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Abstract: One of the critical global environmental problems is human and ecological 

exposure to hazardous wastes from agricultural, industrial, military and mining activities. 

These wastes often include heavy metals, hydrocarbons and other organic chemicals. 

Traditional field and laboratory detection and monitoring of these wastes are generally 

expensive and time consuming. The synoptic perspective of overhead remote imaging can 

be very useful for the detection and remediation of hazardous wastes. Aerial photography 

has a long and effective record in waste site evaluations. Aerial photographic archives 

allow temporal evaluation and change detection by visual interpretation. Multispectral 

aircraft and satellite systems have been successfully employed in both spectral and 

morphological analysis of hazardous wastes on the landscape and emerging hyperspectral 

sensors have permitted determination of the specific contaminants by processing strategies 

using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal 

infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote 

sensing and overhead imaging in the context of hazardous waste and discusses future 

monitoring needs and emerging scientific research areas. 
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1. Introduction  

The intentional or accidental release of hazardous substances into the environment is an inevitable 

consequence of anthropogenic activity. Industrial, commercial, mining, military and even domestic 

activities can result in the release of substances into the air, land and water that are harmful to 

environmental quality and human health. The combined industrialization and population growth of the 

twentieth century has resulted in unprecedented events of fugitive, transitory, and ephemeral releases 

of contamination that today threaten many plant and animal species and may ultimately threaten the 

survival of the human race [1]. The detection and remediation of many hazardous waste problems 

consist of a variety of monitoring and analysis strategies that are time-consuming and expensive, such 

as laboratory chemical analysis. One of the technologies that has an established and growing potential 

to provide a non-contact and cost-effective alternative to traditional sampling methods is remote 

sensing. Hazardous waste control, monitoring, remediation and related issues result in a staggering 

cost to society in terms of human and ecological health effects, negative externalities on real estate 

values (i.e., the ‘stigma’ of contamination) and the extraordinary burden of a massive regulatory 

infrastructure on economic productivity. The United States Environmental Protection Agency 

(USEPA) estimates that complying with hazardous waste regulations cost U.S. businesses nearly 

$32 billion in 2000 [2]. The use of more efficient remote sensing methods could reduce these societal 

costs. The purpose of this study is to review the potential to provide relevant information to the 

hazardous waste remediation process through the use of both traditional and emerging passive remote 

sensing imaging technologies. 

1.1. The Definition of Hazardous Waste 

Substances are considered hazardous wastes if they are ignitable—capable of burning or causing a 

fire; corrosive—able to corrode steel or harm organisms because of extreme acidic or basic properties; 

reactive—able to explode or produce toxic gasses such as cyanide or sulfide; or toxic—containing 

substances that are poisonous to people and other organisms [3]. In the U.S., the regulatory definition 

of hazardous substances are detailed in the Resource Conservation and Recovery Act (RCRA) and can 

be found under specific listings, along with accepted testing methods, in Chapter 40, Code of Federal 

Regulations, Section 261(40 CFR § 261) [3].  

Most hazardous waste is the by-product of industrial or commercial manufacturing processes but 

significant levels of hazardous substances are also associated with agricultural chemicals such as 

pesticides. There is a distinction between widely dispersed contaminants such as agricultural pesticides 

known as non-point sources and point sources such as an industrial site. Even household waste contains 

substances such as bleach, gasoline, batteries and solvents that qualify as hazardous wastes. Hazardous 

waste can also be naturally occurring substances, such as heavy metals like lead and mercury that are 

brought into much higher than normal exposure concentrations by anthropogenic processes. 

1.2. The Regulation of Hazardous Waste 

In the U.S., hazardous waste and hazardous waste cleanup are regulated by two federal statutes that 

are administered by the USEPA. The Resource Conservation and Recovery Act (RCRA) was enacted 
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by Congress in 1976 in order to (1) protect human health and the environment from the potential 

hazards of waste disposal, (2) conserve energy and natural resources and to reduce the amount of waste 

generated, and (3) ensure that waste is managed in an environmentally sound manner. The 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, 

commonly known as Superfund, [4], and the 1986 Superfund Amendments and Reauthorization Act 

(SARA) [5] provide strict guidelines regarding the responsibility of past and present property owners, 

as well as others, for the cost of toxic-waste cleanup. Superfund empowers the USEPA to compel the 

owner of property contaminated by hazardous substances to clean up the site. Alternatively, the 

USEPA can conduct an immediate cleanup and obtain reimbursement from the responsible parties at a 

later date. Hazardous waste regulations vary tremendously from none or little if any enforcement in 

some countries to very strict controls in others. There have also been international agreements on this 

issue as presented in the next section. 

1.3. Worldwide Concerns 

On a global scale, the issue of hazardous waste is very serious. During the 1980s, the development 

of strict environmental controls on hazardous waste in industrialized countries, such as the Superfund 

Act in the U.S., resulted in a black market for unregulated translocation of hazardous wastes, 

especially from industrialized to developing countries [6]. The movement of hazardous waste between 

international boundaries, and international outrage at the large scale activities of these “toxic traders,” 

led to the adoption of an international treaty known as the Basel Convention in 1989 [7]. 

Both the Basel Convention and the Rotterdam Convention of 1998 sought to stem the  

trans-boundary movement of hazardous substances and hazardous waste. The central goal of the Basel 

Convention was “environmentally sound management” to protect human health and the environment 

by minimizing hazardous waste production whenever possible and promoting an “integrated life-cycle 

approach” to hazardous waste management, which involves promoting institutional controls from the 

generation of a hazardous waste to its storage, transport, treatment, reuse, recycling, recovery and final 

disposal [8]. 

After the Basel Convention was adopted it was viewed by several groups, developing countries, 

Greenpeace, and the Nordic states in particular, as insufficient to fully ban hazardous waste 

trafficking [9]. In the mid-1990s the Basel Convention was amended with a clear ban on hazardous 

waste exports. The Rotterdam Convention of 1998 established an international law of shared 

responsibility between exporting and importing countries for the notification and monitoring of 

hazardous wastes that are known to have harmful effects on human health and the environment. Since 

the adoption of the Basel Convention and the Rotterdam Convention there are two international 

hazardous waste disposal issues currently receiving the most concern and attention amongst 

government agencies, and environmental and health advocate organizations: electronic-waste (e-waste) 

and shipbreaking or ship recycling. The U.S. and other developed countries export e-waste, which 

contains hazardous substances used in their manufacture primarily to Asia [10]. Threats to the 

environment and occupational health hazards are both major problems reported from e-waste 

processing activities in developing nations. Rudimentary e-waste processing and recycling facilities 

have led to excessive releases of heavy metals and other contaminants into the environment [11,12]. 
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Table 1 shows the basic characteristics and analytical techniques of the remote sensing methods 

reviewed here. 

