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Abstract: The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space
Agency (ESA), launched on November 2009, is an unprecedented initiative to globally
monitor surface soil moisture using a novel 2-D L-band interferometric radiometer concept.
Airborne campaigns and ground-based field experiments have proven that radiometers
operating at L-band are highly sensitive to soil moisture, due to the large contrast between
the dielectric constant of soil minerals and water. Still, soil moisture inversion from passive
microwave observations is complex, since the microwave emission from soils depends
strongly on its moisture content but also on other surface characteristics such as soil type,
soil roughness, surface temperature and vegetation cover, and their contributions must be
carefully de-coupled in the retrieval process. In the present study, different soil moisture
retrieval configurations are examined, depending on whether prior information is used in the
inversion process or not. Retrievals are formulated in terms of vertical (Tvv) and horizontal
(Thh) polarizations separately and using the first Stokes parameter (TI), over six main surface
conditions combining dry, moist and wet soils with bare and vegetation-covered surfaces.
A sensitivity analysis illustrates the influence that the geophysical variables dominating the
Earth’s emission at L-band have on the precision of the retrievals, for each configuration.
It shows that, if adequate constraints on the ancillary data are added, the algorithm should
converge to more accurate estimations. SMOS-like brightness temperatures are also generated
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by the SMOS End-to-end Performance Simulator (SEPS) to assess the retrieval errors
produced by the different cost function configurations. Better soil moisture retrievals are
obtained when the inversion is constrained with prior information, in line with the sensitivity
study, and more robust estimates are obtained using TI than using Tvv and Thh. This paper
analyzes key issues to devise an optimal soil moisture inversion algorithm for SMOS and
results can be readily transferred to the upcoming SMOS data to produce the much needed
global maps of the Earth’s surface soil moisture.

Keywords: soil moisture; microwave radiometry; retrieval

1. Introduction

Soil moisture is a critical state variable of the terrestrial water cycle. It is the main variable that
links the global water, energy and carbon cycles, and soil moisture variations affect the evolution of
weather and climate over continental regions. Global observations of the Earth’s changing soil moisture
are therefore needed to enhance climate prediction skills and weather forecasting, which will benefit
climate-sensitive socio-economic activities, including water management, agricultural productivity
estimation, flood and drought hazards monitoring [1–3].

Several studies have shown that L-band microwave remote sensing is the most promising technique
for global monitoring of soil moisture due to its all weather capability and the direct relationship of
soil emissivity with soil water content [4, 5]. Microwave remote sensing encompasses both active
and passive forms, depending on the sensor and its mode of operation [6]. Active sensors (radars)
are capable of remotely sense soil moisture at high spatial resolution (∼ 1 km), but radar backscatter is
highly influenced by surface roughness, surface slope, vegetation canopy structure and water content [7].
In contrast, passive sensors (radiometers) have a reduced sensitivity to land surface roughness and
vegetation cover, but their spatial resolution is typically low (∼ 40 km) [8]. Two space missions
have been proposed to globally measure soil moisture using L-band microwave radiometry: the ESA
launched the Soil Moisture and Ocean Salinity (SMOS) mission on November the 2nd 2009 [9], and
the NASA will launch the Soil Moisture Active Passive (SMAP) mission in 2014 [10]. Both SMOS and
SMAP are expected to provide highly accurate soil moisture measurements with a ground resolution of
about 40-km; SMAP additionally has a high-resolution radar to enhance the spatial resolution of
the retrievals.

The SMOS mission is the first satellite dedicated to providing global measurements of soil moisture.
Its payload is a novel 2-D interferometric radiometer, the Microwave Imaging Radiometer by Aperture
Synthesis (MIRAS) [11], that will provide brightness temperature measurements of the Earth at different
incidence angles. SMOS-derived soil moisture products are expected to have an accuracy of 0.04 m3/m3

over 50 × 50 km2 and a revisit time of 3-days. Also, there is a high interest in obtaining vegetation
water content (VWC) maps with an accuracy of 0.2 kg/m2 every six days from upcoming SMOS
observations [12]. Previous studies have pointed out the need to combine SMOS brightness temperatures
(TB) with auxiliary data to achieve the required accuracy and several retrieval configurations have been
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proposed [13–15]. However, the auxiliary data and the optimal soil moisture retrieval setup need yet to
be optimized.

The dielectric constant of soils is highly related to the soil moisture content sm, and also depends on
the soil type [16, 17]. In addition to the soil dielectric constant, other soil and vegetation parameters
are known to play a significant role in the L-band microwave emission and therefore must be accounted
for in the retrieval process, namely vegetation optical depth τ , from where vegetation water content
maps can be derived [18], vegetation albedo ω, soil surface temperature Ts, and soil surface roughness
(parameterized using the soil roughness parameter HR). In this study, different Bayesian-based retrieval
configurations have been examined depending on whether a priori information of these geophysical
variables is used in the inversion process or not. Retrievals have been formulated in terms of vertical
(Tvv) and horizontal (Thh) polarizations separately and using the first Stokes parameter (TI), over six
main surface conditions combining dry, moist and wet soils with bare and vegetation-covered surfaces.
Hence, this study analyzes four critical aspects which will be valuable information for the inversion of
soil moisture from L-band passive microwave observations:

1. The use of no a priori information in the CF vs. the use of a priori information about all the
auxiliary parameters excluding sm on the cost function.

2. The effect of the presence of a vegetation canopy.

3. The effect of the soil moisture content (dry/moist/wet).

4. The retrieval formulation using the vertical and horizontal polarizations separately or using the
first Stokes parameter.

