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Abstract: Efficient multi-object tracking (MOT) in satellite videos is crucial for numerous applications,
ranging from surveillance to environmental monitoring. Existing methods often struggle with
effectively exploring the correlation and contextual cues inherent in the consecutive features of video
sequences, resulting in redundant feature inference and unreliable motion estimation for tracking. To
address these challenges, we propose the MFACNet, a novel multi-frame features aggregating and
inter-feature correlation framework for enhancing MOT in satellite videos with the idea of utilizing the
features of consecutive frames. The MFACNet integrates multi-frame feature aggregation techniques
with inter-feature correlation mechanisms to improve tracking accuracy and robustness. Specifically,
our framework leverages temporal information across the features of consecutive frames to capture
contextual cues and refine object representations over time. Moreover, we introduce a mechanism to
explicitly model the correlations between adjacent features in video sequences, facilitating a more
accurate motion estimation and trajectory associations. We evaluated the MFACNet using benchmark
datasets for satellite-based video MOT tasks and demonstrated its superiority in terms of tracking
accuracy and robustness over state-of-the-art performance by 2.0% in MOTA and 1.6% in IDF1. Our
experimental results highlight the potential of precisely utilizing deep features from video sequences.

Keywords: multi-object tracking; satellite video; inter-feature mapping; feature aggregation

1. Introduction

Multi-object tracking (MOT) aims to detect and associate multiple objects of inter-
est in a video sequence, generating corresponding trajectories across consecutive frames.
Recently, advanced remote-sensing video satellites have significantly enhanced spatial
observation capabilities and data quality, providing information services and insight sup-
port in critical domains such as economic development, government administration, and
national security. Monitoring multiple man-made objects (e.g., vehicles, vessels, and air-
craft) with video satellites offers intuitive real-time dynamics information, which effectively
supports the perception of high-dynamic scenes. MOT trackers enable the effective lo-
calization of multiple objects and generate individual trajectories that provide crucial
information for further analysis. Currently, MOT tasks based on video satellites exhibit the
following characteristics:

• Remote-sensing video satellites provide wide-field imaging, resulting in large frame
sizes with a high proportion of background pixels. Additionally, video sequences are
affected by satellite platform motion and atmospheric refraction, leading to image jitter.
Cloud clusters, ground reflections, and the preprocessing of standard video sequence
products also contribute to background noise. A sample of objects in remote-sensing
images and video satellite sequences is shown in Figure 1;
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• Video sequences contain numerous objects with dense spatial distributions and com-
plex dynamics. Furthermore, due to the limited resolution of video sequences, indi-
vidual objects are represented by dozens of pixels and lack fine texture details, which
results in significant challenges in object detection and low discriminability between
different objects. A sample of objects in video satellite sequences, along with their
pixel statistics, is shown in Figure 2;

• When video satellites capture videos with a tiny off-nadir angle, the resulting video
sequences can be approximated as being captured in a near-vertical manner. Compared
with nature scenarios, the object sizes are relatively consistent, and fewer occlusions
occur between objects. The motion patterns of objects are similar, and their trajectories
tend to be linear. Additionally, unlike conventional remote-sensing imagery, remote-
sensing video satellites capture imagery with high frame rates, which results in high
scene overlap in the captured landscapes and significant overlap of the same object
between adjacent frames.
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imagery from the DOTA dataset.
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Recently, a trend of rapid iteration exists in algorithms for MOT in video satellites.
Early research primarily relied on background modeling-based object detection algo-
rithms [1–7], such as background subtraction-based [8], optical flow-based [9], and frame
difference-based [10] methods. These trackers initially extract the regions of interest that
may contain objects, then exclude the background noise and reduce false alarms using prior
knowledge, noise models, and motion models. etc. Similarly, background modeling algo-
rithms in machine learning [11,12] have also been applied in the research of object tracking
in video satellite imagery, such as the Gaussian mixture model (GMM) and ViBE [13]. For
instance, Yang, et al. [12] used a visual background extractor (ViBE) to perform foreground
separation on roughly segmented motion-salient regions. Ao, et al. [6] modeled the motion
information of the original frame using the frame-difference method [10]. Traditional
methods utilize logic algorithms based on a predetermined set of fixed parameters to
distinguish the targets from the background. These fixed parameters are often determined
through manual configuration, guided by human expertise, and tailored to specific scenes.
However, in scenarios with substantial variations, the reliance on fixed parameters often
leads to inconsistent tracking performance. Additionally, both slight camera platform
jitter and rapidly changing ground scenes may introduce subtle yet widespread back-
ground noise. Traditional methods, including background modeling algorithms like ViBE,
often exhibit limited robustness when dealing with such background noise and require
additional post-processing.

