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Abstract: Landslides play a significant role in the morpho-evolutional processes of slopes, affect-
ing them globally under various geological conditions. Often unnoticed due to low velocities,
they cause diffuse damage and loss of economic resources to the infrastructure or villages built
on them. Recognizing and mapping mass movements is crucial for mitigating economic and so-
cial impacts. Conventional monitoring techniques prove challenging for large areas, necessitating
resource-intensive ground-based networks. Leveraging abundant synthetic aperture radar (SAR)
sensors, satellite techniques offer cost-effective solutions. Among the various methods based on SAR
products for detecting landslides, multi-temporal differential interferometry SAR techniques (MTIn-
SAR) stand out for their precise measurement capabilities and spatiotemporal evolution analysis.
They have been widely used in several works in the last decades. Using information from the official
Italian landslide database (IFFI), this study employs Sentinel-1 imagery and two new processing
chains, E-PS and E-SBAS algorithms, to detect deformation areas on the slopes of Calitri, a small town
in Southern Italy; these algorithms assess the cumulated displacements and their state of activity.
Taking into account the non-linear trends of the scatterers, these innovative algorithms have helped
to identify a dozen clusters of points that correspond well with IFFI polygons.

Keywords: MTInSAR; landslide; remote sensing; permanent and distributed scatterers; E-PS; E-SBAS

1. Introduction

Landslides, deep or shallow, are important agents in morpho-evolution processes.
These mass movements, affecting slope stability in many regions of the world, are related
to a variety of geological conditions and other predisposing factors due to their initiation
and evolution [1–3].

Mass movements can vary, based on the involved material, their kinematics, and
velocity [4–6]. In some cases, these phenomena have proven to be catastrophic events
causing numerous victims and considerable damage; in other cases, due to their extremely
low velocity (mm or cm per year), landslides can remain unknown or very difficult to
recognize for a long time. So, roads, buildings, and infrastructure are often built on
them. This condition is widespread in many regions throughout the world and a large
number of towns suffer diffuse damage induced by active landslides or by periodical
reactivation [7–12]. Identifying and mapping landslides is essential for mitigating their
economic and social impact. Landslide Inventory Maps (LIMs), periodically updated with
information on the state of activity, are the main tools supporting the expansion planning
of urbanized areas [13].
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Among the various cases already known in the literature, the landslides involving the
town of Calitri, located in the Avellino province, Italy, represent some of the most famous
and studied reactivated mass movements triggered by earthquakes [14,15].

To investigate large areas affected by numerous slope failures for long periods, in-
cluding Calitri, the use of conventional monitoring techniques (e.g., total stations, global
navigation satellite system (GNSS) receivers, extensometers, tilt-meters, inclinometers, etc.)
proves to be difficult and resource-intensive. Ground-based monitoring networks are often
economically unsustainable, and technical limitations, such as inaccessibility to landslide
sites, and management costs of the installed instrumentation, hamper the availability of
extensive studies of unstable slopes.

Considering the abundance of synthetic aperture radar (SAR) sensors, products, and
data processing algorithms, satellite techniques allow for the detection of areas affected
by ground deformation induced by both natural hazards and human activities at different
scales [16–20]. The detection and mapping of landslides, using SAR images, can be per-
formed through polarimetric techniques [21,22], coherence [23,24], or amplitude change
detection of pre- and post-failure images [25–28].

However, although all the above-mentioned techniques are capable of detecting areas
affected by landslides, in many cases, they are not able to provide accurate measurements
of the ground surface displacements or reconstruct the spatiotemporal evolution. To
conduct this, the use of multi-temporal interferometry SAR techniques (MTInSAR) [29–32]
can be advantageous for mapping landslide phenomena as well as for determining their
state of activity in the long run [33,34]. Data acquired by space-borne SAR sensors and
processed using differential SAR interferometry (DInSAR) techniques are now important
technological tools in landslide investigations and studies [35–39].

Several MTInSAR applications for landslide mapping can be found worldwide and in
Italy, adopting different approaches [40–42], data, and workflows implemented. Moreover,
these techniques have demonstrated their capability to reach measurement precision of
about 1–2 mm/year for deformation velocity maps and time series [43–45].