Table 1. Imaging sensors and analysis methods used for hazardous waste analysis and reviewed here. 

Sensor Format Spectral 

Resolution 

Spectral  

Range 

Analysis  

Methods 

Comment 

Aerial Photos 

 

Film, 

digital 

Broadband VIS-NIR 

400–900 nm 

Manual 

interpretation 

Can be analyzed 

digitally also. 

Satellite 

Imagery 

Digital Broadband 

Multispectral 

VIS-NIR 

400–2,200 nm 

Image 

processing 

Can be analyzed 

manually also. 

TIR Imagery Film, 

digital 

Broadband Thermal Infrared  

8,000–14,000 nm 

Manual and 

digital methods 

 

Solar Reflected 

Hyperspectral 

Digital Narrow Solar-reflected 

400–2,500 nm 

Spectroscopic  

Thermal 

Hyperspectral 

Digital Narrow Thermal IR  

8,000-14.000 nm 

Spectroscopic  

2. Remote Sensing of Hazardous Waste 

The process of discovering, characterizing and remediating fugitive contaminants is typically a long 

and costly endeavor [13]. In the hazardous waste remediation process, one of the key steps is site 

characterization, the determination of the spatial extent, concentrations and nature of the 

contamination. Site characterization traditionally requires extensive field sampling and laboratory 

analysis. One technology that has been valuable in cleanup efforts and shows promise in providing an 

alternative to field sampling methods is remote sensing. 

Remote sensing is a generic term that encompasses a body of non-contact monitoring techniques 

that measure energy-matter interactions to determine the characteristics of a target surface or medium. 

Although remote sensing includes a wide variety of instruments and methods, such as Light Detection 

and Ranging (LiDAR), radar, X-ray technology and acoustic instruments, it is most often associated 

with overhead imaging techniques, such as aerial photography and satellite imagery that record energy 

in the solar-reflected part of the electromagnetic spectrum (EMS) between 400 and 2,500 nm 

wavelengths. Remote sensing has a long history of providing critical information to the process of 

identifying, characterizing and remediating hazardous waste problems [14-17]. Further, new and 

emerging remote sensing techniques show promise for greatly improved methods in characterizing site 

conditions and providing critical information to the hazardous waste cleanup process. The purpose of 

this paper is to review the scientific literature on different forms of passive solar-reflected remote 

sensing imaging techniques that have been used to identify, characterize, quantify and map the 

existence and extent of fugitive hazardous wastes in the environment. This review will progress from 

the earlier, more simplistic but still very effective, use of aerial photography to more complex methods 

of multispectral and hyperspectral remote sensing. Suggestions for needed research on this topic are 

also included. 
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3. Basic Imagery Applications  

The most basic use of remotely sensed data for hazardous waste identification involves the visual 

interpretation of morphological characteristics of production, storage, disposal, transport and effects on 

the natural environment. Aerial photographs have been used in numerous applications to detect and 

analyze the presence of hazardous waste, waste-disposal sites and landfills [14-21]. Aerial photos 

generally have sufficient spatial resolutions for detecting small features and historical archives for 

comparative temporal analysis. The ability to monitor sites over time is very effective to assess 

environmental impacts and also to evaluate compliance in remediation cases. Aerial photography has 

frequently been employed as evidence in the legal process as well. An advantage, and to some degree a 

disadvantage, of aerial photography is that it generally relies upon visual interpretation by an analyst. 

Aerial photography is also limited in available spectral resolutions [22,23]. 

Historic aerial photographs supply the documentation required for analysts to compile a record over 

time of uncontrolled waste disposal site boundaries, points of access and adjacent land use [24]. 

USEPA has utilized an extensive archive of aerial photography dating back to the 1930s to reconstruct 

the waste handling and disposal history of hazardous waste sites. Over 4,000 historical aerial 

photographic reports on hazardous waste activity have been produced and used in environmental 

cleanup programs [17,25]. Figure 1 shows the type of landscape morphological analyses that can be 

produced from a time series of aerial photographs. 

Figure 1. Example of historical aerial photo documentation of structural changes at a 

hazardous waste site. Shoreline is filled and expanded outward between 1950 (a) and 

1958 (b). An industrial facility including several large petroleum tanks has been established 

by 1964 (c). Historical aerial photos, routinely acquired for other purposes easily captures 

morphological changes on the landscape that reveal import details about hazardous waste 

facilities. Source: the EPA/Environmental Photographic Interpretation Center (EPIC). 

(a) 

 

(b) 

 

(c) 
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Objects that are interpreted from aerial photography of sites that contain hazardous waste include: 

evidence of discarded materials [15], barrels and drums [22] (Figure 2), open dumps [26], spills [23] 

(Figures 3 and 4) and disturbance [15]. Features that can be detected which help to monitor and 

analyze potential impacts of hazardous waste include: vegetation [14,27], local groundwater movement 

to investigate potential pollutant migration [20], drainage routes [15], hydrological conditions [14,27] 

and subsequent land use on closed landfills [27]. 

Figure 2. An aerial photograph of a drum disposal site. The photo allows counting and 

documentation of the number of containers and changes over time. Source: The 

EPA/Environmental Photographic Interpretation Center (EPIC).  

 

Comparative temporal studies of a waste disposal site with historical aerial photography help to 

determine how an area has changed over time and in turn offers a better understanding of current site 

conditions [18,21,28]. The use of historical aerial photos highlights the importance for this and other 

applications of maintaining imagery archives. 

Historical aerial photographs are the only remotely sensed data that has recorded conditions as far 

back as the 1930s [22]. Surveys using historical and current aerial photography have been employed to 

produce detailed databases on locations of present and former waste sites and adjacent environmental 

features (e.g., wetlands) and built features (e.g., impoundments). The examination of a site over time 

allows for the analysis of succession or replacement of land cover to determine the status of an 

abandoned site and to identify a hazardous site that is currently obscured due to new 

development [14,22]. 
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Figure 3. A photograph of the Deepwater Horizon oil spill and failed containment booms 

in coastal wetlands. Source: U.S. Coast Guard. 