In recent years, the emergence of large video satellite tracking datasets such as
VISO [14], AIR-MOT [15], and SAT-MTB [16] has greatly advanced the development of
deep learning-based (DL) MOT methods. Various tracking methods proposed new insights
in terms of feature enhancement, association logic, trajectory recovery, and multi-task train-
ing strategies. Advanced online MOT methods can currently be classified into two-stage
tracking-by-detection (TBD) and one-stage joint detection and tracking (JDT) [17]. Figure 3
illustrates the general architecture sketch of both the TBD and JDT methods. The TBD
paradigm associates the detection results from an independent detector with trajectories us-
ing various similarity metrics. In recent years, deep learning-based object detectors [18,19]
have been rapidly developed, leading to significant improvements in the TBD paradigm.
Maher, et al. [20] used YOLO v2 [21] to obtain aircraft heads, tails, and full bodies and
generate heading state parameter updates of the classic SORT [22] algorithm using the
Karman filter [23]. Similarly, Wang, et al. [24] achieved the real-time tracking of multiple
moving ships using three consecutive frames as an input to the YOLO v3 [25] network.
Xiao, et al. [26] proposed the DSFNet, which uses lightweight 3D convolution to extract
dynamic cues from multiple frames. Li, et al. [27] designed the D-RGB network based
on the two-stage F-RCNN [28] model. The network subtracts the features from adjacent
frames to extract the ROIs for second-stage detection in the RCNN.

The joint detection and tracking (JDT) paradigm enables the integration of detection
and tracking tasks within a single model. For example, TGraM [15] utilizes graph convolu-
tion to update graphs based on extracted features and employs a simplified DANN [29]
to balance detection and reidentification (ReID) tasks. Additionally, Feng, et al. [30] pro-
posed the CKDNet, a tracking network based on CornerNet [31], to predict the correlation
between tracking objects and detection results through a dual-branch LSTM [32] network,
and generate matching trajectories employing the Hungarian algorithm [33].

The aforementioned research mainly focuses on enhancing the detection performance
by incorporating contextual cues at the feature level. However, this often leads to the re-
dundant extraction of deep features during inference. Additionally, motion-based tracking
methods (e.g., SORT [22] and ByteTrack [34]) usually lack the utilization of appearance
information. In contrast, some JDT models implicitly extract correlations between objects
using graph convolution and LSTM for object association. We suggest enhancing feature
reusability to address these challenges, which involves extracting and inheriting deep fea-
tures from consecutive features to enhance the representation of current features, predicting
inter-frame displacement through pixel mapping relationships between the features of
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two adjacent frames, and leveraging ReID methods for the association between objects
and trajectories.
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MOT based on natural scenes has also been a trending research topic. Despite the
differences in application domains, some MOT algorithms based on natural scenes show
remarkable potential in remote-sensing video sequences as well. Different from video
satellites, MOT research based on natural scenes mainly focuses on common application
scenes, such as public security, city traffic, autopilot, and sports broadcasting [35]. Several
approaches have been proposed to address these issues. ByteTrack [34] introduces a two-
stage cascaded matching logic that utilizes low-confidence detections to explore potential
trajectory matches. OC-SORT [36] incorporates motion inertia into Kalman filter observa-
tions. GSTD [37] employs a graph model to match detections and recover low-confidence
objects. FairMOT [38] employs an anchor-free detector with parallel ReID feature encoding
heads to predict object detections and pixel-level ReID features simultaneously. Center-
Track [39] integrates information from two consecutive frames and directly predicts the
relative displacements of object centers. TraDeS [40] supervises ReID feature encoding
through cost volume and extracts similarity information to infer the object displacement
between frames.