This study is focused on detecting landslides that impact both the northern and
southern slopes of Calitri hill, where the main slope failure occurred. Their presence
and state of activity have been assessed through field evidence and the employment of
new MTInSAR algorithm analysis, specifically Enhanced-PS (E-PS) and Enhanced-SBAS
(E-SBAS). The collected Sentinel-1 imagery has been used to verify and possibly update the
state of activity of the known and mapped landslides in the Italian Landslide Inventory,
IFFI, produced by the Italian Institute for Environmental Protection and Research [46].

2. Study Area

Calitri is located 25 km from the Mount Vulture volcanic complex and about 150 km
east of Naples.

Specifically, the town of Calitri lies on the left bank of the Ofanto River, set on a
hilly morphology characterized by marine sedimentary Pliocene regressive successions,
including clays and silty gray–blue clays, sandstones, sands, and conglomerates. In the
middle-lower portion of the hilly relief, as well as in some areas of the town, clays outcrop
(Red Flysch or varicolored clays, Figure 1).

Apennine tectonics, which began in the Middle–Upper Miocene and continued
throughout the Plio–Pleistocene, comported large-scale dislocations and associated in-
tensive deformations in the rock units [47].

Since historical times, the slopes of Calitri hill [48] have been affected by a large number
of landslides, mainly complex (roto-translational evolved into earthflow), involving the
pelitic terms (silty and marly clays, sands) of the Ariano Irpino Super-Synthem. The
town of Calitri is well known worldwide for its large landslide reactivated by the 23
November 1980 seismic event affecting the southern slope [49–51]. In addition, other
active landslides are present on the northern slopes of the built-up area that are part of the
Cortino basin. According to the IFFI database (Inventario dei Fenomeni Franosi in Italia,
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https://idrogeo.isprambiente.it/app/iffi/, accessed on 10 January 2024).), updated to 2006,
slopes are affected by many mass movements, which consist of roto-translational and earth
flow dormant landslides.
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Figure 1. Geological setting of the study area. The represented lithologies have been extracted from
sheet n. 451 “Melfi” released by ISPRA within the CARG project (https://www.isprambiente.gov.it/
Media/carg/451_MELFI/Foglio.html, accessed on 10 January 2024).

3. Materials and Methods

In the MTInSAR analysis, C-band SAR images from the Sentinel-1 satellite (provided
by ESA) were utilized. These images were acquired along both ascending and descending
orbit tracks. Specifically, products with the Interferometric-Wide (IW) acquisition mode
and VV polarization were employed. Two stacks of scenes were examined, covering the
period from January 2015 to December 2023 considering 1 acquisition per month, with
108 scenes along both orbits, as seen in Table 1.

Table 1. The Sentinel-1 satellite’s relative paths, frames, incidence angles, and the number of scenes
across both orbits.

Satellite Orbit Path Frame Incidence Angle Nr. Scenes

Sentinel-1
Ascending 44 127 42.29 108
Descending 124 457 38.76 108

Deformation analysis can be categorized into two main categories based on surface
backscatter: persistent scatterer (PS) and distributed scatterer (DS). On the one hand, PSs

https://idrogeo.isprambiente.it/app/iffi/
https://www.isprambiente.gov.it/Media/carg/451_MELFI/Foglio.html
https://www.isprambiente.gov.it/Media/carg/451_MELFI/Foglio.html
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are objects characterized by a high signal-to-noise ratio and often appear as consistently
bright and stable points over time, commonly associated with man-made features [52].
On the other hand, DSs exhibit an average or low signal-to-noise ratio and can be uti-
lized effectively when they form homogeneous groups of pixels that are large enough
to allow statistical analysis. These clusters can maintain their coherence over time, even
intermittently, as typically observed in rural areas [53]. Historical approaches that can
independently measure either DS or PS are the small baseline subset (SBAS) and persistent
scatterer interferometry (PSI), respectively. Over the past decade, significant advancements
in this field have introduced new methods that are capable of concurrently extracting
measurements from both PS and DS.