 

Figure 4. Oil spill from failed containment of a storage facility during Hurricane Katrina. 

The spill is represented by a light blue sheen on the water. Source: The EPA/Environmental 

Photographic Interpretation Center (EPIC).  
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Aerial photo interpretations of waste disposal locations have been conducted as site specific 

studies [20,29], and as regional studies to systematically produce an inventory of existing and potential 

hazardous sites within a certain boundary, such as a county [16,30]. Interpretation of hazardous waste 

sites from aerial photos can be performed using different equipment and techniques, such as a 

stereoscope [16,30] or in digital format [21,31], depending on the needs of a project or the experience 

of the interpreter [29]. 

Compared to other forms of remotely sensed imagery, aerial photo interpretation is generally a 

straightforward process due to the map-like qualities of imagery and because it includes wavelengths 

recognizable, or easily understandable, to the human eye [28]. Typical photography includes black and 

white, panchromatic, or natural color across the visible portion of the EMS. In addition, color-infrared 

(CIR) photography which includes the 700–900 nm near-infrared wavelengths helps to detect health 

and stress of vegetation. Herman et al., obtained CIR photography for five dates to interpret the 

intensity and extent of vegetation stress on the edge of a superfund site in Michigan and found 

improvements in vegetation health corresponding to groundwater remediation [29]. The availability of 

aerial imagery from federal and local government agencies with coverage of the conterminous United 

States for more than one date ensures that a hazardous waste site has been overflown and site 

conditions documented for inventory and analysis [22]. 

4. Multispectral Applications 

Multispectral sensors digitally collect reflectance or emittance energy levels in discrete portions of 

the EMS; often 4–10 separate bands. Advantages of these systems include statistical processing and 

analysis of the data and extension into sections of the EMS beyond aerial photographic capabilities. 

Data from multispectral imaging systems such as the Landsat MultiSpectral Scanner (MSS) and 

Thematic Mapper (TM) and a variety of aircraft-based systems have been utilized to monitor 

hazardous waste sites with respect to land use, regional risk and the spectral characteristics of specific 

disposal sites and their pollution profile. Bolviken showed that basic MSS data could be used to 

identify heavy metal contamination based on basic spectral differences [32]. Herman et al., showed 

that CIR aerial photography, SPOT and Landsat TM imagery could be used collectively to monitor 

vegetation stress and recovery at a Superfund site in Michigan [29]. Similarly, Airola and Kosson 

demonstrated the value of digital analysis of high-resolution aerial photographs and aircraft scanner 

data as well as Landsat data for broader scale issues such as groundwater migration [31]. Jones and 

Elgy determined that multispectral data could be used to monitor landfill gas migration and its effect 

on vegetation [33]. Kwarteng and Al-Enezi demonstrated that multispectral imagery could be used to 

monitor landfill development and its associated pollution profile [34]. 

Several researchers have successfully used multispectral imagery to search for and locate illegal, 

unknown, or uncontrolled hazardous waste sites. Foody and Embashi found that industrially 

“despoiled” land cover could be reasonably identified and mapped from the multispectral signatures of 

Landsat TM. Spatial filtering was utilized to enhance the signature of despoiled land and supervised 

classification, using known areas of waste sites, was utilized to generate maps of industrial and 

hazardous waste, which compared favorably with ground truth-based maps of known contamination 

areas [35]. Figure 5 documents the changes in extent of a land fill fusing spaceborne multispectral 
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images over time, and Figure 6 demonstrates the use of multispectral data for hazardous waste 

site identification. 

Figure 5. These two subscenes from the Landsat multispectral sensor show the growth of 

the Brogbouough land fill area in the United Kingdom. The image on the left is from 1992 

and on the right, from 2001. Ottavianelli et al., 2005 [36]. 

  

Landsat TM data have been utilized to detect altered surface area due to hydrocarbon 

microseepages by Almieda-Filho et al. [37]. Utilizing band ratios (TM2/3, TM4/3) and a difference 

image, features related to a reducing environment that created bleached materials were identified. 

Similar use of Landsat multispectral data to detect hydrocarbon-induced alterations has been reported 

by several researchers [38-41]. 

Silvestri and Omri [42] used the effects of soil contamination on vegetation reflectance to develop a 

spectral signature of stressed vegetation from known illegal landfill sites. Using these calibrated 

signatures, they successfully located numerous candidate sites that are most likely to host waste 

materials. Using secondary analyses of population densities, road networks and historical aerial 

photographs, many false positives were eliminated and uncontrolled hazardous waste sites were 

identified with an accuracy of approximately 60 percent. 
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Figure 6. Methodology for the identification and mapping of potential uncontrolled 

hazardous waste sites from multispectral imagery; (a) maximum likelihood classification 

result showing the most stressed areas in red and the least stressed areas in green, with 

black showing background unclassified area; (b) the Ikonos Image in standard color 

combination, used for comparison and (c) mapping of polygon of interest on  

geo-referenced Ikonos image. From Silvestri and Omri, 2008 [42].  

 

5. Laboratory, Field and Imaging Spectroscopy Applications 

5.1. Laboratory and Field Spectroscopy 

Spectroscopy is the science of measuring the interaction of energy with matter and is a fundamental 

form of remote sensing investigation. Spectroscopy has been used extensively in chemistry and 

astronomy for material identification and, with the development of new instrumentation, is being 

increasingly utilized in remote sensing investigations. Early laboratory spectroscopic and remote 

sensing imaging research successfully identified spectral signatures of heavy metal stress in vegetation 

and applied these techniques to applications involving mineral prospecting and environmental 

contamination [43-47]. 

The use of laboratory spectral reflectance methods to gain an understanding of photosynthesis and 

related vegetative processes is a field of scientific study that has been ongoing for decades [48]. 

Laboratory instruments called spectrometers, spectrophotometers, spectrographs or spectroradiometers 

are all different names for instruments that essentially use some type of prism or electro-optical device 

to separate light into its component discrete wavelengths and measure the reflectance and absorption of 



Remote Sens. 2010, 2              

 

 

2484 

those wavelengths from a target surface. Early instruments separated light into the basic colors of the 

spectrum. Modern instruments separate light into individual nanometers of reflectance energy. Each of 

these individual wavelengths can react differently to a target surface based on its chemical and/or 

molecular composition which results in unique or diagnostic data.  