To efficiently incorporate motion cues from video sequences and fully utilize ap-
pearance information and motion prediction for robust tracking, we propose an online
joint detection and tracking (JDT) framework called the MFACNet (multi-frame feature
aggregating and correlation network). The MFACNet leverages the feature aggregation
wrapper (FAW) module to aggregate consecutive feature information and enhance the
current feature representation in channel dimensions. The feature-mapping motion estima-
tion (FMME) module computes a correlation volume between the features of two adjacent
frames, thereby constructing an inter-frame correlation map based on deep features, which
enables the rapid estimation of object displacements. The IoU-prior cascaded matching
method sequentially associates object detections with trajectories based on both spatial lo-
calization and appearance information. Furthermore, we developed an end-to-end tracking
frame that adheres to the JDT paradigm as well as online inference.
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The experimental results demonstrated significant improvements in key MOT metrics
on video satellite tracking datasets using the MFACNet. The performance of our framework
is highly competitive and achieves optimality. The contributions can be summarized
as follows.

1. We proposed an end-to-end JDT framework called the MFACNet, which extracts the
static features of man-made objects in video sequences while effectively integrating
dynamic cues from consecutive frames. This framework significantly enhances the
detection and tracking performance of the network;

2. For detection, we devised a lightweight feature aggregation wrapper (FAW) module,
which utilizes sets of deformable convolutions (DCN) [41] to extract correlated infor-
mation in different channel dimensions from the feature groups of multiple frames.
All of the information is then employed to enhance the feature representation of the
current frame. For tracking, we employed an end-to-end learnable feature-mapping
motion estimation (FMME) module to estimate the displacement of individual objects.
Regarding object-trajectory matching, we designed an IoU-prioritized cascaded match-
ing scheme that effectively utilizes both localization and appearance information to
generate and manage object trajectories;

3. We conducted the training and validation of our model on a video satellite object
tracking dataset, which was constructed from the video sequences captured by the
Jilin-1 video satellite and GF-3 high-resolution video satellite. The experimental results
demonstrated that the proposed model achieves state-of-the-art performance on the
experimental dataset methods in terms of tracking accuracy and robustness, which
highlight the potential of precisely utilizing deep features from video sequences.

2. Materials and Methods

The MFACNet is based on the anchor-free detector CenterNet [42], and its overall archi-
tecture is illustrated in Figure 4. We adopted the same Dla-34 [43] from CenterNet with extra
up-sampling connections and deformable convolutions as the backbone. The input image
I(t) ∈ RH×W×3 produces a down-sampled feature f(t) ∈ RHf×Wf×C, where Hf = H

4 , Wf = W
4 .
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In addition to predicting object class-wise heatmaps, H(t) ∈ [0, 1]Hf×Wf×C, and box
sizes, S(t) ∈ RHf×Wf×2, which is similar to CenterNet, the features are also fed into an
additional convolutional head to predict object displacements: M(t) ∈ RHc×Wc×2. These
displacements, M(t), are utilized in the subsequent IoU-prior cascaded matching to associate
the object trajectories with the detection results.

2.1. Feature Aggregation Wrapper Module

Small-sized objects in remote-sensing video sequences pose challenges for effectively
capturing their deep features using a backbone network. To address this issue, we proposed
an online multi-frame features aggregation module inspired by [44,45]. The feature ag-
gregation wrapper (FAW) module efficiently aggregates multi-level semantic information,
making it suitable for modifying the features of tiny objects with small displacements in
remote-sensing video imagery. Additionally, it provides a concise and fast implementation
while preserving online processing ability.

The FAW module takes the deep features of previous T frames, f(t−τ), as inputs,
where τ = 1, 2, . . . , T. Then, a channel-wise feature collection, fchan, is extracted from
T-consecutive features in all channel dimensions. The feature information from different
channel dimensions is aggregated using the deformable convolutional network (DCN). The
output’s aggregated information is then utilized to enhance the representation of the object
features in the current frame. The overall architecture of the FAW is illustrated in Figure 5.
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2.1.1. Feature Propagation

For previous T frames of the imagery I(t−τ), where τ = 1, 2, . . . , T, we utilized their
features, f(t−τ) ∈ RHf×Wf×64, from the backbone and the corresponding center heatmaps,
H(t−τ) ∈ RHf×Wf×C, as the input. Similar to the characteristics of anchor-free models like
CenterNet, we first added Gaussian-shaped peaks to all the center points of all the cate-
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gories, generating the aggregated center heatmap H(t−τ)
ctr ∈ RHf×Wf×C. We then generated

central attention features, f(t−T), based on H(t−τ)
ctr using the following equation:

f(t−τ)
ctr = H(t−τ)

ctr ⊚ f(t−T), τ = 1, 2, . . . , T (1)

where ⊚ denotes the Hadamard product, f(t−τ)
ctr contains the feature information of the

center points in H(t−τ)
ctr , which can be utilized for the inheritance of object-central features.