These advancements have been integrated into SARscape® V. 5.7.0 software, which
introduces two innovative processing chains: Enhanced SBAS (E-SBAS) and Enhanced PS
(E-PS). These new methodologies build on the foundations of the original PS and SBAS
techniques, as established by Ferretti et al. [54] and Berardino et al. [55]. By integrating these
enhanced processing chains, researchers can now more effectively harness the capabilities
of both PS and DS analyses, leading to more precise deformation studies. The data quality
control process includes the removal of the phase noise, where the flattened interferograms
are multi-looked and filtered, typically using a Goldstein filter. In the case of E-PS, the
filtering is applied only to the DS, by using adaptive spatial phase multi-looking.

Each technique offers different characteristics in terms of absolute precision, the ability
to manage non-continuous or non-linear historical time series, and coverage. The ALOS
World 3D (AW3D30) Digital Elevation Model (DEM), with a resolution of 30 m, was
utilized to remove topography from generated interferograms to achieve accurate ground
deformations. To remove atmospheric phase components, the atmospheric phase screen
(APS) filter is used [56]. Moreover, to obtain reliable deformation measurements and to
optimize the displacement trend assessment as a Ground Control Point (GCP) during the
geocoding processing step, the AVO4 geodetic network’s station of INGV was selected
(http://ring.gm.ingv.it/, accessed on 10 January 2024).).

3.1. Enhanced PS (E-PS)

The E-PS approach is inspired by Ferretti et al. [57] and Fornaro et al. [58]. The joint
processing of PS and DS can be carried out independently, without the need for significant
changes in the standard PS processing chain (Figure 2). Such an approach is aimed at
extending the standard PS analysis on rural areas, and in this regard, two main steps
are needed:

1. The identification of pixel examples that are similar from a statistical point of view
must be performed. The Kolmogorov–Smirnov (KS) and Anderson–Darling (AD)
tests are both based on the amplitude of the co-registered and calibrated stack of SAR
data. These tests are specifically designed to detect distributed scatterers (DSs);

2. For all of the DSs identified by statistical tests, the covariance matrix that takes ad-
vantage of the ensemble of similar pixels is estimated. SLC phases in correspondence
with DS are weighted optimally, either by the maximum likelihood estimator (MLE)
under the assumption of Gaussianity, or by exploiting the largest principal component
of the covariance matrix. The final estimate of the time series of displacement should
be made by processing the DS that has a consistency above a certain threshold with
the PS.

http://ring.gm.ingv.it/
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3.2. Enhanced SBAS (E-SBAS)

The E-SBAS consists of the integration of the standard SBAS processing chain, accord-
ing to Berardino et al. [55], where outputs initialize a PS approach [59] to retrieve precise
deformation information about strong and stable reflectors (therefore, the PS targets).

The functionality of the E-SBAS technique is two-fold as shown in Figure 3:

I. Estimates the low-pass deformation time series, specifically at the locations of dis-
tributed scatterer (DS) points;

II. Estimates the low-pass digital elevation model (DEM)—residual topography.
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The temporal displacement associated with PS points is obtained by applying the PSI
method to interferograms that were previously calibrated, removing the low-pass topogra-
phy, deformation, and residual atmosphere estimated by the SBAS technique. This strategy
integrates the PSI and SBAS methods, ensuring the consistency of deformation results
obtained at point-like and DS targets and, therefore, provides better results concerning
the approach of executing the two methods independently from each other. The proposed
hybrid approach is not just the simple application of the two techniques independently;
indeed, the method is able to analyze both strong reflectors and distributed targets, deliver-
ing lower-resolution DS results combined with higher-resolution PS for even non-linear
trends in an integrated continuous spatial solution.

In this case study, the minimum temporal baseline considered is 12 and the maximum
is equal to 180 (days) with minimum normal baseline redundancy criteria.

4. Results

The analysis yielded a significant number of points suitable for monitoring in the areas
surrounding the town. Table 2 summarizes the outcomes for each algorithm chain used,
including the total number of points and their density across Calitri, covering an extension
of approximately 2 square kilometers.

Table 2. Results overview of the applied algorithms on the territory surrounding the study area.