In terms of hazardous waste, field and laboratory spectroscopic applications of plants and minerals 

have identified the relationship between biomass productivity and spectral signatures [49] using a 

vegetation index based approach. Innovations using high spectral resolution optical remote sensing 

have indicated that it may be further possible to detect relative concentrations of foliar biochemicals, 

particularly water, plant pigments, carbon and nitrogen and the stresses that are the result of uptake 

and/or exposure to materials that would be classified as hazardous wastes. An excellent review of the 

remote sensing of plant pigments can be found in Blackburn [50]. 

5.2. Vegetation Stress and the Red Edge 

One of the fundamental concepts that has been developed in the spectral analysis of vegetation has 

been the “Red Edge” of vegetation reflectance, an area usually centered on the 720 nm area and 

represented by the typical sharp rise in reflectance in the 680–760 nm range of the classic vegetation 

spectral signature. The location, size, shape and shifts in this Red Edge form one of the central 

concepts in spectral monitoring of vegetation condition (Figure 7).  

The spectral characteristics of vegetation have enjoyed a wide range of interest through the years 

for military, agricultural and environmental applications. Key papers by Gates et al. [48] and 

Guyot et al. [51] summarize the diverse applications of laboratory spectral research for vegetation 

studies. All green vegetation shows a similar pattern of spectral reflectance in the visible and near 

infrared regions. Figure 7 contains the library spectra typical of vegetation illustrating common 

chlorophyll-based reflectance patterns including the classic bimodal reflectance typical of healthy 

vegetation. The bimodal reflectance pattern is caused by the chlorophyll absorption of blue and red 

wavelengths, at about 450 and 680 nm respectively, and by the reflectance of chlorophyll in the green 

wavelengths causing the peak at around 550 nm. The second larger spectral peak around 780 nm is 

caused by the internal structure of leaf tissue that reflects significant amounts of energy in the near 

infrared. This internal mesophyll tissue generally consists of irregularly shaped cells separated by 

interconnected openings. Infrared radiation is strongly scattered by this structure, which combined 

with a general decrease in pigment absorption at the edge of the visible portion of the spectrum, causes 

a significant increase in reflected energy at the edge of the infrared part of the spectrum [52]. 

Although the general concept of the Red Edge is easily understood as the area of the sharp rise in 

reflectance, generally between 680 and 760 nm, a variety of definitions and quantitative methods for 

describing the Red Edge are found in the literature. Ray et al. [53] defined the Red Edge as the sharp 

transition between absorption by chlorophyll in the visible wavelengths and the strong scattering in the 

near infrared from the cellular structure of leaves. The Red Edge (λre) is defined by Horler et al. [54] 

as the wavelength of maximum ∆R/∆λ, where R is reflectance and λ is the specific wavelength. 

Guyot et al. [51] defines the Red Edge as an inflection in the sharp rise in reflectance between 670 and 

760 nm. 
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Figure 7. An important region of vegetation spectra is known as the Red Edge. Much 

research has focused on measuring shifts in this region corresponding to stress or 

enhancement of chlorophyll.  
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Horler et al. [54] studied the feasibility of utilizing a Red Edge measurement as an indication of 

plant chlorophyll status. Using derivative reflectance spectroscopy in the laboratory, plant chlorophyll 

status and Red Edge measurements were made of single leaves of several different species. By using 

spectroscopic and laboratory methods to measure the chlorophyll content of the same leaf samples, 

direct evidence of the Red Edge—chlorophyll correlation was obtained. Important was the fact that the 

correlation was strongest when leaf chlorophyll was described on a leaf-area basis and somewhat 

weaker on a weight or thickness basis. Ray et al. [53] discovered significant differences in the size and 

shape of the Red Edge in varied types of arid vegetation and found that for a common yellow grass 

species, there was no chlorophyll “bump” and no detectable Red Edge. 

Another critical analytical feature of spectral analysis of vegetation is the shift in absorption and 

reflectance features that occur as a result of chemical and nutrient exposures. A general relationship 

between increases in chlorophyll concentration and a “red shift” towards longer wavelengths has been 

established by several scientists. Gates et al. observed the basic relationship between the increased 

chlorophyll and plant health and the shift of the Red Edge towards longer wavelengths [48]. 

Guyot et al. similarly documented that the Red Edge inflection point shifts to longer red wavelengths 

as chlorophyll concentrations increase [51].  

Collins et al. [43] observed a basic blue shift in conifers affected by metal sulphide in the 700–780 nm 

region. Horler found blue shifts in tree species subjected to heavy metal concentration in the soil [47]. 

Similar blue shift results have been reported by Schwaller and Tkach [55] and Milton et al. [44,46]. 
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Rock et al. [56] demonstrated a 5 nm blue shift in spruce and fir species in Vermont and Germany as a 

result of stress caused by airborne acid deposition. These techniques can be very important in the 

analysis of hazardous wastes. 

Horler [47] studied the effects of heavy metals on the reflectance spectra of plants. Utilizing both 

natural vegetation growing in known areas of metal concentrations, and specific greenhouse 

experiments, they established relationships of metal stress to total chlorophyll, chlorophyll a/b ratios 

and reduced reflectance at specific wavelengths. Controlled experiments with pea plants and other 

species determined that the general effect of exposure to cadmium (Cd), copper (Cu), lead (Pb) and 

zinc (Zn) was growth inhibition. Also the pea plants showed changes in the leaf chlorophyll a/b ratios 

for exposure to Cd and Cu but showed no changes for Pb and Zn. Metal-treated plants in both 

controlled and natural environments showed a decrease in reflectance at 850, 1,650 and 2,200 nm and 

an increase at 660 nm. Metal concentration in the soil has strong negative correlations to reflectance at 

1,650 and 2,200 nm and strong positive correlations at 660 nm. In general, the ability to measure stress 

effects from heavy metals is dependent on species, the phase of the growth cycle and the environment. 

Nonetheless, these relationships are the basis for remote sensing of specific hazardous waste materials. 

5.3. Imaging Spectroscopy (Hyperspectral Remote Sensing) 

Spectral reflectance of vegetation and other landscape conditions has received considerable interest 

by the remote sensing community during the past decade because of the development of a new class of 

imaging technology called hyperspectral remote sensing (HRS), also known as imaging spectroscopy. 