In Section 2., a description of the scenarios, the forward model and the optimization scheme used
in this study to analyze the retrieval of soil moisture from L-band passive observations is provided.
A sensitivity analysis of the inversion algorithm is afterwards presented in Section 3. It illustrates
the influence that the geophysical variables dominating the Earth’s emission at L-band have on the
precision of the retrievals, for the different retrieval configurations. In Section 4., the performance of the
different retrieval configurations is analyzed using SMOS-like TB generated by the SMOS End-to-end
Performance Simulator (SEPS) [19]. To obtain soil moisture from SEPS realistic TB, this study uses
the L2 Processor Simulator. The L2 Processor Simulator is a dedicated software developed from
the experience gained in previous works on SMOS-derived salinity studies [20, 21] and land field
experiments at L-band [22]; it is a simplified version of the ESA’s SMOS Level 2 Processor, which
integrates the forward model and optimization algorithm described on Section 2., and is designed to be
used with SEPS output data.

The sensitivity analysis and the analysis with simulated SMOS data are necessary to characterize
the different cost function configurations both theoretically and in terms of performance. In Section 5.
the main results of this paper are summarized, and their applicability to upcoming SMOS data on an
operational basis is discussed.
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2. Methodology

2.1. Scenario Definition

In the present study, six master scenarios (bare dry/moist/wet soil and vegetation-covered
dry/moist/wet soil) have been defined to evaluate how the soil moisture retrievals can be affected by both
the presence of a canopy layer and the soil moisture content itself. These scenarios are homogeneous,
described by parameters sm, Ts,HR,τ and ω, which are constant in all its area; soil moisture values of
0.02 m3/m3, 0.2 m3/m3, and 0.4 m3/m3 have been used for dry, moist and wet soil, respectively, the
roughness parameter HR has been set to 0.2, and nominal values are given to the vegetation parameters
τ = 0.24 Np and ω = 0 [23]. A summary of the parameters’ value for each scenario is given in
Table 1. Soil texture was assumed to be equal to the mean global clay and sand fractions derived from
ECOCLIMAP [24], which are 20.4% and 48.3%, respectively, while soil porosity was assumed to be
equal to 38%.

Table 1. Selected original values of soil moisture (sm), soil roughness (HR),
soil temperature (Ts), vegetation albedo (ω) and vegetation opacity (τ ) for the
six master scenarios. σ0

pi
is the nominal uncertainty of parameter pi.

sm [m3/m3] HR Ts [K] ω τ [Np]
(σ0

sm
= 0.04) (σ0

HR = 0.05) (σ0
Ts = 2) (σ0

ω = 0.1) (σ0
τ = 0.1)

Bare
dry soil 0.02 0.2 300 0 0
moist soil 0.2 0.2 300 0 0
wet soil 0.4 0.2 300 0 0

Vegetation-covered
dry soil 0.02 0.2 300 0 0.24
moist soil 0.2 0.2 300 0 0.24
wet soil 0.4 0.2 300 0 0.24

2.2. Forward Model

The bare soil emissivity depends on its surface roughness (parameterized using the roughness
parameter HR), soil temperature Ts, and soil dielectric constant, which is in turn related to the soil
moisture content sm and soil type [25]. When the soil is covered by vegetation, its emission is affected
by the canopy layer: it attenuates the soil emission and adds its own contribution. The geophysical model
function used in this study to mimic the Earth emission at L-band—the so-called forward model—is the
well-known τ − ω model [26, 27]. This model is based on two vegetation parameters, the optical depth
or opacity τ , which accounts for the attenuation, and the single scattering albedo ω, which accounts for
dispersion of the radiation within the vegetation:

Tpp = (1 − ω)(1 − γ)(1 + ΓS · γ)TV + (1 − ΓS)Ts · γ, (1)

where Tpp (p = h for the horizontal polarization and p = v for the vertical polarization) are the modeled
brightness temperatures, ΓS(θ, p) is the soil reflectivity, γ(θ, p) is the transmissivity of the vegetation
layer, Ts is the effective soil temperature, and TV the effective temperature of the vegetation.
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The soil reflectivity ΓS(θ, p) depends on incidence angle θ and polarization p, and can be
expressed as:

ΓS(θ, p) = [(1 − Q) · Γ∗
S(θ, p) + Q · Γ∗

S(θ, p)] · exp(−HR · cosn(θ)), (2)

where Γ∗
S(θ, p) is the power reflection coefficient of the flat soil (squared amplitude of the Fresnel

reflection coefficient) that depends on the soil moisture through the dielectric constant [16], Q is
the polarization mixing factor, n expresses the angular dependence of roughness and HR is the soil
roughness parameter [28].

The transmissivity of the vegetation layer γ(θ, p) can be expressed as a function of the vegetation
optical thickness τ and the incidence angle θ:

γ(θ, p) = exp(−τ/ cos(θ)) (3)

The vegetation optical depth can be linearly related to the vegetation water content, VWC (kg/m2),
through an empirical parameter, b [18]:

τ = b · VWC (4)

A detailed analysis of the soil roughness effects performed by [29] showed that both Q and n could
be set equal to zero at L-band and that the roughness parameter HR could be semi-empirically estimated
comprising most surface roughness conditions. This approach has been followed on this study, where
HR is set constant and equal to 0.2, representing rather smooth roughness conditions. This is consistent
with L-band airborne and ground-based experiments, where soil roughness has generally found to be
rather smooth over agricultural or natural areas [30, 31]. However, recent experimental studies have
estimated values of HR as high as 1 [32, 33]; therefore, the effect of having a higher roughness parameter
(HR = 1) has been analyzed in Section 4.2. Also, some studies have observed a dependence of HR on
soil moisture content [29, 34, 35]. Nevertheless, this interdependency will not be considered in this
work, since these studies have been performed under very local conditions, and yet there is no evidence
of the potential benefits that they may introduce at global scale.