Algorithms. Points Number
(1.85 km2)

Points Density
(km2)

Points Density
(ha)

PS 9795 5295 53
E-PS 14,581 7881 79
SBAS 7537 4074 40

E-SBAS 11,800 6378 64

As expected, for urban area applications, a substantial number of points was obtained
using the PS and SBAS algorithms. Additionally, the hybrid approach underlying the E-PS
and E-SBAS chains increased the point count by over 60%. The subsequent sub-sections
present a detailed overview of the outcomes generated by these two new algorithms,
followed by a discussion on the points’ distribution and time series patterns observed.

4.1. E-PS Velocity Maps

The ground deformation detected along the line of sight (LoS) by E-PS from both
ascending and descending datasets allowed us to obtain the vertical and E-W deformation
maps within the SARscape® environment [60,61], as presented in Figure 4A,B. The velocity
of all points, namely enhanced permanent scatterers (E-PSs) within the study area, was
evaluated by identifying the stability range between 2 and −2 mm/year. According to
these criteria, for the vertical deformation map, we identified 703 non-stable points, which
represent about 5% of the 14,581 total points. All unstable points detected are characterized
by negative velocity, except a cluster (uplift) of 10 located in the northwest area of the
football stadium (Figure 4A).

These E-PSs are concentrated in two clearly identifiable clusters on the map and
located both on the south and the north slopes of the village of Calitri. As predictable,
points are located in the built-up areas and none of them are in the vegetated areas. The
main cluster on the south slope is composed of 150 E-PSs with velocities ranging from
−5 to −2 mm/yr, and it is within the landslide area detected in several previous works.
The other cluster is located on slopes of the Cortino stream basin and includes 120 E-PSs
characterized by a velocity larger than −2 mm/yr.

Considering Figure 4B, representing the E-W velocity map, the detectable features are
quite different. Also, in this case, a cluster in the upper part of the southern slope of the
village composed of 242 E-PSs with negative velocity, westward, is evident. In addition,
an additional cluster that is quite extended on the west side of the hill, characterized by
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positive velocity, eastbound (184 blue dots on the map), is evident. No unstable point
is detectable on the north side; instead, there are other points with negative velocity
distributed throughout the middle of the southern slope, very close to the football stadium
and the national road.
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Figure 4. MTInSAR velocity (mm/Y) maps: (A) E-PS vertical; (B) E-PS east–west; (C) E-SBAS
vertical; (D) E-SBAS east–west. For the vertical component maps, the negative values indicate a
downward movement while positive values indicate an upward movement; for the E-W component
maps, negative values indicate a westward movement while positive values indicate an eastward
movement. The figures also show the locations of the GNSS stations of AV04, managed by INGV,
and of the football stadium.

4.2. E-SBAS Velocity Maps

The velocity maps depicted in Figure 4C,D represent the distribution of monitorable
points obtained with the E-SBAS algorithm for the vertical and E-W components, respec-
tively. As the first result, a much larger area was covered, even obtaining information in
the vegetated areas where the E-PS technique did not return any points. In the vertical
component map, the main cluster of unstable points is located in the upper part of the
southern slope, near Piazza della Repubblica. E-SBAS points, with negative velocity, are
located both on buildings and in the most downstream vegetated area. Other clusters with
the same velocity can be detected both on the southern and northern slopes of the Cortino
basin. Unstable red points (i.e., negative velocity) are also located in the newest part of the
town (toward NW), built up mainly after the 1980 earthquake.

Moreover, even the E-SBAS, which is also in the E-W component map, obtained points
with a positive velocity (eastward). In that map, many clusters with positive velocity are
visible all around the town and the largest one is located on the western slope. However,
the main cluster characterized by negative velocity can be identified in correspondence
with the upper part of the southern slope, as previously described in the other maps.
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Other relevant dense clusters are shown in Serre Gagliano, in the NW portion of the
study area, where there are different lithology outcrops (i.e., calcarenite).