These sensors are extensions of spectroscopic instruments found in a laboratory or field setting. Lab 

spectrometers capture a spectrum for a single point or transect. Aerial imaging spectrometers capture a 

two dimensional image with a spectrum for each pixel in the image. 

HRS collects imagery in very narrow bandwidths across the solar reflected part of the EMS. The 

result is a digital file of hundreds of bands of co-registered imagery, sometimes called a ‘cube’, which 

can be analyzed with the same methods as laboratory spectra and can identify specific compounds, 

materials and conditions based on the interaction of photons with the molecular composition and/or 

structure of the target material (Figure 8). Spectroscopic analysis techniques can now be employed 

outside of the laboratory from overhead platforms such as aircraft and even satellites. Further, because 

the data are produced in an imagery format, they also represent critical geospatial information about 

the landscape (Figure 9). 

Imaging spectroscopy became feasible in the mid-1980s through the early 1990s with the 

development of a number of aircraft based hyperspectral imaging sensors [52,57,58]. At the forefront 

of this development was the NASA Advanced Visible InfraRed Imaging Spectrometer (AVIRIS) (See 

Figure 10), although there were a number of other instruments under parallel development. The 

AVIRIS sensor collects 224 bands of hyperspectral imagery across the solar-reflected part of the EMS 

from 350 to 2,500 nm. Data from the AVIRIS instrument have demonstrated the significant value of 

HRS science for a number of terrestrial monitoring applications [52,57,58]. Many hyperspectral 

imaging sensors now exist including orbital systems such as the European CHRIS and the NASA 

Hyperion systems. For some applications, hyperspectral systems often have advantages over 
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multispectral sensors because they collect many more wavelengths or bands of data. HRS are of 

considerable interest in hazardous waste detection and remediation. 

Figure 8. Airborne hyperspectral image cube of Moffett Field, California. The image was 

collected on 20 August 1992 from a height of 20,000 m [59]. 

 

Figure 9. Airborne hyperspectral image of the clay-capped Mixed Waste Management 

Facility at the Savannah River Site obtained on July 22, 2002 at a spatial resolution of 

2 × 2 m. Spectral analysis of the bands can locate potential areas of failure of the facility. 

Subsequent images can be used for change detection from Jensen [60] and [61].  
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Figure 10. The NASA Advanced Visible Infrared Imaging Spectrometer (AVIRIS) has 

been at the forefront of the development of imaging spectroscopy [59]. 

 

6. Specific Hazardous Waste Applications 

6.1. Mining and Acid Mine Drainage 

There is a rich history of the use of remote sensing to create mineralogical maps, assist mineral 

exploration, and to detect mine waste and the effects of mining activities in the landscape and aid in 

mine remediation [23,62-68]. General reviews of the utility of remotely sensed data for monitoring 

mining activity can be found in [69-72]. 

Multispectral scanners, such as Landsat TM, have been used to identify faults and fractures, and to 

identify hydrothermally altered rocks and probable mineral deposits [65,67,69]. HRS has allowed 

measurements of a material’s spectra and permits a high degree of mineral separation and 

identification [63,73].  

The emergence of imaging spectroscopy in the 1990s, as an extension of, and based on a rich 

history of laboratory spectroscopic analyses, created opportunities for many mining and direct mineral 

identification applications [52,57,63,64,74,75]. A fundamental advantage of spectroscopic analyses is 

that data collection can be done in the field, laboratory or from an aircraft or satellite. Information that 

is gathered in the field or lab has been used to identify spectra for detection of heavy metals in image 

data to quantitatively map their distribution [63,68,76,77]. Ground measurements inform or train the 

interpretation of hyperspectral images. It is important to note that differences in spectral and spatial 
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resolution between hyperspectral images and ground spectrometer data, as well as atmospheric 

conditions, must be taken into account when linking these data [77]. 

The use of imaging spectroscopy allows entire mining districts to be screened quickly to identify 

acid producing minerals in mine waste or unmined rock outcrops [75]. Image spectroscopy provides a 

robust mapping tool as subtle changes in the reflectance spectra of minerals can indicate major 

differences in chemistry with spectral information acquired from laboratory samples or remotely 

sensed by aircraft or satellites [76]. 

Several studies at the U.S. Geological Survey (USGS) in Denver, Colorado have used AVIRIS data 

and an in-house developed algorithm, Tricorder/Tetracorder, to map mineralogy, vegetation coverage 

and other material distributions of interest at mines in the western United States [62,75,76]. 

Tricorder/Tetracorder is an expert system that uses a digital spectral library of known materials and a 

modified-least-squares method of locating particular spectral features for given materials within a data 

image [78]. 

In the Leadville mining district in the Central Colorado Rockies mineral maps have been created 

using imaging spectroscopy where gold, silver, lead and zinc have been mined for over 100 years [62]. 

The maps have been employed to aid in the characterization and hazardous waste remediation efforts 

for the area. Potential sources of acid mine drainage have been identified to protect the Arkansas 

River, a main source of water for urban centers and agricultural communities [75].  

In Summitville, Colorado, King et al. found that the Alamosa River received metal-rich material 

from both natural sources and from the Summitville mine site using AVIRIS data [76]. Acid-buffering 

minerals such as calcite and chlorite were accurately distinguished in AVIRIS spectra for the Animas 

River Watershed, Colorado [68]. At the Ray Mine in Arizona, diagnostic mineralogy was accurately 

mapped, however, there was a lack of AVIRIS data detection of low concentrations of unweathered 

sulfides that was attributed to the 17 m spatial resolution of the spectral data [79]. 

Mars and Crowley [80] utilized AVIRIS and Digital Elevation Model (DEM) data to evaluate 

hazardous waste contamination in southeastern Idaho including mine waste dumps, wetlands 

vegetation and other relevant vegetation types. With the mapped information and the DEM, delineation 

of mine dump morphologies, catchment watershed areas above each mine dump, flow directions from 

the dumps, stream gradients and the extent of downstream wetlands available for selenium absorption 

were determined. Additionally, Mars and Crowley were able to characterize the physical settings of 

mine dumps and test hypotheses concerning the causes of selenium contamination in the area [80]. 

6.2. Heavy Metals 

Related to mine waste and often categorized in the “hazardous waste” category, heavy metals and 

their effect on the environment have been the subject of many remote sensing research efforts. 