There is some experimental evidence indicating possible polarization dependence of both τ and
ω. However, this dependence has been observed mainly during field experiments over vegetation that
exhibits a predominant orientation, such as vertical stalks in tall grasses, grains and maize [36–38],
whereas canopy and stem structure of most vegetation covers are randomly oriented. Furthermore,
the effects of any systematic orientation of vegetation elements would most likely be minimized at
satellite scales [39]. Hence, (1) has been simplified assuming that τ and ω are polarization and angle
independent. Also, it is assumed that the temperature of the vegetation canopy is in equilibrium with the
soil temperature (Ts = TV ), since at SMOS overpass times (6 a.m./6 p.m.) temperature gradients within
the soil and vegetation should be minimized [40].

Figure 1 shows the dependence of brightness temperature with incidence angle and polarization for
the six scenarios studied, from (1). In the bare soil scenarios on Figure 1 (a), it can be seen that
H-pol increases with the incidence angle, whereas V-pol decreases with increasing incidence angle.
Figure 1 (b) shows that vegetation increases the soil emissivity, and decreases the difference between
the vertically and horizontally polarized brightness temperatures, and between the dry and wet soil
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conditions. This indicates that correction for the effects of vegetation is necessary to obtain accurate
soil moisture estimates. Furthermore, retrievals become increasingly unreliable as the opacity of the
vegetation layer increases [41]. Figure 1 also illustrates that the emissivity of dry soils is greater than
the emissivity of wet soils, with a soil brightness temperature variation at nadir of ∼ 80 K in the bare
soil scenarios and of ∼ 40 K in the vegetation-covered scenarios. In the two cases, this variation is much
larger than the noise sensitivity threshold of a microwave radiometer (typically < 1 K), so that a large
signal-to-noise ratio is obtained. This is a major advantage of the passive microwave technique for soil
moisture remote sensing. Likewise, the SMOS mission was defined to make full use of dual-polarized
multi-angular L-band acquisitions: by registering a lot of independent information of each pixel, it is
expected that soil and vegetation contributions could nicely be separated [9].

Figure 1. Graphical plots illustrating the brightness temperature dependence
with incidence angle for (a) the bare soil scenarios, and (b) the
vegetation-covered scenarios of Table 1, from (1).
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2.3. Retrieval Algorithm

Soil moisture retrieval consists of inverting the geophysical model function by finding the set of
input variables (sm, Ts, HR, ω and τ ) which generate the brightness temperatures that best match the
“observed” brightness temperatures. This inversion is performed on the L2 processor by minimizing a
cost function which accounts for the weighted squared differences between model and measured data,
using the iterative Levenberg-Marquardt method [42].

Assuming that the measurement errors are Gaussian, the fundamental least-squares cost function
(CF ) for observation-model misfits is:

CF = (F
meas − F

model
)T C−1

F (F
meas − F

model
) + (pi − pi0)

T C−1
p (pi − pi0) (5)

where F
meas

and F
model

are vectors of length N containing the brightness temperatures at different
incidence angles, measured by MIRAS and obtained using the forward models, respectively. N is
the number of observations of the same point in a satellite overpass, which ranges from about 240
measurements at the center of the swath to about 20 at 600 km from the sub-satellite track; CF is the
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covariance matrix of the brightness temperatures, which depends on the SMOS operation mode and
the reference frame [15]; pi are the retrieved physical parameters that may influence the modeled TB,
including sm, Ts, HR, τ and ω; pi0 are prior estimates of parameters pi (obtained from other sources
such as satellite measurements or model outputs, the auxiliary information); and Cp is a diagonal matrix
containing the variances of the prior parameters σ2

pi0
[23].

If the model error is uncorrelated between different measurements, then CF is diagonal, and (5) can
be expressed as:

CF =
N∑

n=1

∥Fmeas

n − F
model

n ∥2

σ2
Fn

+
M∑
i=1

(pi − pi0)
2

σ2
pi0

(6)

where σFn is the radiometric accuracy for the nth observation, and M is the number of parameters pi

to be retrieved. σpi0
represents the uncertainty on the a priori parameter pi0, and its value is used to

parameterize the constraint on the parameter pi in the retrievals: pi can be set to be free (σpi0
= 100, no

a priori information is used), it can be constrained to be more or less close to the reference value pi0, or
it can be constant (σpi0

< 10−3, assuming high accuracy on the a priori information). Note that pi0 are
specified a priori, whereas pi values are adjusted during the minimization process.

The retrieval of the geophysical parameters can be formulated using the vertical (Tvv) and horizontal
(Thh) polarizations separately (F n = [Tvv, Thh]

T in the Earth reference frame and F n = [Txx, Tyy]
T in the

antenna frame), or using the first Stokes parameter (F n = [TI ]
T = [Txx + Tyy]

T = [Thh + Tvv]
T ) [6, 43].

