of 0 for conventional tillage and 1 for conservation tillage. Tillage classification was based 

on the percentage of the soil surface covered with crop residue. We defined conservation tillage 

systems as those that retained at least 30% of the soil surface covered with crop residue after a crop 
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was planted. The tillage and crop residue characteristics of selected commercial fields in Moore and 

Ochiltree Counties are presented in Table 1. 

Table 1. Tillage and crop residue characteristics of randomly selected commercial  

fields for ground truth data from Moore and Ochiltree Counties, Texas during the 2005  

pre-planting season. 

Tillage 
Number 
of Fields 

Crop Residue 

Corn Soybean Sorghum Wheat Others 

Moore County 

Conservation Tillage 19 10 1 3 4 1 

Conventional Tillage 16 8 – 3 5 – 

Total 35 18 1 6 9 1 

Ochiltree County 

Conservation Tillage 20 2 0 8 10 – 

Conventional Tillage 21 2 7 7 4 1 

Total 41 4 7 15 14 1 

Table 2. Mean brightness values for each field in Moore and Ochiltree Counties.† 

Tillage Practice & Statistic TM1 TM2 TM3 TM4 TM5 TM6 TM7 

Moore County 

Conservation Tillage        
Mean 105.2 53.8 71.9 81.6 157.3 132.2 85.6 
Standard Deviation 10.2 5.3 6.4 7.5 13.2 13.3 6.1 
Conventional Tillage        
Mean 97.8 48.5 63.3 73.3 132.1 131.6 75.3 
Standard Deviation 8.3 3.7 5.5 6.7 15.9 11.9 8.8 

Ochiltree County 

Conservation Tillage        
Mean 102.2 53.3 73.7 82.6 181.2 162.4 110.9 
Standard Deviation 5.9 4.6 7.2 8.7 13.9 2.1 16.0 
Conventional Tillage        
Mean 93.7 47.7 64.4 72.2 157.2 162.0 99.7 
Standard Deviation 8.9 5.8 8.9 9.7 17.8 3.4 11.6 

† TM1, TM2, etc. are TM bands 1, 2, etc. 

Ground truth locations on each image were identified using the GPS coordinates for extracting 

spectral reflectance data from each TM band image. In Landsat TM data, reflectance values are stored 

as brightness values (or digital numbers) in the 8-bit format. The raw brightness values for ground 

truth pixels were extracted and analyzed using image processing software. Table 2 presents the mean 

brightness values for Moore and Ochiltree Counties. For model development and evaluation, mean 
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reflectance data from 9-pixels (ground-truth pixel and surrounding 8 pixels) was used. The Moore 

County dataset was used for model development and the Ochiltree County dataset was used for  

model testing. 

For ANN model development, TM indices were developed with all possible combinations of two 

bands from all seven Landsat 5 TM bands. The TM indices included difference indices, sum indices, 

product indices, ratio indices, and normalized difference indices. ANN models were developed to 

derive tillage information with inputs as (1) the brightness value for each TM band and various 

combinations, and (2) each difference, sum, product, and normalized difference index. Sigmoid 

function was used in the hidden and output layers of the ANN. The number of hidden nodes in the 

hidden layer was identified by trial and error, as currently there is no guideline to derive number of 

hidden layers a priory. The back propagation method was used for optimization of the ANN models. 

Since the output of an ANN was a tillage probability value between 0 and 1, a cut point tillage 

probability that yields the highest percent correct for each model was suggested for tillage 

classification. Considering the performance of the models in terms of percent correct, a set of best 

models was selected for validation with Ochiltree County dataset. 

The selected models were evaluated against the Ochiltree County dataset for their ability to 

accurately identify conservation and conventional tillage systems. Two methods were used to 

determine tillage classification accuracy. In Method I, cut-point probabilities derived from the Moore 

County dataset were used, whereas in Method II, cut-point probabilities were determined  

by comparing ground-truth data with tillage probability values to maximize the tillage  

classification accuracy. 

For model selection and evaluation, error matrices [22] were developed for selected ANN models to 

determine the overall classification accuracy (percent correct) and kappa (k) values. Percent correct 

was calculated by dividing the sum of correctly classified fields by the total number of fields 

examined. The “k value is a measure of the difference between two maps and the agreement that might 

be contributed solely by chance matching of the two maps” [23]. The k value was calculated as: 

k
Observed Expected

Expected



1

 (4) 

where “observed” is the percent correct and “expected” is an estimate of the chance agreement to the 

“observed.” A k value of +1.0 indicates perfect accuracy of the classification. Models with a k value of 

0.4 or more is considered good. 