Although the general term defies specific definition, heavy metals such as cadmium, lead, selenium, 

arsenic and zinc are often primary contaminants at hazardous waste sites [81], and the identification 

and mapping of fugitive heavy metals is an important element of emerging remote sensing science 

(Figure 11). 

Unfortunately, fugitive metals in the environment do not usually exist in their pure form but rather 

in a soil-water-vegetation matrix as waste rock materials, sediments or as a result of soil deposition. 
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Besides detecting the minerals themselves, imaging spectroscopy is also used to detect the composition 

and condition of vegetation, which can then be used to interpret the mineral deposits or metal 

composition of the soil in the area where the vegetation is growing. It has long been acknowledged by 

scientists that a relationship exists between vegetation, soils and underlying mineral deposits [65]. In 

several studies, airborne spectroscopy was used to detect ‘hidden’ mineral deposits through  

forest-covered areas by revealing subtle variations in the reflected spectrum of vegetation under stress 

due to the presence of heavy metals [43,45]. Figure 11 shows an example of the spectral differences 

caused by arsenic stress. 

Figure 11. Spectra differences in plant reflectance as a result of Arsenic stress in grasses. 

From Slonecker 2007 [17]. 

 

When analyzing the spectral reflectance patterns from canopies to interpret what is occurring in the 

substrate, sub-surface and for stress prediction, Rosso et al. [82] noted that the biophysical principles 

of remote sensing of vegetation under stress need to be understood to correctly interpret the 

information obtained from the canopy level.  

In 2003, Reusen successfully mapped heavy metal contamination in Belgium through the 

expressions of vegetation stress. Utilizing imaging data from an airborne HRS sensor (CASI), flown in 

an area of historical zinc smelting, they computed vegetation stress in several tree species utilizing the 

Edge Green First derivative Normalized difference (EGFN) vegetation index [83]. 

In 2003, Kooistra conducted a study to examine the possibilities for in situ evaluation of soil 

properties in river floodplains using field reflectance spectroscopy of cover vegetation. Results 

determined that a combination of field spectroscopy and multivariate calibration does result in a 

qualitative relation between organic matter and clay content. The study indicated the potential for these 
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multivariate methods for mapping soil properties using HRS techniques. The authors found that there 

are great benefits of using detailed spectral information for the classification of sediments in river 

floodplains. They used partial least squares (PLS) regression to establish relationships between soil 

reflectance spectra measured under field conditions and the organic matter and clay content of the soil. 

The investigation found that although the performance of the spectra measured in situ is not as 

accurate as physical analysis, the accuracy obtained is useful for rapid soil characterization and remote 

sensing applications [84]. 

In 2004, Kooistra conducted another study to investigate the relation between vegetation reflectance 

and elevated concentrations of the metals Ni, Cd, Cu, Zn and Pb found in the floodplain soils along the 

rivers Rhine and Meuse in the Netherlands. The study obtained high-resolution vegetation reflectance 

spectra in the visible to near-infrared using a field radiometer. The relationships were evaluated using 

simple linear regression in combination with two spectral vegetation indices: the Difference 

Vegetation Index (DVI) and the Red-Edge Position (REP). The results of the study demonstrated the 

potential of remote sensing data to contribute to the survey of spatially distributed soil contaminants in 

floodplains under natural grassland, using the spectral response of the vegetation as an indicator. 

Modeling the relationship between soil contamination and vegetation reflectance resulted in similar 

results for DVI, REP and the multivariate approach using PLS regression. Further research is needed to 

better understand the relationship for bio-availability of metals and the resulting plant uptake. The 

study found that the results obtained are both resolution and location dependent [85]. 

Similar studies were conducted by Clevers et al. [86,87] in contaminated floodplains in the 

Netherlands. Analysis of field spectroradiometric measurements found that the REP and the first 

derivative were the best predictors of heavy metal contamination. 

Rosso et al. successfully detected plant stress due to pollution at the leaf level, and reiterates that 

more investigations need to take place that link their results to canopy level reflectance [82]. Arsenic 

contamination in the soil was successfully mapped through the reflectance properties of cover grass in 

a contaminated urban environment [17]. 

6.3. Hydrocarbons 

A major research area for remote sensing of hazardous wastes can be found in the identification and 

analysis of hydrocarbons and their effect on the environment. Hydrocarbons are organic compounds 

consisting entirely of hydrogen and carbon and naturally occur in crude oil where decomposed organic 

matter provides an abundance of carbon and nitrogen. Different hydrocarbons molecules can bond, or 

catenate, with other hydrocarbon molecules and create a variety of additional hydrocarbon 

compounds. All hydrocarbons belong to a functional group that facilitates combustion and are thus 

hazardous wastes because they are ignitable [88]. 

Hydrocarbons are important both from an economic and environmental perspective. Oil and gas 

products are critical to the world’s economy, and remote sensing has played an important role in the 

prospecting and exploration of new oil and natural gas deposits. However, fugitive hydrocarbon leaks 

and spills can be significant environmental stressors to human and ecological health and also make up 

several important greenhouse gases related to global warming. Natural hydrocarbon seepages can also 

occur in areas of fault zones and be indicators of potential seismic activity. Van der Meer et al. [41] 
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provided a review of natural macro and micro seepages of petroleum to the surface and includes both 

direct and indirect detection of petroleum.  

Remote sensing of hydrocarbons and their effects comprise a major body of work related to remote 

sensing of hazardous waste. Especially important is the loss of liquid and gas hydrocarbons as a result of 

their long range transport through pipelines. Hydrocarbons can be detected by remote sensing methods in 

a number of ways, including several techniques that detect emissions in the thermal infrared part of the 

spectrum. However, the focus of this paper is based on the optical, solar-reflected spectrum.  

Liquid hydrocarbon releases can occur both naturally and as a result of a spill or leakage and can be 

detected by basic aerial photo interpretation, microwave imagery, airborne video and/or multispectral 

satellite imagery.  

Basic reflectance and morphological characteristics can be identified related to the presence of 

hydrocarbons on the surface of terrestrial or marine environments [89]. Maritime oil spills are 

routinely monitored with a variety of remote sensing platforms and systems that include radar, passive 

microwave, thermal infrared, near and short-wave infrared, visual and ultraviolet. An excellent review 

of the remote sensing of oil spills can be found in Jha et al. [90]. Horig et al. [91] demonstrated the 

basic ability of high signal-to-noise hyperspectral systems to detect hydrocarbon features in the near 

and short-wave infrared. 