Simultaneously, to ensure the effectiveness of feature propagation, we employed adaptive
fusion weights, w(t−τ) ∈ RHf×Wf×1, to measure the significance of the features in each
frame, resulting in the weighted central attention feature fctr in the following equation:

fctr = concat
((

w(t−τ) ⊚ f(t−τ)
ctr

))
∈ RHf×Wf×C, τ = 1, 2, . . . , T (2)

where w(t−τ) is a normalized attention map predicted using a set of convolutions in the
FAW module.

2.1.2. Feature Enhancement

The FAW module performs a channel-wise segmentation on fctr. For the segmented
features, the FAW module collects and concatenates the channel features belonging to
the same dimension across the temporal dimension T, to obtain sets of channel features
fchan ∈ RHf×Wf×T for C channels. Subsequently, a DCN modified the fchan of different
channels, and then a 1 × 1 convolution was utilized to aggregate all information modified
by DCN, generating an aggregated feature with a size of Hf × Wf × 1 for each channel.
Finally, the inherited features, faggr ∈ RHf×Wf×C, were obtained by concatenating the
channel-wise tensor. The features faggr were then summed pixel-wise with the existing
output features, ft, to obtain the enhanced features of the imagery in the following equation:

faggr = concat(Conv1×1(DCN( fchan[i] )) ), i = 0, 1, 2, . . . , C (3)

fench = f(t) + faggr (4)

where the DCN is set with a kernel size of 3. The enhanced features, fench ∈ RHf×Wf×64,
incorporated motion cues from the previous T frames, and were subsequently fed into
the detection heads for object center heatmaps and center offset predictions, while the
bounding box predictions were based on the original f(t).

2.2. Feature-Mapping Motion Estimation Module

Man-made objects often exhibit tiny sizes, small displacements, and low feature
expressiveness in video satellite imagery. These characteristics result in a high correlation
between the features of consecutive frames. The correlation volume, commonly used in
stereo-matching [46,47], depth estimation [48,49], and optical flow estimation networks,
can compute the matching similarity between two consecutive features, reflecting their
mapping relationship. Laga, et al. [50] summarized different methods for constructing
correlation volumes in depth-estimation research.

When predicting displacements with an anchor-free model, we were particularly
interested in the global mapping relationship between the center features of multiple
objects in different frames. JDE models in [39,40] learned relative displacement information
by analyzing the corresponding identity features between two frames. FMME constructs an
all-pairs pixel correlation [51] between the features of the current frame and the preceding
one. It extracts the minimum-cost matching of correlated elements within object-central
pixels of different features, thereby obtaining the mapping relationship between multiple
object centers across features. Finally, the FMME model outputs the displacement prediction
based on the constructed inter-frame mapping relationship. The overall architecture of the
FMME model is illustrated in Figure 6.
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based on the inter-frame mapping constructed using a correlation volume and generate ReID features
for trajectory management.

2.2.1. ReID Sub-Network

Directly using the Backbone features f(t) is not conducive to ReID tasks or network
optimization, resulting in a significant computational burden while calculating the correla-
tion volume. Therefore, we first employed a ReID sub-network, ϵ(•), to adjust the original
features of f(t) ∈ RHc×Wc×64. The sub-network produced ReID features with reduced chan-
nel dimensionality, denoted as f(t)emb = ϵ

(
f(t)

)
∈ RHc×Wc×Cemb , where Wc = Wf, Hc = Hf,

and Cemb = 32. Features f(t)emb as well as f(t−1)
emb from the previous frame were used for the

computation of the correlation volume.