4.3. IFFI Database Update

The E-PS and E-SBAS maps have overlapped with the landslide polygons contained
in the IFFI database (Figure 5). Taking into account the outcomes of the E-PS analysis (E-W
and vertical component maps), the identified clusters correspond to areas within mapped
landslides or very close to them. In particular, Figure 5A (vertical component) and Figure 5B
(E-W component) show E-PSs with negative velocity in the upper part of the slope and only
in the horizontal component map, with positive velocity on the western flank of the main
mass movement already known (dashed black line). Moreover, in the map of the vertical
components and in the E-W map, the deformation area identified by the summit cluster
(corresponding to the area near the old town) seems to be more extensive than that mapped.
On the other hand, a significant portion of the landslide area shows stable behavior, as
indicated by the E-PS points showing velocities between −2 and +2 mm/year.
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On the northern slope, the matching between the IFFI polygons and E-PS was almost
impossible due to the lack of E-PSs. Only one cluster (Figure 4A), particularly evident in the
vertical component map, matches with an already known landslide classified as dormant
and slow earthflow in the IFFI database.

The E-SBAS component maps (Figure 5C,D) show a better match between the clusters
identified and the landslides already mapped. In particular, the map of vertical components
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contains clusters within or very close to several mass movements affecting the built-up
areas and surrounding ones.

The deformation areas appear to be much larger than those mapped on both slopes
analyzed. The same behavior can be seen in the E-W component map obtained where
most of the clusters with red (westward) and blue (eastward) dots were geocoded into the
deformation areas but other monitorable points are located outside the polygons, especially
in the NW sector.

Moreover, to assess the state of activity of detected landslides, the time series of some
representing PSs and DSs have been considered. Figure 6A presents the E-SBAS vertical
component map and shows the evolution of displacements of two unstable points located
in the main landslide area during the whole period of analysis.
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Figure 6. Focus on the “Calitri landslide” polygon (black dashed line) for the E-SBAS vertical (A) and
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clusters identified.

P1 is located in the upper part of the town (near Piazza della Repubblica) and is
characterized by a vertical cumulated displacement of about 2.5 cm; its velocity gradient
seems to flatten from 2022.

P2 is on the western sector of the landslide area and its time series shows the first stable
period (2015–2018) followed by an acceleration in the last 5 years with velocity > 2 mm/yr
and a cumulated vertical displacement of about 1.2 cm.

The time series, shown in Figure 6B and referring to the E-W component map, seems to
confirm the deformation trend and highlights a mass movement with complex kinematics.
In fact, in this case, the P1 time series shows 3 cm of cumulated displacement while P2 has
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positive velocity values that suggest a slide toward the east. These results are consistent
with the hypothesis presented by several authors (mentioned in Sections 1 and 2) of a slow
and deep mass movement, which involves pelitic terms (silty and marly clays, sands). Since
historical times, the southern slope of the Calitri hill has been affected by a large complex
landslide (which evolved into an earthflow).

Other PS and DS time series related to the northern slope have been considered and
are shown in Figure 7A,B. According to the vertical component map, P3 and P4 present
constant velocity rates, reaching cumulated displacements of 1.5 cm.
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Figure 7. The northern slope of the Calitri town and a comparison between IFFI landslide polygons
(colored dashed line) and the E-SBAS vertical (A) and E-W (B) component maps, respectively. The
numbers in the yellow dots correspond to the different clusters identified.

Also, in the E-W component time series, the cumulated displacements of these points
range between 2 and 2.5 cm, with positive values indicating a predominant east deformation
component. Moreover, P3 and the cluster to which it belongs are located further upstream
of the mapped area in the IFFI inventory. In this sector, clayey lithologies outcrop and the
deformation phenomena identified correspond to slow, shallow landslides, considering the
typical velocities of landslides involving fine-grained soils [62].

In the last cases, in Figure 8A,B, the temporal series of PSs and DSs placed near other
minor landslides affecting the southern slope are shown.

P5 and its cluster have important cumulated deformation and are located in a veg-
etated area very close to the main mass movement body. However, a topographic ridge
separates the two phenomena with different kinematics.
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Figure 8. The NW sector of the Calitri town and a comparison between IFFI landslide polygons
(colored dashed line) and the E-SBAS vertical (A) and E-W (B) component maps, respectively. The
numbers in the yellow dots correspond to the different clusters identified.