These two approaches will be considered in this study. Note that, up to date, the formulation of the
SMOS-derived soil moisture retrieval problem on the Earth reference frame is the preferred one [14, 33].
Hence, we present the formulation of the problem in terms of the first Stokes parameter as an alternative
approach, since retrievals using TI could benefit of having less angular dependency than (Tvv, Thh),
therefore reducing the degrees of freedom during the inversion process, which could lead to better soil
moisture retrievals. Also, retrievals using TI are unaffected by geometric and Faraday rotations, which
is critical from an operational point of view.

To explore the effect of adding a priori (background) information of other geophysical variables on the
minimization process, the two Bayesian-based CFs on Table 2 have been formulated: CF1 represents
the case in which no a priori information is added, i.e., the cost function consists of an observational
term and all parameters are free in the minimization; and CF2 stands for the case in which a priori
information of all auxiliary parameters is added, excluding sm. Note that, in addition to using or not
auxiliary information in the retrievals, it is important to have a good knowledge of the quality of the
prior information. Thus, in the present study, Ts is assumed to be known by means of thermal infrared
observations and/or meteorological models with an accuracy of 2 K, and the accuracies of HR, ω and τ

estimations are comprehensively set according to 1) the simulated study in [44], where a large number
of retrieval configurations, depending on the a priori information used in the retrievals and its associated
uncertainty were tested, and 2) the field experiments in [22].



RemoteSensing 2010, 2 359

Table 2. Selected standard deviations of soil moisture (sm), soil roughness
(HR), soil temperature (Ts), vegetation albedo (ω) and vegetation opacity (τ )
for the two selected cost function configurations CF1 and CF2.

σsm [m3/m3] σHR σTs [K] σω στ [Np]

CF1 100 100 100 100 100
CF2 100 0.05 2 0.1 0.1

3. Sensitivity Analysis

To get a visual understanding of the CF shape under different configurations, a set of retrieval setups
have been formulated from (6), and the most interesting sections (2-D contours) are visualized showing
the behavior of the minima in 2-D cuts through a 5-D CF , where the 5-D are the parameters of the
forward model, namely sm, Ts, HR, ω and τ . These contour plots indicate in the first place that
the CF has only one minimum and converges to the original values, as expected. Note that this is
important to ensure that the minimization algorithm will be approaching the “true” solution, and not a
local minimum. Also, the CF can be interpreted as the misfit of the measurements with the solution
lying on the geophysical model function surface. Therefore, the shape of its minimum determines the
precision of the retrieval. The broader the minimum, the less accurate are the retrieved parameters, since
we are ignoring all the neighboring solutions, which have a comparable probability of being the true
state (as represented by the original sm, HR, Ts, ω and τ on Table 1) [45, 46].

The weights of (6) were set according to Table 2, with σTB
= 2 K. The original parameters

(“measured”) were set according to the scenario simulated (see the parameters’ original values for
each scenario on Table 1) and the forward model on Section 2.2. was used to simulate TBmeas for
incidence angles between 0◦ and 65◦. Likewise, this was done to obtain TBmodel over the ranges
0 ≤ sm ≤ 0.5 m3/m3, 250 ≤ Ts ≤ 350 K, 0 ≤ HR ≤ 5, 0 ≤ τ ≤ 3 Np, and 0 ≤ ω ≤ 0.3 [23]. Hence,
when the scenario’s original values are used TBmodel equals TBmeas, which corresponds to the CF ’s
absolute minimum. Note that the axis on the figures have been normalized to the parameters’ original
values ± 3·σ0

pi
to cover the 99.7% of the values the retrieved parameters could have and properly compare

the different contours. Since the purpose of this experiment is to evaluate the sensitivities (gradients) of
the different cost function configurations, no bias errors are assumed in measurements or references; the
effect of having an a priori value which is far from the true state is analyzed in Section 4.

Figure 2 shows CFs formulated using the first Stokes parameter over a bare dry soil scenario for the
case where no constraints are added (Figure 2 (a) and (b)) and for the case where a priori information
about all the auxiliary parameters, except for sm, is added (Figure 2 (c) and (d)). It can be seen that the
minimum in the case of no constraints is elliptical with its major axis covering almost the entire range
of roughness parameter and soil temperature values for the contour line CF = 1. This indicates a low
sensitivity to HR and Ts and a high sensitivity to sm. When the constraints are used the minimum is
better defined, i.e., there is a higher probability of finding the true state. This effect is also manifested on
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vegetation-covered simulations (see Figure 3). Therefore, assuming that both the real errors in TB and
the reference values are Gaussian, a constrained CF should lead to a more accurate sm retrieval than a
non-constrained CF .

Figure 2. Cost functions formulated using TI over a bare dry soil scenario.
Contours of HR vs sm (a) and Ts vs sm (b), with no constraints on the cost
function (CF1). Contours of HR vs sm (c) and Ts vs sm (d), adding constraints
on all parameters, except for sm (CF2).
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The presence of a sparse vegetation layer is examined in Figure 3. It can be noticed that the contours
plotted are clearly widened if compared to those on Figure 2, which indicates a higher uncertainty
in the soil moisture retrievals over vegetation-covered surfaces, as expected. The vegetation canopy
attenuates the soil emission and diminishes the forward model sensitivity to sm; as the observed soil
emissivity decreases with an increase in vegetation biomass, the soil moisture information contained in
the microwave signal decreases [6].
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Figure 3. Cost functions formulated using TI over a vegetation-covered dry
soil scenario. Contours of HR vs. sm (a) and Ts vs sm (b), with no constraints
on the cost function (CF1). Contours of HR vs sm (c) and Ts vs sm (d), adding
constraints on all parameters, except for sm (CF2).