2.2.2. Displacement Prediction

For optical flow estimation networks, the correlation volume indicates the pixel-wise
similarity between f(t)emb and f(t−τ)

emb . Treating the object-tracking task as a matching of center
point feature pixels, the displacement matrix M ∈ RHc×Wc could be predicted using the
correlation volume. First, we calculated the four-dimensional all-pairs correlation volume
C by performing a matrix multiplication between the extracted features f(t)emb and the

preceding feature f(t−τ)
emb using the following equation:

C =
〈

f(t)emb, f(t−1)
emb

〉
∈ RHc×Wc×Hc×Wc, C(i, j, k, l) = f(t)emb(i, j)f(t−1)

emb (k, l)
T

, (5)

where ⟨_, _⟩ denotes the matrix multiplication operation and T represents the transpose operation.
Based on the matching similarity from the correlation volume, global matches of the

target centers could be generated, which in turn allowed for the prediction of displacements,
M. For a specific object Oi,j at time t with its correlation volume C(i, j, k, l), we utilized
pooling convolutions with kernel sizes of Hc × 1 and 1 × Wc to individually generate the
normalized feature mapping CW(i, j) ∈ [0, 1]1×Wc and CH(i, j) ∈ [0, 1]Hc×1 in the vertical
and horizontal dimensions, respectively. Then, we reflected these mappings to obtain the
actual displacements in the original image. The process is as follows: we first defined the
pixel-wise displacement vectors, U(i, j) ∈ R1×Wc and V(i, j) ∈ RHc×1. The displacement
prediction, Mt ∈ RHc×Wc×2, could be obtained by taking the element-wise product of
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the normalized feature mappings and corresponding displacement vectors of Oi,j in the
following equation: {

U(i, j, k, ∗) = (k − i)× s, 1 ≤ k ≤ Wc
V(i, j, ∗, l) = (l − j)× s, 1 ≤ l ≤ Hc

, (6)

M(i, j) =
[
CH(i, j)

T
V(i, j), CW(i, j)U(i, j)T

]T
, (7)

where s = 4 and is the factor of recovery. For a specific object Oi,j at time t, the displacement

prediction M(i, j) reflects the real pixel displacement between the central feature f(t)emb(i, j)

of Oi,j and f(t−τ)
emb (k, l) of the Ok,l at time t − τ, where Ok,l represents, with the maximum

similarity, to Oi,j. This displacement is calculated in the original image size.
To obtain the ReID loss under sparse labels, when the target Oi,j at time t correctly

matches the target Ok,l of the same identity at the time t − τ in a certain dimension, we set
Yijkl = 1, and 0 otherwise. We employed a focal loss for FMME training and only considered
positive samples with their normalized similarity to define the displacement prediction
loss, which increases the margin between the true identity targets and other different
identity targets. This improvement supervises the training of the ReID sub-network and
subsequently supervises the prediction process of the FMME module.

2.3. IoU-Prior Cascade Matching

Generally, man-made objects exhibit small displacements and almost no changes in
size between adjacent frames. Therefore, based on the idea of matching targets in order
of overlap, we designed an IoU-prior cascade, matching for matching trajectories, T, with
the current frame detections D(t). In the matching step, we computed the intersection over
union (IoU) between the trajectory T(t−1) and current frame detection D(t), and prioritized
the association based on a predefined IoU threshold when IoU ≥ 0.6.

For rapidly moving targets, we introduced a second step, where we associated un-
matched detection, D(t)

um_i, with the nearest unmatched trajectory, T(t−1)
um_i , within a radius of

r using the greedy matching algorithm. Finally, for the remaining unmatched detection,
D(t)

um_ii, and trajectories, T(t−1)
um_ii, we performed the association based on the cosine similarity

between their ReID features. The corresponding pseudo-code for the IoU-prior cascade
matching is shown in Table 1.

2.4. Tracklet Management and Training Strategy

Once a detection with a high confidence of conf(dumii) ≥ 0.4 cannot be matched with
any existing trajectories, a new tracklet is to be included in the trajectory management. If a
trajectory fails to match any detections for 15 frames, it is regarded as disappeared and will
no longer be updated.

For detection, we employed the same 2D detection heads and loss functions as Cen-
terNet [42]. The feature fusion in the FAW module was supervised by the loss function
Ldet. For the displacement prediction, we trained the ReID sub-network with ID labels as
supervision and subsequently fine-tuned the FMME module. The overall model loss is
computed as the sum of all the losses in the following equation:

Ltotal = Lheatsmaps + Lreg + 0.1 × Lboxes + LFMME, (8)
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Table 1. Pseudo-code of IoU-prior cascade matching in the MFACNet, which effectively utilizes
displacement prediction, localization, and appearance information to manage object trajectories.