In a major development, Kuhn et al. [89] presented a hydrocarbon index that can be utilized by field 

spectrometers or hyperspectral imagers that isolates and processes spectral absorption properties of 

hydrocarbon-bearing materials around the known 1,730 nm hydrocarbon-absorption feature. Figure 12 

illustrates the basic hydrocarbon index showing the absorption feature and the two adjacent peaks and 

Figure 13 shows the basic hydrocarbon absorption spectra. The hydrocarbon index is calculated as: 

      (1) 

where λA;RA, λB;RB, and λC;RC are the wavelength/radiance pairs for each index point.  

When in the form of natural gas, the effects of hydrocarbons on vegetation are complex but in 

general, natural gas, which is composed mostly of methane (CH4), does not in itself cause vegetation 

stress [92]. However, the natural gas in the soil displaces oxygen and this has been shown to have a 

primary stress effect on vegetation health. 

Noomen [93-97] reported on several experiments using hyperspectral analysis to detect 

hydrocarbon gas seepages near pipelines. Noomen et al. discovered that there were generally increases 

in reflectance between 560–590 nm and a 1–5 nm shift towards the longer wavelengths as a result of 

vegetation stress. 



Remote Sens. 2010, 2              

 

 

2493 

Figure 12. The graphic depiction of the hydrocarbon index based on the 1,730 nm 

hydrocarbon absorption feature. One of the advantages of this index is that it is valid with 

raw radiance data and is independent of atmospheric correction or radiative transfer 

functions. Source: Kuhn et al. 2004 [89]. 

 

Figure 13. Hydrocarbons have distinctive absorption patterns in the near infrared at 

approximately 1,730 and 2,310 nm. From Allen [98]. 

 

Pysek et al. [99] reported on the physiological effects of natural gas leakage and found that there 

was typically a decrease in canopy cover and species diversity and increased reflectance at red 
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wavelengths. Smith [100,101] tested several different gases and water to displace soil oxygen. After 

spectral analysis of overlying vegetation stress, they found that, although there were differences in 

intensity, the stress response was generic and not generally identifiable by a specific agent. They 

concluded that spectral analysis of overlying vegetation could identify stress from leaking pipelines but 

only with additional data such as pipeline maps and other locational information. Bammel and 

Birnie [102] found that the red edge was shifted towards shorter wavelengths in sagebrush as a result 

of hydrocarbon-induced stress at or near the surface. Crawford [103] similarly detected an increase in 

reflectance in the visible light and shift in the REP towards shorter wavelengths in Douglas-fir trees 

growing in an area of hydrocarbon microseepage. Conversely, Yang [104-106] found a shift of the 

REP towards longer wavelengths in a wheat field located in a hydrocarbon microseepage area. 

6.4. Other Organic Chemicals 

In addition to hydrocarbons, a large class of other organic chemicals is often present in hazardous 

waste disposal sites and represents a significant risk to human and ecological health. As a major 

component and waste by-product of industrial, agricultural and military activities, many organic 

chemicals are toxic and are also classified as carcinogens, or cancer causing substances. Common 

organic compounds such as toluene, used in dry-cleaning, and benzene used in plastics, are often 

among the “chemicals of concern” at Superfund hazardous waste cleanup sites. 

Direct remote sensing detection of organic compounds is spectrally related to the C-H stretch which 

occurs around 3,400 nm with overtones in the area of 1,150, 1,700 and 2,300 nm [107]. The basic 

spectral reflectance properties of hydrocarbons and the potential for remote sensing analysis was 

demonstrated by Cloutis [108] who found that many organic compounds display electronic transitions 

that are the result of the excitation of bonding electrons in the ultraviolet (100–350 nm) region but as 

the molecular complexity increases, there is more overlap and a shift to longer wavelengths. 

Although spectroscopic identification of organics has been demonstrated in several astronomical 

applications [109-112], the lack of spectral libraries for organic chemicals has often been a significant 

impediment to spectroscopic identification of individual organic compounds [113,114]. 

Both direct and indirect remote sensing detection of organic compounds is possible via spectral 

fingerprinting of organic substances and alteration of surface soils and through stress in the overlying 

vegetation. However, there are many types of organic chemicals and their individual analytical 

spectroscopic features often lie in different parts of the EMS. An interesting approach to this problem 

can be found in a paper by Clark et al. of the USGS Spectroscopy Laboratory in which spectral 

libraries for a variety of organic compounds are being established in the visible, near-infrared and  

mid-infrared spectral ranges. 

7. Thermal Infrared Applications 

Thermal infrared (TIR) remote sensing, sometimes called thermography, or thermal imaging, are all 

examples of infrared imaging science and play a unique role in the study of hazardous waste. Thermal 

imaging cameras detect radiation in the mid and far infrared ranges of the electromagnetic spectrum 

(roughly 3,000–5,000 and 8,000–14,000 nm) and produce analog or digital images of that radiation 

that resemble black and white photographs, but can also be colorized by image processing techniques.  
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Electromagnetic radiation in these infrared wavelengths is emitted, as opposed to reflected, by all 

matter according to Planck’s black body radiation law. Differences in heat intensity are related to the 

amount of radiation emitted by an object which increases with temperature; therefore, thermography 

allows one to see variations in temperature. When recorded digitally or on film by a thermal imaging 

camera, warm objects stand out brighter against cooler, darker backgrounds.  

TIR monitoring systems have found numerous commercial and industrial applications. Such as 

monitoring pipeline leaks or overheated motors, joints or power lines. Forward looking infrared (FLIR) 

cameras are used routinely by police and border patrol agents aboard helicopters to monitor the 

movement of people and vehicles through complex landscapes such as vegetated rural terrain.  

Much like conventional camera technology, TIR systems have evolved from line scanners and basic 

imaging systems into sophisticated hyperspectral instruments that can evaluate the unique properties of 

emissive thermal infrared spectra, which can be a fingerprint for many elements and 

chemical compounds. 

Overhead TIR imaging systems, such as aircraft systems or the TIR band 6 on Landsat 5 and 

Landsat 7 have been used for specialized environmental monitoring and hazardous waste applications 

where differences in temperature are important signatures of the landscape characteristics. Examples 

include the discovery and monitoring of underground fires at mines or landfills [115-123], the thermal 

characteristics of landfill processes [124,125], seeps or the release of leachate into the 

environment [126,127], or structural characteristics of landfill caps and other remediation 

methods [36,128-130]. 