5. Results and Discussion 

Table 1 presents ground-truth data collected in the Moore and Ochiltree Counties, respectively, 

during 2005 planting season. Moore County dataset consisted of 19 fields in conservation tillage and 

16 fields in conventional tillage. About 53% of the conservation and 50% of conventionally tilled 

fields had corn residue. Sorghum residue was found in 3 fields in each tillage category and 5 out of 9 

fields with wheat residue were conventionally tilled. The mean soil organic carbon and soil water 

content were 1.39% and 0.22 m3 m−3, respectively, in conventionally tilled fields. Out of 41 fields in 

Ochiltree County, conservation tillage was found in 20 fields and about 50% of these fields had wheat 

residue. Conventional tillage was found in 21 fields, and only 19% of these had wheat residue. About 
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40% of the conservation and 33% of conventionally tilled fields had sorghum residue. Soybean fields 

accounted for 33% of the conventionally tilled fields and none under conservation tillage. Fields with 

conservation tillage generally exhibited greater mean brightness values than did conventionally tilled 

fields (Table 2). This is consistent with results reported by van Deventer et al. [9] and Stoner et al. [24], 

but contrary to Bricklemyer et al. [11], who found that conventionally tilled fields exhibited greater 

brightness values than did conservation tillage in Montana. 

Table 3. Landsat TM based ANN models’ performance for mapping tillage practices in 

Moore County, Texas. 

Model Inputs† 
Hidden 
Nodes 

Cut Point 
(%) 

Correct Predictions (%) 

All 
Fields

Conservation 
Tillage 

Conventional 
Tillage 

TM4 & TM5 5 47 91 95 90 

R45 & R46 5 49 91 95 90 

NDTI15 & NDTI56 6 59 89 85 95 

TM5 & TM6 4 58 89 85 95 

R35 & R36 5 50 89 90 90 

TM5 & TM7 5 51 89 95 86 

D15 & D16 5 43 89 95 86 

TM2, TM4, TM5 & TM6 5 48 86 95 81 

TM2 & TM5 5 50 83 90 81 

TM3 & TM5 5 49 83 90 81 

TM1 & TM5 5 40 83 95 76 

TM4 & TM7 5 53 74 80 76 

TM1 & TM4 5 48 74 80 76 

TM4, TM5, & TM6 5 50 69 75 71 

TM4 & TM6 5 50 66 75 67 
† TM1, TM2, etc. are TM bands 1, 2, etc.; NDTI − Normalized Difference Tillage Index;  

R45 = TM4/TM5; R46 = TM4/TM6; R35 = TM3/TM5; R36 = TM3/TM6; D15 = TM1 − TM5;  

D16 = TM1 − TM6; NDTI15 = (TM1 − TM5)/(TM1 + TM5); NDTI56 = (TM5 − TM6)/(TM5+TM6). 

The performances of the 15 best ANN models in identifying the tillage practices in Moore County 

are presented in Table 3. It is noted that the cut-point probabilities that yielded higher classification 

accuracy were varied from 0.43 to 0.59 and were close to the theoretical cut-point probability of 0.5. 

Models with combinations of TM band 4, 5 and/or 6 were shown to be useful for tillage identification 

purposes, with the best results obtained with the model that used TM bands 4 and 5. This model 

accurately classified 32 (91%) out of the 35 fields sampled in Moore County with a k value of 0.83. 

This indicates that reflectance values in the mid-infrared spectral range (1.55–1.75 µm) are highly 

sensitive to crop residue, and generally show higher reflectance in conservation tillage fields than in 

conventionally tilled fields (Table 2).  

With the validation dataset from Ochiltree County, it was observed that the performance of an ANN 

model that used TM band 4 and 5 information predicted 71% of the fields accurately with a k value  

of 0.42, when Method-I was used for evaluation (Table 4). The poor performance can be attributed to 
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differences in TM band 5 brightness values between Moore and Ochiltree Counties. The mean 

brightness value for conservation tillage in Moore County was about 3% greater than that for the 

Ochiltree County (Table 2). Similar variation was found for conventional tillage. The model that used 

NDTI15 (normalized difference between TM bands 1 and 5) and NDTI56 (normalized difference 

between TM bands 5 and 6) as inputs showed similar performance during both training (Moore 

County) and validation (Ochiltree County). 

Table 4. Validation performance of Landsat 5 TM based ANN models used for mapping 

tillage practices in Ochiltree County, Texas using Method-I (Cutoff probabilities values 

derived from the training data i.e., Moore County data). 