Pseudo-code of IoU-prior cascade matching

3. Experiments
3.1. Experimental Data

We constructed a dataset comprising 76 video satellite sequences captured using Jilin-1
and GF-03 satellites. All sequences were manually annotated with localization and identity
information following the MOT label [52]. The resulting dataset included three major
categories: vehicles, ships, and aircraft, with a resolution of 1600 × 1200 and a ground
sampling distance of 0.91 ∼ 0.95 m. The frame rate of these sequences ranged from
9 to 13 fps. Additionally, we added the VISO dataset [14] as additional training samples.
In total, we collected 123 annotated sequences and 6770 objects with unique identities
for model training and validation. Among them, 100 sequences were used for training,
while 37 sequences (including 7 VISO dataset testing sequences) were used for testing. For
the ablation study, we split our training sequences into two halves and used 50% of the
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sequences for training and the remaining 50% for performance validation. Part of the test
samples of our dataset is shown in Figure 7.
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3.2. Implementation Details

For the MFACNet, we used a sequence of three consecutive frames (including the
current frame) as the input, which is discussed in Section 3.4. Considering the inclusion
of additional training data and different model scaling strategies, we set the training
resolution to 1280 × 1024 with a batch size of 8, and we employed the Adam optimizer [53]
for 60 epochs of training. The initial learning rate was 1.5 × 10−4 and dropped by a factor
of 10 at 30 epochs. The remaining parameters were the same as CenterTrack. All the
inferences were carried out on an RTX 3090 GPU.

3.3. Evaluation Metrics

Our experiment used the Clear Matrix [54] and IDF1 [55] for the evaluation of
multi-object tracking performance. The overall performance assessment was based on
the multiple-object tracking accuracy (MOTA) and IDF1 score (IDF1), as depicted in the
following equations:

MOTA = 1 − ∑t(FNt + FPt + IDSWt)

∑t GTt
, (9)

IDF1 =
2 × IDTP

2 × IDTP + IDFP + IDFN
(10)

MOTA is a comprehensive metric that evaluates the overall tracking performance by
considering multiple aspects, such as false positives, false negatives, identity switches, and
fragmentation. It provides a unified measure of tracking accuracy, where a higher value
signifies better tracking performance.

IDF1 is a single-value metric that combines the precision and recall of the tracking
system. Precision measures the ratio of correctly identified objects to the total number of
identified objects, while recall measures the ratio of correctly identified objects to the total
number of ground truth objects. IDF1 combines these two metrics to provide a balanced
evaluation of tracking accuracy, where a higher IDF1 score indicates better precision and
recall performance.

Additionally, the following quantitative metrics were employed as supplementary
performance measures: false negatives (FNs), which refer to the number of missed detec-
tions, false positives (FPs), which represent the number of incorrect detections, identity
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switches (IDSWs), which quantify the number of times the tracker incorrectly switches the
identities of objects, mostly tracked trajectories (MTs), and mostly lost trajectories (MLs).
Specifically, MTs and MLs are utilized to assess the tracking performance of the tracking
model in capturing the complete target trajectories. The MT is defined as the percentage of
trajectories for which the tracking model’s output covers more than 80% of its full trajectory,
while the ML is defined as the percentage of trajectories for which the output only covers
less than 20% of its full trajectory. The statistical results of the MTs and MLs reflect the
consistency and robustness of the tracking model in tracking full-target trajectories. These
performance metrics provide valuable insights into the accuracy, robustness, and consis-
tency of multi-object tracking methods, enabling the effective evaluation and comparison
of different tracking approaches.

3.4. Number of Preceding Features Input

The FAW module adaptively propagates contextual cues from previous features for
object feature enhancement. In this section, we investigate the impact of different numbers
of input features (T frames) on the MOT performance. It is worth emphasizing that we used
50% of videos from the training set for training and the remaining 50% for performance
validation in the experiments.

We experimented with different numbers of input features selected from the preceding
T frames as the inputs of our FAW module, where T was set to 1, 2, 3, and 4, respectively.
The results are summarized in Table 2.

Table 2. MOT performance with different numbers of input features (T frames) of the FAW module.
↑ indicates that higher is better and ↓ indicates that lower is better.