0.
1

0.
1

1

1

1
10

10

10

10
0

10
0

SOIL MOISTURE [m3/m3]

R
O

U
G

H
N

E
S

S
 P

A
R

A
M

E
T

E
R

CF
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

0.1
1

1

1

10

10

10

10
0

10
0

SOIL MOISTURE [m3/m3]

S
O

IL
 T

E
M

P
E

R
A

T
U

R
E

 [K
]

CF
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
294

296

298

300

302

304

306

(b)

0.1

1

10

1010

10
0

10
0

SOIL MOISTURE [m3/m3]

R
O

U
G

H
N

E
S

S
 P

A
R

A
M

E
T

E
R

CF
2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

0.1

1

110

10

10

10
0

10
0

SOIL MOISTURE [m3/m3]

S
O

IL
 T

E
M

P
E

R
A

T
U

R
E

 [K
]

CF
2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
294

296

298

300

302

304

306

(d)

The difference between CFs simulated over a bare dry, moist, and wet soil scenario can be seen in
Figure 4. The cost function sensitivity to HR is the highest on wet soils (Figure 4 (e)) and the lowest
on dry soils (Figure 4 (a)). In contrast, the cost function sensitivity to Ts is the highest on dry soils
(Figure 4 (b)) and the lowest on wet soils (Figure 4 (f)). Therefore, constraints on both HR and Ts

should be needed to improve the accuracy of soil moisture retrievals over bare soils under diverse moist
conditions. This result can also be extended to vegetation-covered scenarios, where the same behavior
has been observed in the CFs. Note that the plots on Figure 2 and Figure 4 are in good agreement
with other L-band retrieval studies [14, 47], where adding constraints on HR and Ts was also shown to
be preferable.
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Figure 4. Cost functions formulated using Thh − Tvv with no constraints.
Contours of HR vs. sm (a) and Ts vs sm (b) over a bare dry soil scenario.
Contours of HR vs. sm (c)and Ts vs sm (d) over a bare moist soil scenario.
Contours of HR vs. sm (e) and Ts vs sm (f) over a bare wet soil scenario.

0.
1

1

1

1

10

10

10

10
0

10
0

SOIL MOISTURE [m3/m3]

R
O

U
G

H
N

E
S

S
 P

A
R

A
M

E
T

E
R

CF
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

0.
1

1
1

10

10

10

10

10

10
0

10
0

10
0

SOIL MOISTURE [m3/m3]

S
O

IL
 T

E
M

P
E

R
A

T
U

R
E

 [K
]

CF
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
294

296

298

300

302

304

306

(b)

1

10

10

10

10
0

10
0

10
0

10
0

SOIL MOISTURE [m3/m3]

R
O

U
G

H
N

E
S

S
 P

A
R

A
M

E
T

E
R

CF
1

0.1 0.15 0.2 0.25 0.3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

0.1
0.1

1

1

1

10

10
10

10

10
0

10
0

10
0

10
0

SOIL MOISTURE [m3/m3]

S
O

IL
 T

E
M

P
E

R
A

T
U

R
E

 [K
]

CF
1

0.1 0.15 0.2 0.25 0.3
294

296

298

300

302

304

306

(d)

1

10

10

100

100

100

10
0

SOIL MOISTURE [m3/m3]

R
O

U
G

H
N

E
S

S
 P

A
R

A
M

E
T

E
R

CF
1

0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e)

1

1

1

1

10

10
10

10

10
0

10
0

10
0

10
0

SOIL MOISTURE [m3/m3]

S
O

IL
 T

E
M

P
E

R
A

T
U

R
E

 [K
]

CF
1

0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

500

600

(f)



RemoteSensing 2010, 2 363

Regarding the vegetation parameters, Figure 5 shows that the CF sensitivity to τ is the highest over
vegetation-covered wet soils and decreases as the soil under the vegetation canopy dries out, as can
be easily appreciated in the contour line CF = 10. This indicates that better τ retrievals should be
expected over wet than over dry soils. The effect of adding restrictions on τ and ω in the CF was not
clearly visible in the contours, probably because the restrictions imposed on these variables are not very
severe (στ = σω = 0.1). However, it is shown to actually improve sm and τ retrievals when applied to
SMOS-like simulated data on Section 4.2.

Figure 5. Cost functions formulated using Thh − Tvv with no constraints.
Contours of τ vs. sm (a) over a vegetation-covered dry scenario. Contours
of τ vs. sm (b) over a vegetation-covered moist scenario. Contours of τ vs. sm

(c) over a vegetation-covered wet scenario.

0.1

110

10

10

100

100

SOIL MOISTURE [m3/m3]

V
E

G
E

T
A

T
IO

N
 O

P
A

C
IT

Y
 [N

p]

CF
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

1
10 10

100

100

100

100

SOIL MOISTURE [m3/m3]

V
E

G
E

T
A

T
IO

N
 O

P
A

C
IT

Y
 [N

p]
CF

1

0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

1

10

10

10
100

100

100

100

SOIL MOISTURE [m3/m3]

V
E

G
E

T
A

T
IO

N
 O

P
A

C
IT

Y
 [N

p]

CF
1

0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c)

Comparing Figure 3(a) and (b) with Figure 4(a) and (b), it can be observed that the CF sensitivity
to Ts is higher when using the Thh − Tvv than when using TI , whereas the sensitivity to HR

remains the same. No remarkable differences have been found between the two formulations over
vegetation-covered scenarios.
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4. Analysis with Simulated SMOS Data

4.1. Simulation Strategy

L-band 2-D multi-angular brightness temperatures over land have been simulated for the six main
surface conditions of Table 1 using SEPS. Next, these data has been used as input to the L2 Processor
Simulator, where retrievals have been performed using the three CF configurations of Table 2,
formulated in terms of vertical (Tvv) and horizontal (Thh) polarizations separately and using the first
Stokes parameter (TI). Note that over the bare soil scenarios τ = ω = 0 will not be retrieved. It
is important to outline that SEPS simulated error on TB includes all the instrument specific features
(measured antenna pattern, measured receivers’ frequency response, thermal drifts, etc.) and all the
realistic features induced by the image reconstruction algorithms, such as biases and the pixel-dependent
radiometric accuracy [48].