P6 belongs to a cluster located in the cemetery of the town and the ongoing defor-
mations are very dangerous, also considering the social importance of the site. In fact,
the cemetery area shows a continuous deformation like other residential areas but can be
considered a place to be carefully monitored for its structural and sociological delicacy.

The time series exhibit noticeable periodic fluctuations, likely attributed to seasonal
effects. This behavior, particularly pronounced for certain points (e.g., P1, P2, and P4),
appears to occur annually and is consistent across all detected clusters.

5. Discussion

The conducted study on the Calitri municipality has shown how the new MTInSAR
algorithm employed is particularly well suited to detect and monitor landslides in urban
and suburban areas and to assess their state of activity.

For this purpose, the study area represents a great test site, considering that only
relatively slow landslides (<100 mm/yr; [5]) can be detected and monitored effectively by
MTInSAR analysis, and previous works have already assessed the velocity of landslides
affecting that area from slow to very slow [14,15]. E-PS is very affordable in urbanized
areas, returning 14,581 monitorable points. On the other hand, E-SBAS successfully investi-
gates the peri-urban areas, producing 11,800 monitorable points, which encompass both
persistent scatterers (PSs) and distributed scatterers (DSs), even in vegetated areas.

Taking into account information from the E-W and vertical component maps achieved
through both E-PS and E-SBAS techniques, the landslides affecting the built-up and sub-
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urban areas of Calitri consist of roto-translational slides and associated earth flows. The
analysis of time series suggests that these phenomena have consistently moved in the
last decade, increasingly enlarging their extent, both on the northern and southern slopes.
Moreover, the E-W component maps show different directions in the evolution of the
earth flow and roto-translational flow, some toward the east and others toward the west,
according to the topography (Figure 9). The detected landslides develop in a complex
geological environment, characterized by lithologies with different rheological behaviors
(i.e., brittle/ductile lithotypes referred to as clay, silty clay, and sandstone outcroppings).
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Figure 9. Map representing displacement vectors for each cluster detected in the study area. The
arrow’s dimension is proportional to the cluster dimension (both E-W and vertical). The arrow’s
curve gives qualitative information on the kinematics of the corresponding mass movement.

This study highlights how, within the main mass movement affecting the southern
slope reactivated after the 1980 earthquake, sectors with different kinematics can be identi-
fied. In particular, the main deformations detected in that area regard the upper part of
the slope, corresponding with Piazza della Repubblica, where it is assumed that the slip
surface is near the ground level. The cluster located there is characterized by a considerable
vertical deformation in association with a western component.

The other main cluster is located on the western flank of the main landslide and has a
predominant eastern component (Figure 9). Additionally, outcomes suggest that the NW
and the intermediate sectors of the black dashed line polygon can be considered stable
while other relevant movements have been detected in the area immediately below the
football stadium.

Furthermore, other unstable areas depicted with orange arrows in Figure 9 are present
all around the town and some of them do not correspond to already known and mapped
landslides, especially for the northern slope of the Cortino basin, according to the IFFI
database (updated to 2006).

The results provide a good instrument for quick and precise analysis and should be
confirmed through a comparison with in situ measurements. However, although many
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geognostic investigations were carried out in the area after the earthquake, and dozens of
boreholes were equipped with inclinometers or piezometers, it was not possible to obtain
data coeval with the period covered by satellite imagery. Most of the instrumentation has
been abandoned or unusable for many years. To compensate for this lack, photographic
surveys were carried out to look for field evidence in areas immediately near the clusters
identified, yielding a good response, as shown in Figure 10.
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Figure 10. Photographic surveys (2 February 2024) were conducted to search for field evidence in
areas immediately near some of the identified clusters. The numbers in the yellow circles identify the
clusters of points where the photos were taken.