T Frames MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDS ↓

1 27.2 45.1 119,084 405,698 5683
2 28.4 43.3 75,495 438,956 6809
3 27.6 41.0 69,564 450,244 7408
4 26.5 38.8 67,934 458,443 8863

As shown in Table 2, using only one feature of the previous frame as the input results
in the highest IDF1 performance. When using the features of the previous two frames as
the input, the model achieves the highest MOTA performance, albeit with a slight decrease
in the IDF1. This phenomenon may be attributed to the FAW module significantly reducing
the false detection rate while introducing a small number of missed detections, resulting
in a certain number of identity switches in the tracking algorithm. Furthermore, as the
number of input features (T frames) increases, there is a noticeable performance decline
in both the MOTA and IDF1. To ensure the accuracy of tiny object detection, we selected
T = 2 as our FAW module input. For the MFACNet, aggregating two input features in the
FAW module indicates utilizing three consecutive frames (including the current frame) as
the input.

3.5. Comparison with Existing Methods

We conducted a comparative analysis between the MFACNet and representative
online trackers, including CenterTrack, FairMOT, TraDes, SORT, OC-SORT, and ByteTrack.
CenterTrack, FairMOT, and TraDes belong to the JDT framework models, while SORT, OC-
SORT, and ByteTrack can be classified as TBD frameworks. For TBD models, we utilized
YoloX [18] to provide the benchmark detection results. For the models included in the
comparative experiments, we trained them by treating all the class categories of the targets
as one category and tried our best to minimize the tracking performance loss of multi-class
tracking models. Table 3 presents the tracking performance of the comparative models on
a test dataset consisting of 37 videos.
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Table 3. Quantitative results on our test set of 37 videos. ↑ indicates that higher is better and ↓
indicates that lower is better.

Method Year Joint MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

SORT 2016 30.6 43.6 22.9 36.7 46,459 212,073 3461
ByteTrack 2021 31.1 51.2 30.9 31.9 64,455 190,420 3360
OC-SORT 2022 26.8 43.6 14.0 52.8 14,334 258,921 1093
FairMOT 2020 ✔ 17.5 37.2 15.9 55.3 135,991 117,260 56,706

CenterTrack 2020 ✔ 28.2 53.6 27.9 28.0 111,206 151,189 6925
TraDes 2021 ✔ 27.3 53.8 28.0 27.6 99,521 167,834 5270

MFACNet (ours) 2023 ✔ 33.1 55.4 31.9 31.0 52,792 189,089 1743

The comparative experimental results demonstrate that our model achieved the best
performance on the test dataset. Compared to JDE models like CenterTrack and TraDes, the
MFACNet significantly reduced the FPs and IDSWs while introducing a small number of
FNs, resulting in substantial improvements in both the MOTA and IDF1. In contrast to the
TBD model, leveraging advanced detectors often leads to lower false positive detections
(FPs) and identity switches (IDSWs), which can be attributed to the higher adaptability to
different resolutions on advanced detectors. Furthermore, when compared to the ByteTrack
method with similar performance, we observed that the MFACNet, incorporating rich
contextual information, achieved significant improvements in detection performance over
the TBD model and facilitated the management of object trajectories.

Figure 8 visualizes some representative tracking results of the MFACNet as well as the
results from other comparative models, including CenterTrack, ByteTrack, and TraDes.
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4. Discussion

To better evaluate the effectiveness of the design modules, we performed ablation
experiments on our MFACNet. In the ablation experiments, we selected the CenterTrack
model as the baseline and compared it with the proposed FAW, FMME, and MFACNet
models. It is worth emphasizing that we used 50% of videos from the training set for
training and the remaining 50% for performance validation in the experiments. The results
of the ablation experiments are presented in Table 4.

Table 4. Ablation study for feature-mapping motion estimation (FMME), feature aggregation wrapper
(FAW), and IoU-prior cascade matching (IoU CM). ↑ indicates that higher is better and ↓ indicates
that lower is better.