Thermal infrared imagery has been successfully employed to detect underground disposal trenches 

at Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) where 

materials associated with past weapons development and testing are buried. The trenches could be 

identified based on the difference in thermal characteristics of disturbed soil and undisturbed 

soil [131,132]. 

Thermal infrared remote sensing has also evolved into multi- and hyperspectral sensors that bring 

special analytical capabilities to the monitoring and detection of hazardous waste. The detection and 

monitoring of wildfires has been firmly established by the use of multispectral thermal data using the 

MODerate resolution Imaging Spectrometer (MODIS) [133,134]. Several researchers have 

demonstrated that multispectral thermal infrared imagery from the Thermal Infrared Multispectral 

Scanner (TIMS) could be used to identify and map mineralogic information which could potentially be 

related to the presence of heavy metals [135-137]. Collins and Ondrusek et al. both showed that 

volcanically altered rocks could be mapped with TIMS imagery [138,139]. Realmuto has shown the 

ability of TIMS imagery to map sulfur dioxide emissions from volcanoes [140-142]. 

The relatively recent advancement of hyperspectral thermal infrared imaging has created unique 

new capabilities for the remote imaging identification of many chemicals and elements that could be 

related to hazardous wastes. In addition to elemental heavy metals, the detection of most organic, 

organophosphates, and similar high molecular weight compounds is best accomplished in the thermal 

infrared. New hyperspectral infrared imaging sensors such as the Advanced Hyperspectral Imager 

(AHI) [143-146], the Spectrally Enhanced Broadband Array Spectrograph System 

(SEBASS) [147,148] and others are advancing the use of imaging spectroscopy into the new areas of 

chemical complexity. 
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Applications of hyperspectral thermal infrared data include numerous geologic, geothermally 

altered and surface mineral mapping [138,148-153], anomaly detection [154], acid sulfate 

runoff [155], vegetation characteristics [156,157], gaseous effluents [158-162] and landmine 

detection [157,163]. 

A related but non-imaging technology known as Fourier Transform Infrared Technology (FTIR) 

should be mentioned in this discussion because of its major applications in the area of hazardous 

waste. Although neither passive nor imaging FTIR systems operate in the visible and infrared parts of 

the spectrum and are extremely diagnostic for many chemical constituents that could be considered 

hazardous wastes depending on the context. FTIRs are active systems that send out a pulse of energy 

and record the absorption or emission at specific wavelengths. FTIRs are generally limited to 

laboratory or field systems and are widely used to monitor airborne releases at hazardous waste 

incinerators and industrial sites [164-166]. 

8. Conclusions and Research Opportunities 

The problem of fugitive hazardous wastes in the environment is not one that is likely to diminish in 

the future. As the global population grows, the need for natural resource exploitation will increase 

dramatically along with the negative side effects of mining, industrial by-products and both controlled 

and fugitive wastes. 

As this review has indicated, there have been numerous successful applications of remote sensing 

for the location and monitoring of hazardous wastes. Those applications have included traditional 

visual interpretation of temporal profiles of aerial photography, more generalized spectral signature 

analysis of hazardous wastes using multispectral sensors, and more recently differentiation of very 

subtle shifts in spectral responses due to hazardous waste using data intense HRS. Unlike earlier 

systems, HRS has the potential to identify specific materials based on molecular structure, but this is 

generally difficult due to complex atmospheric interferences. There is need for considerable research 

on this topic.  

8.1. Spectral Libraries 

The process of identification of specific materials using HRS is basically matching known spectral 

signatures, often from a library, to unknown signatures or to reflectance data from an HRS. A 

limitation in this process is the lack of viable spectral libraries. A needed research area is the 

development of an extensive, calibrated library for hazardous waste substances. These libraries can in 

part be created from existing collections but will also require new data acquisitions. For hazardous 

wastes, a complexity in compiling spectral signatures is that many of the materials of interest will not 

be in large amounts and will be integrated in other features such as soils or absorbed by plants. Further, 

field work in hazardous environments is problematic which greatly complicates establishing these 

libraries, but it is one of the basic requirements necessary to effectively use HRS for hazardous 

waste identification. 
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8.2. Controlled Experiments 

Hazardous wastes are often contaminated or mixed with other materials. One approach to identify 

these materials in different concentrations in different stratum or absorbed by plants is to have 

controlled laboratory experiments. 

These experiments can be conducted in multiple ways, but the goal is to have spectral signatures of 

the wastes of interest in different situations. A standard experiment is to grow plants in varied 

concentrations of hazardous components, as well as growing controls, typically in a greenhouse and to 

take detailed spectral measurements at different times during the growth period. These experiments 

can determine if there are spectral differences in the plants’ spectral signatures as a function of 

absorbed contaminants. 

A variation on these experiments is to place a contaminant, such as a selection of hydrocarbon 

products, on different strata such as gravel, asphalt, sand, organic soil and measure the spectral 

responses over time. The temporal component will determine the rate of evaporation and changes in 

spectral signature. These controlled experiments will greatly assist the development of a spectral 

library, but they are complex and time consuming. 

8.3. Spectral Analysis Processing Development 

HRS data can often identify anomalies in a data set via multiple, often complex, processing 

strategies. For example, there might be a subtle shift in the red edge in a specific vegetative type such 

as the red oaks in a scene. The challenge, however, is to differentiate whether that shift or anomaly is a 

response to a relatively benign condition, such as moisture stress, or absorption of a hazardous waste 

from the soil or atmospheric contamination.  

For example, the band-depth analysis technique, developed by Kokaly and Clark [167] and later 

confirmed by Curran [168] showed that foliar biochemical concentrations, such as nitrogen, lignin and 

cellulose, could be accurately measured with a spectral band-depth analysis of dried and ground leaf 

samples. A logical extension of that concept could include the direct or indirect measurement of 

fugitive contaminants such as heavy metals that are inside the leaf tissue as a result of uptake.  

Scientists have speculated, and there are some successful research results on this topic, that 

additional processing approaches could resolve this problem or at least reduce the frequency of false 

alarms. Improved spectral signature libraries including those derived via controlled experiments will 

greatly assist this processing challenge. 
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