So, the approaches and new algorithms used to investigate the Calitri territory are
available for large areas worldwide, allowing the potential investigation of active land-
slides in different geographic and climatic contexts, particularly in those landslide areas
where long-term ground-based measurements are not available. Areas prone to landslides
generally encompass slopes where many predisposing factors coexist (lithology, land use,
soil texture, elevation, slope gradient, slope aspect, local relief, plan curvature, profile
curvature, etc.). Therefore, both techniques offer enhanced monitoring capabilities for
landslides, improving coverage and resolution. The E-PS algorithm, in particular, provides
superior coverage by effectively detecting DSs in areas with arboreal vegetation, where
traditional PS methods might fail. Conversely, the E-SBAS algorithm enhances resolution
through the use of oversampled interferograms, enabling a more nuanced analysis of areas
containing even PS-like targets.

In various Euro-Mediterranean urban areas, slow-moving landslides pose a significant
threat, potentially causing structural and infrastructural damage over time. While these
landslides rarely result in loss of life, their gradual spatiotemporal evolution increases
the structural vulnerability of the built environment, amplifying the risk. Addressing this
challenge requires effective and sustainable risk mitigation strategies involving stakehold-
ers. To this purpose, Landslide Inventory Maps (LIMs) should be (and in many cases are)
widely used by authorities for land use management and planning activities, representing
a valuable tool used to assist decision-makers in urban and infrastructural planning.

MTInSAR techniques contribute to improving the accuracy of an LIM and the pre-
diction reliability of slow-moving landslides, which particularly affect urbanized areas.
The results that can be achieved by monitoring the territory through this type of approach
depend on the techniques used and the characteristics of the acquired imagery. L-band SAR
images can be very useful in monitoring vegetated areas with few targets (both natural
and artificial); X-band images, on the other hand, are widely used for the monitoring of
deformations affecting buildings and infrastructure, thanks to their high spatial resolution.
In this study, the C-band products, processed using the E-PS and E-SBAS algorithms, pro-
vided good coverage of the study area and allowed for monitoring points in both urbanized
and vegetated areas. The integrated utilization of MTInSAR techniques maximizes the
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benefits derived from satellite datasets. This includes leveraging the long-term series of
displacements to comprehend the temporal evolution of the slope. Additionally, spatially
dense deformation maps prove invaluable for precise activity mapping, as well as for the
accurate assessment of vulnerability and damage in areas affected by active landslides.

6. Conclusions

In this study, two advanced MTInSAR algorithms were employed to comprehen-
sively investigate mass movements affecting the hills and residential neighborhoods in the
municipality of Calitri, southern Italy.

The application of E-PS and E-SBAS techniques to Sentinel-1 C-band images facilitated
the production of deformation velocity maps for the study area retrieving E-W and vertical
component maps. The high density of measurable points enabled the identification and
precise location of clusters within previously mapped landslide polygons (IFFI database),
as well as in the surrounding areas. Moreover, this approach also allowed us to evaluate the
contribution of the E-W and vertical components in the deformation processes. Examining
the time series of E-PS and E-SBAS and their displacement rates, the state of activity of
the detected landslides was investigated. The main phenomenon, known as the “Calitri
landslide”, consists of a deep-seated rotational/translational slide and other associated
earthflows, so it could be considered a landslide complex. This landslide, which has been
active for at least the last four decades, has caused significant damage to the historic center
of the town and appears to be the latest in a series of events impacting the southern slope
and influencing its topography. The time series analysis indicates constant slow movements
of the upper and western sectors of the slide while other sub-regions are characterized by
the presence of stable points.

Several previous works focused on the main landslide affecting the southern slope,
which was reactivated after the 1980 Irpinia earthquake, but many active mass movements
also affect the northern slope, as confirmed by the present analysis.

This result confirms the possibility of mapping landslide activity in urban and subur-
ban areas and the very good reliability of employed algorithms, aligning with results from
previous DInSAR analyses in the same territory. Moreover, as confirmed in a lot of already
published contributions, these techniques can be used for landslide inventory updating. To
proceed effectively, the outcomes should be integrated with field surveys and conventional
thematic data for accurate application and interpretation, where possible. In this study, the
outputs enabled the observation of several zones affected by active landslides, validating,
and updating the landslide inventory. Numerous landslides previously classified as active,
reactivated, or dormant were confirmed to be undergoing deformation, while in other cases,
new deformation phenomena not already mapped in the IFFI database were detected.
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