Retrievals on the L2 Processor Simulator have been performed under the following guidelines and
assumptions:

– The geophysical models and the ancillary data used in the L2 Processor Simulator are the same as
in SEPS, so that the effect of the model used is not affecting the results.

– The performance of the CF configuration is not dependent on σFn , since the absolute
accuracy of the radiometric measurements is available on the SEPS output and is used in L2
Processor Simulator.

– To reduce the computational time, the search limits of the retrieved variables in the CF have
been reduced within reasonable bounds, namely 0 ≤ sm ≤ 0.5 m3/m3, 250 ≤ Ts ≤ 350 K,
0 ≤ HR ≤ 5, 0 ≤ τ ≤ 3 Np, and 0 ≤ ω ≤ 0.3 [23].

– The reference values of the parameters on the CF (pi0) are randomly determined from a normal
distribution with the nominal standard deviations on Table 1, added to the original values.

– Homogeneous pixels have been assumed in the simulations to evidence the contribution of each
parameter in the results and facilitate the analysis. However, further studies will be required to
assess the limitations imposed by heterogeneity of vegetation cover and soil characteristics within
a satellite footprint.

4.2. Simulation Results

The mean, standard deviation, and RMSE of the retrieved soil moisture (sret
m − sorig

m ) are shown in
Table 3 for the bare soil scenarios and in Table 4 for the vegetation-covered scenarios defined in Table 1.
It can be seen that in the case of no constraints (CF1), the SMOS sm science requirement of 0.04 m3/m3

is not met for any of the scenarios simulated: a retrieval error of ≈ 0.10 to 0.21 m3/m3 is obtained over
bare soils and of ≈ 0.11 to 0.24 m3/m3 over vegetation-covered soils.
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Table 3. Retrieved mean, standard deviation and root mean square soil
moisture error of simulated SMOS observations over the bare soil scenarios
on Table 1, using the cost function configurations of Table 2, formulated on the
Earth reference frame or using the first Stokes parameter.

Scenario Retrieved
sm error

CF1 (HR=0.2/HR=1) CF2 (HR=0.2/HR=1)

Earth Stokes Earth Stokes

Bare Dry Soil

Mean 0.149/0.185 0.106/0.140 0.026/0.038 0.010/0.021

Std. dev. 0.157/0.179 0.164/0.160 0.092/0.102 0.024/0.039

RMS 0.216/0.257 0.196/0.211 0.096/0.108 0.027/0.044

Bare Moist
Soil

Mean 0.069/0.059 0.018/0.056 −0.014/−0.050 −0.006/0.006

Std. dev. 0.122/0.160 0.134/0.143 0.085/0.105 0.039/0.054

RMS 0.140/0.171 0.135/0.154 0.085/0.116 0.039/0.054

Bare Wet Soil

Mean −0.056/−0.100 −0.081/−0.090 −0.052/−0.113 −0.038/−0.031

Std. dev. 0.084/0.142 0.096/0.130 0.050/0.088 0.032/0.037

RMS 0.101/0.173 0.125/0.158 0.072/0.143 0.050/0.048

Table 4. Retrieved mean, standard deviation and root mean square soil
moisture error of simulated SMOS observations over the vegetation-covered
scenarios on Table 1, using the cost function configurations of Table 2,
formulated on the Earth reference frame or using the first Stokes parameter.

Scenario Retrieved
sm error

CF1 CF2

Earth Stokes Earth Stokes

Dry Soil +
Canopy

Mean 0.169 0.170 0.060 0.049

Std. dev. 0.162 0.169 0.116 0.053

RMS 0.235 0.240 0.131 0.072

Moist Soil +
Canopy

Mean 0.076 0.095 0.003 0.048

Std. dev. 0.143 0.121 0.120 0.076

RMS 0.162 0.153 0.120 0.090

Wet Soil +
Canopy

Mean -0.062 -0.040 -0.061 -0.021

Std. dev. 0.119 0.102 0.093 0.050

RMS 0.134 0.109 0.111 0.054

Table 3 shows that the sm retrieval error over bare soil scenarios is considerably improved when
constraints on HR and Ts are used (CF2): sm RMSE retrievals of ≈ 0.07 to 0.09 m3/m3 are obtained
using Thh − Tvv and of ≈ 0.03 to 0.05 m3/m3 using TI . This result is in line with Figure 2 and with



RemoteSensing 2010, 2 366

other L-band retrieval studies [14, 47]. The special case with HR = 1 on the bare soil scenarios has
also been simulated. Results show that a higher roughness leads to an increased sm RMSE in all
the scenarios and configurations studied, and only in the case of using TI and CF2 the sm retrieval
error is below 0.05 m3/m3. Table 4 shows that the sm retrieval error over vegetation-covered
scenarios (τ = 0.24 Np and ω = 0) is also improved when constraints on HR, Ts, ω, and τ are used
(CF2): sm RMSE retrievals of ≈ 0.11 to 0.13 m3/m3 are obtained using Thh − Tvv and of ≈ 0.05
to 0.09 m3/m3 using TI . This result is in agreement with Figure 3. Hence, simulation results show that
that the use of adequate constraints on the CF improve the accuracy of sm retrievals in all the cases
studied, and that the formulation in terms of TI is advantageous. Note that the improvement in sm

retrievals when using CF2 is specially noticeable in all the scenarios under dry soil conditions, where a
remarkably high sm RMSE is obtained using CF1. In fact, lower sm RMSE is obtained over wet soils
than over dry soils (bare and vegetation-covered), except for the case of bare soil retrievals using TI and
CF2. This could be due to the reduced sensitivity of the dielectric constant at low moisture levels [49].