Model Inputs† 

Cut 

Point 

(%) 

Kappa 

Correct Predictions (%) 

All Fields
Conservation 

Tillage 

Conventional 

Tillage 

TM4 & TM5 47 0.42 71 74 56 

TM5 & TM7 51 0.47 73 95 38 

TM2 & TM5 50 0.42 71 89 38 

TM3 & TM5 49 0.42 71 84 44 

TM4, TM5 & TM6 50 0.42 71 89 38 

D15 & D16 43 0.47 73 95 38 

NDTI15 & NDTI56 59 0.56 78 79 69 

TM5 & TM6 58 0.46 73 74 63 

R35 & R36 50 0.47 73 95 38 

R45 & R46 49 0.47 73 89 44 

TM1 & TM5 40 0.47 73 95 38 

TM4 & TM7 53 0.42 71 74 56 

TM2, TM4, TM5, & TM6 48 0.41 71 68 63 

TM4 & TM6 50 0.32 66 89 25 

TM1 & TM4 48 0.37 68 79 44 
† TM1, TM2, etc. are TM bands 1, 2, etc.; R45 = TM4/TM5; R46 = TM4/TM6; R35 = TM3/TM5;  

R36 = TM3/TM6; D15 = TM1 − TM5; D16 = TM1 − TM6; NDTI15 = (TM1 − TM5)/(TM1 + TM5); 

NDTI56 = (TM5 − TM6)/(TM5 + TM6). 

Table 5 presents a set of ANN models that performed well when Method-II was used with the 

Ochiltree dataset. It is noted that conservation tillage was predicted with relatively greater accuracy by 

most of the models. It is also noted that the model that used NDTI15 and NDTI56 as inputs had the 

same cut point for classification for training and validation (0.59 for both Moore County as well as 

Ochiltree County) indicating the robustness of the generalization properties. The validation of the 

model using an independent data set from a different county suggests that this model (NDTI15 and 

NDTI56 as inputs) may be useful to derive tillage information in the Texas High Plains region. These 

results confirmed that models that contained TM bands 5 and 6 or indices that contain TM bands 5  
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and 6 are highly sensitive to crop residue surface. This is consistent with results reported in  

van Deventer et al. [9] and Bricklemyer et al. [11]. 

Table 5. Validation performance of Landsat 5 TM based ANN models used for mapping 

tillage practices in Ochiltree County, Texas using Method-II (Cutoff probabilities values 

associated with maximum percent correct in the validation data). 

Model Inputs† 
Cut Point 

(%) 
Kappa 

Correct Predictions (%) 

All Fields
Conservation 

Tillage 
Conventional 

Tillage 

TM4 & TM5 38 0.47 73 95 38 

TM5 & TM7 51 0.47 73 95 38 

TM2 & TM5 50 0.42 71 89 38 

TM3 & TM5 48 0.42 71 89 38 

TM4, TM5 & TM6 50 0.42 71 89 38 

D15 & D16 43 0.47 73 95 38 

NDTI15 & NDTI56 59 0.56 78 79 69 

TM5 & TM6 58 0.46 73 74 63 

R35 & R36 68 0.51 76 79 63 

R45 & R46 73 0.56 78 84 63 

TM1 & TM5 40 0.47 73 95 38 

TM4 & TM7 53 0.42 71 74 56 

TM2, TM4, TM5, & TM6 48 0.41 71 68 63 

TM4 & TM6 50 0.32 66 89 25 

TM1 & TM4 42 0.48 71 84 44 
† TM1, TM2, etc. are TM bands 1, 2, etc; R45 = TM4/TM5; R46 = TM4/TM6; R35 = TM3/TM5;  

R36 = TM3/TM6; D15 = TM1 − TM5; D16 = TM1 − TM6; NDTI15 = (TM1 − TM5)/(TM1 + TM5); 

NDTI56 = (TM5 − TM6)/(TM5 + TM6). 

6. Summary  

Availability of accurate information on prevailing tillage practices will aid in the assessment and 

adoption of appropriate tillage practices to reduce soil erosion and nutrient losses. A set of Landsat 5 

TM-based ANN models was developed and evaluated for identifying contrasting tillage practices in 

the Texas High Plains. Overall classification accuracy of the 15 models developed with the Moore 

County dataset varied from 74% to 91%. Evaluation of these models against an independent dataset 

from Ochiltree County produced somewhat poorer but still acceptable results with an overall 

classification accuracy varied from 66% to 80%. These validation results indicate that region-specific 

cut points may be needed to maintain or improve the accuracy of the tillage models. Further evaluation 

of these models in different geographic regions is needed to evaluate their regional robustness to 

identify contrasting tillage practices. ANN models found to be easy to develop, cost and time effective, 

and produced reasonably accurate tillage classification results. This approach is promising for the 

rapid collection of tillage information on individual fields over large areas.  
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