Baseline FMME FAW IoU CM MOTA ↑ IDF1 ↑ FN ↓ MT ↑ IDS ↓

✔ ✔ 26.6 42.9 502,392 30.1 8882
✔ ✔ ✔ 28.4 43.2 438,951 33.8 6866
✔ ✔ ✔ ✔ 28.4 43.3 438,956 34.3 6809

CenterTrack 26.3 42.7 511,462 31.0 11,741

Compared with the baseline model, the inclusion of the FMME module led to an
improvement of 0.2% in the IDF1, with a significant reduction of 24.4% in the IDSWs.
Furthermore, there was a 1.8% enhancement in the MOTA, 0.3% in the IDF1, and 3.7% in
the MTs, along with an additional reduction of 2016 in the IDSWs when both the FMME
and FAW were simultaneously incorporated. Additionally, by incorporating IoU-prior
cascaded matching, the integration of the MFACNet reduced the IDSWs and improved
the IDF1 in the aforementioned performance. CenterTrack utilizes two consecutive frames
and contextual cues as inputs, relying solely on localization information for trajectory
matching. In comparison, the MFACNet significantly improved the MT while reducing
both the FNs and IDSWs, resulting in a 2.1% improvement in MOTA performance and a
0.6% improvement in the IDF1 compared to CenterTrack.

4.1. Effectiveness of the FMME

Unlike the MFACNet, CenterTrack uses the fused information from two consecutive
frames and heatmaps of the previous detection as inputs, directly predicting object displace-
ments. After incorporating the FMME module, the model achieved a slight improvement
in both the MOTA and IDF1, while also observing a significant decrease of 2859 in the
IDSWs. This demonstrates that the FMME module provides better displacement predic-
tions through inter-feature mapping construction and ReID sub-network optimization. This
helps to reduce identity changes caused by erroneous associations between the trajectories
and detection, enhancing the ability to manage target identities. It is worth noting that
the appearance features generated using the ReID sub-network are not utilized in the
association process between the detection and trajectories.

4.2. Effectiveness of the FAW Module

After incorporating the FAW module, the model exhibited a considerable decrease in
FNs by 12.6% and IDSWs by 22.7%, respectively, resulting in a 3.7% improvement in MTs, a
1.8% improvement in the MOTA, and a 0.3% improvement in the IDF1. This demonstrates
that the FAW module reduces missed detection for tracking, thus leading to an improve-
ment in the MOTA, which primarily measures the detection performance. Additionally,
both a decrease in IDSWs and an increase in MTs indicate that the model’s ability to track
complete trajectories is improved. This further confirms that the FAW module utilizes
features from the previous two frames to enhance the current frame’s feature representa-
tion, thereby improving the tracking robustness and consistency, ultimately reflected in the
improvement of the IDF1.
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4.3. Effectiveness of IoU-Prior Cascade Matching

By incorporating IoU-prior cascade matching, the complete MFACNet further reduces
a small number of IDSWs and improves MTs, which illustrates its ability to recover lost
tracklets through multi-source information and delicate logic design. IoU-prior cascade
matching utilizes the high overlap characteristics of objects in video frames to filter out
the same targets using an IoU threshold in the first step. In the final association step,
ReID information is also leveraged to associate the remaining detections with unmatched
tracklets. This alleviates, to some extent, the issues of erroneous matching and trajectory
interruptions caused by relying solely on localization information and using the greedy
order algorithm to associate the detections with tracklets.

5. Conclusions

In this paper, we presented an online deep learning framework, MFACNet, for multi-
object tracking with video satellites. The framework enhances the feature representation of
the current frame by inheriting multi-frame deep features. It also constructs inter-frame
feature mapping by calculating the correlation volume between the current frame and the
preceding one, enabling the prediction of object displacements. Finally, a novel matching
algorithm based on object motion and appearance features was employed to complete
the trajectory construction. Qualitative and quantitative experiments demonstrated that
our JDE algorithm, MFACNet, effectively reduces false positives (FPs) in detection, while
efficiently utilizing motion and appearance information to construct and manage object
trajectories, leading to a great reduction in identity switches (IDSWs). Improvements were
observed in both the detection and tracking performance. Moreover, comparative experi-
ments showed that our tracking framework achieved superior performance compared to
popular multi-object tracking models.

For the MFACNet, our improvement came at the cost of slightly increased FNs, indi-
cating the requirement to explore more effective ways of utilizing features. Additionally,
during the training of the MFACNet, we observed a certain degree of overfitting in the
tracking vehicle targets, where only vehicles with prominent features obtained satisfactory
tracking results. This necessitates a reevaluation of our training strategy and training data.
Lastly, current MOT methods are tailored for finely processed video sequence products and
have not been formally deployed on video satellites. Normally, video sequences require the
excessive occupation of satellite communication bandwidth and complex post-processing
procedures. To provide real-time information for efficient MOT, we are still investigating
the feasibility of deploying the MFACNet on video satellite platforms.
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