Table 5. Retrieved mean, standard deviation and root mean square vegetation
opacity error of simulated SMOS observations over the vegetation-covered
scenarios on Table 1, using the cost function configurations of Table 2,
formulated on the Earth reference frame or using the first Stokes parameter.

Scenario Retrieved
τ error

CF1 CF2

Earth Stokes Earth Stokes

Dry Soil +
Canopy

Mean 0.439 0.369 0.110 0.036

Std. dev. 0.888 0.606 0.307 0.085

RMS 0.991 0.709 0.326 0.092

Moist Soil +
Canopy

Mean 0.224 0.100 0.049 0.025

Std. dev. 0.732 0.342 0.267 0.078

RMS 0.765 0.356 0.272 0.082

Wet Soil +
Canopy

Mean 0.187 0.019 0.053 -0.029

Std. dev. 0.714 0.208 0.274 0.056

RMS 0.738 0.209 0.279 0.063

Vegetation opacity retrievals are analyzed on Table 5. It shows that a notable improvement on τ

RMSE is obtained when adequate constraints on the CF are used (CF2) than when all parameters are
free (CF1). Also, results indicate that better τ retrievals should be obtained over wet soils than over dry
soils, in agreement with Figure 5. It can be also be seen that better τ retrievals are obtained using TI

than using Thh − Tvv in all scenarios and configurations, specially under moist and wet soil conditions.
From (4), the optical depth can be linearly related to the VWC using the so-called b parameter, which
depends mainly of crop type and frequency. At L-band, b = 0.15 m2/kg was found to be representative
of most agricultural crops, with the exception of grasses [18]. This value has been used in this study
to evaluate if VWC maps with an accuracy of 0.2 kg/m2 could be obtained from the τ retrievals on
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Table 5. Thus, using this approach and considering that no constraints are added, VWC with an accuracy
of ≈ 4.9 to 6.6 kg/m2 could be obtained using Thh−Tvv and of ≈ 1.4 to 4.7 kg/m2 using TI . If constraints
are added, the accuracy of VWC improves to ≈ 1.9 to 2.2 kg/m2 using Thh − Tvv and to ≈ 0.4 to 0.6
kg/m2 using TI . These results show that the formulation in terms of TI and the use of constraints on the
CF substantially improve τ retrievals, although the VWC requirement of 0.2 kg/m2 is not fully satisfied.

It must be remarked that in the results presented on Tables 3, 4, and 5, all pixels in the SMOS
field-of-view (FOV) are considered, regardless of the number of measurements on each pixel. However,
due to the SMOS observation geometry, all pixels in the FOV do not have the same properties: as the
pixel’s distance to the ground-track increases, the pixel is imaged fewer times, its angular variation is
reduced and the instrument’s noise increases [15]. This fact indicates that better accuracies should be
expected if only the central part of the FOV—the so-called Narrow Swath (640-km) [50]—is considered.
However, note that the use of Narrow Swath implicates a temporal resolution of 7 days, which will
limit the applicability of the data. Still, the possibility of increasing the accuracy of the retrievals
by considering a narrower swath should not be neglected. Hence, the retrieval performance has been
explored further in Figures 6 and 7, as a function of the ground-track distance.

Figure 6 illustrates the soil moisture retrieval performance vs. the pixel position, for all the retrieval
configurations and scenarios studied. On the left-hand side of each plot simulation results correspond to
the use of the first Stokes parameter, and on the right-hand side to the use of the Earth reference frame.
Figures 6 (a) and (b) show results over bare soil scenarios using CF1 and CF2, respectively. Figures 6 (c)
and (d) show results over vegetation-covered scenarios using CF1 and CF2, respectively. Vertical lines
denote the Narrow Swath. These plots effectively show how the sm RMSE increases with the distance to
the ground-track. Also, it can be seen that the use of adequate constraints (CF2) dramatically improves
soil moisture retrievals. Note that either in the case of considering the nominal or the Narrow Swath, the
use of CF2 and formulation in terms of TI should provide more accurate soil moisture retrievals.

Likewise, Figure 7 illustrates the vegetation opacity retrieval performance vs. the pixel position, for
all the retrieval configurations and scenarios studied. When no constraints are added (Figure 7 (a)),
the retrieval error rapidly increases beyond the Narrow Swath width. If adequate constraints are added
(Figure 7 (b)), the error dependence on the ground-track distance is reduced, specially in the case of using
TI . As in the case of soil moisture retrievals, the use of adequate constraints (CF2) and the formulation
in terms of TI should lead to more accurate τ retrievals in the case of considering either the nominal or
the Narrow Swath.
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Figure 6. Retrieved soil moisture RMSE of simulated SMOS observations
versus pixel position in the swath; Simulations over the dry (red, dashed lines),
moist(green, solid lines), and wet (blue, dashed-dotted lines) scenarios of
Table 1. First row: bare soil scenarios, second row: vegetation-covered
scenarios. Left column: with no constraints on the cost function (CF1), right
column: adding constraints on all parameters, except sm (CF2). In each plot:
first Stokes parameter (left side) and Earth reference frame (right side). Vertical
lines denote the Narrow Swath.
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Figure 7. Retrieved vegetation opacity RMSE of simulated SMOS
observations versus pixel position in the swath; Simulations over the
vegetation-covered dry (red, dashed lines), moist(green, solid lines), and wet
(blue, dashed-dotted lines) scenarios of Table 1, (a) with no constraints on the
cost function (CF1), and (b) adding constraints on all parameters, except sm

(CF2). In each plot: first Stokes parameter (left side) and Earth reference frame
(right side). Vertical lines denote the Narrow Swath.
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5. Conclusions and Discussion

The SMOS mission has the unique capability to map the Earth’s surface soil moisture globally
using L-band multi-angular and dual-polarization/full-polarimetric observations. In this paper, the soil
moisture inversion algorithm from SMOS observations has been analyzed through the use of different
cost function configurations covering four critical aspects: 1) the use of auxiliary information on the cost
function, 2) the effect of the presence of a vegetation canopy, 3) the effect of the soil moisture content
(dry/moist/wet), and 4) the retrieval formulation in terms of Thh −Tvv (Earth reference frame) or TI (the
first Stokes parameter).

First, the sensitivity of the different cost function configurations to the geophysical variables
dominating the L-band emission (sm, HR, Ts, τ and ω) has been examined by looking at the shape
of the most interesting cuts ( 2-D contours). Then, a simplified version of the operational SMOS
Level 2 Processor has been used to test the accuracy of the different retrieval setups with realistic
SMOS-like brightness temperatures generated by SEPS. Simulated results are consistent with the
theoretical study, therefore reinforcing the conclusions of this work, which can be summarized
as follows:

– The use of adequate ancillary information on the cost function significantly improves the accuracy
of sm retrievals, and is needed to satisfy the SMOS science requirement of 0.04 m3/m3. Using
CF2 constraints (Table 2), sm RMSE retrievals of ≈ 0.07 to 0.09 m3/m3 are obtained using
(Thh, Tvv), and of ≈ 0.03 to 0.05 m3/m3 using TI over bare soil scenarios. As expected, there
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is a strong decrease of the brightness temperatures sensitivity to sm in the presence of vegetation,
and sm RMSE retrievals of ≈ 0.11 to 0.13 m3/m3 are obtained using (Thh, Tvv), and of ≈ 0.05
to 0.09 m3/m3 using TI (with τ = 0.24, ω = 0).

– The use of adequate constraints on the cost function (CF2) highly improves the accuracy of τ

estimations and is therefore critical to derive VWC maps from SMOS at the required accuracy
of 0.2 kg/m2; Preliminary calculations indicate that VWC maps with an accuracy of ≈ 1.9
to 2.2 kg/m2 could be estimated from τ retrievals using (Thh, Tvv), and of ≈ 0.4 to 0.6 kg/m2

using TI .

– More accurate soil moisture estimates have been obtained over wet soils than over dry soils
(bare and with low vegetation), except for the case of retrievals using TI and CF2. Regarding
τ retrievals, more accurate estimates have been obtained over wet soils than over dry soils in all
the configurations.

– Better sm retrievals have been obtained when using TI than when using Thh − Tvv. Also, the
formulation in terms of TI leads to better τ retrievals in all the configurations. These results
suggest that, although Thh−Tvv is the formulation generally adopted in most studies, the use of TI

should not be disregarded. In addition, TI is more robust in the presence of geometric rotations and
Faraday rotation (at any spatial scale) than (Thh, Tvv). These effects have been perfectly corrected
on the simulations, but are critical from an operational point of view.

– Due to SMOS observation geometry, better accuracies could be obtained if only the Narrow Swath
(640-km, the central part of the FOV) is used. The use of adequate constraints (CF2) and the
retrieval formulation in terms of TI provide the most accurate sm and τ retrievals over all scenarios
in the case of considering either the nominal or the Narrow Swath.

From an operational perspective, it should be pointed out that the forward model used in SEPS and in
the L2 processor is not as complex as the one used in the ESA’s SMOS Level 2 Processor (the L-MEB
model). The L2 processor uses the τ−ω model, which is the core of the L-MEB model, and does not take
into account any specific land cover parametrization for heterogeneous pixels. The main difference in the
forward model is in the optical depth formulation, that in L-MEB is dependent on the incidence angle
and the vegetation structure. In this study, it is considered that most vegetation covers are randomly
oriented, and the optical depth parametrization has been simplified (see Section 2.2.). However, note
that the optimization algorithm used in the L2 Processor Simulator is exactly as described in the SMOS
Algorithm Theoretical Bases Document [23]. Thus, the results presented on this paper are potentially
applicable to upcoming SMOS data and could timely contribute to the inversion of the very first SMOS
observations during the calibration/validation phase.

Following the successful deployment of SMOS in orbit, continuous efforts will be needed to
consolidate an optimal soil moisture retrieval configuration. The present study has analyzed the soil
moisture inversion algorithm, both theoretically and in terms of performance with simulated data; it
addresses key aspects for the retrieval of accurate soil moisture estimations, which are urgently needed
to further our understanding of the Earth’s global water cycle and climate change impacts.
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