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Abstract: Tropical cyclones (TCs) are characterized by robust vortical motion and intense thermo-
dynamic processes, often causing damage in coastal cities as they result in landfall. Accurately
estimating the ensemble mean of TC precipitation is critical for forecasting and remains a foremost
global challenge. In this study, we develop an ensemble algorithm based on the feature-oriented mean
(FM) suitable for spatially discrete variables in precipitation ensembles. This method can adjust the
locations of ensemble precipitation fields to reduce the location-related deviations among ensemble
members, ultimately enhancing the ensemble mean forecast skill for TC precipitation. To evaluate
the feasibility of the FM in TC precipitation ensemble forecasting, 18 landing TC cases in China
from 2019 to 2021 were selected for validation. For precipitation forecasts of the landing TCs with
a varying leading time, we conducted a comprehensive quantitative evaluation and comparison of
the precipitation forecast skills of the FM and arithmetic mean (AM) algorithms. The results indicate
that the field adjustment algorithm in the FM can effectively align with the TC precipitation structure
and the location of the ensemble mean, reducing the spatial divergence among precipitation fields.
The FM method demonstrates superior performance in the equitable threat score, probability of
detection, and false alarm ratio compared with the AM, exhibiting an overall improvement of around
10%. Furthermore, the FM ensemble mean shows a higher pattern of the correlation coefficient with
observations and has a smaller root mean square error than the AM ensemble mean, signifying that
the FM method can better preserve the characteristics of the precipitation structure. Additionally,
an object-based diagnostic evaluation method was used to verify forecast results, and the results
suggest that the attribute distribution of FM forecast objects more closely resembles that of observed
precipitation objects (including the area, longitudinal and latitudinal centroid locations, axis angle,
and aspect ratio).

Keywords: ensemble mean; field alignment; tropical cyclone; precipitation forecasts; multisource
fusion precipitation

1. Introduction

Tropical cyclones (TCs) are cyclonic vortices occurring over warm tropical ocean
regions characterized by warm core structures. They exhibit intense vortical motion
and thermodynamic processes, such as vigorous moist convection, frequently leading
to destructive weather, including strong winds, heavy rainfall, and storm surges upon
landfall in coastal cities. According to the Emergency Events Database (EM-DAT; https:
//data.humdata.org/dataset/philippines-typhoon-impact-data-2014-2020), TCs consti-
tuted the largest global natural disaster in 2019, affecting over 30 million people and causing
direct economic losses exceeding USD 50 billion.

The western North Pacific (WNP) is one of the most TC-prone areas in the world,
with approximately 36% of TCs occurring there every year on average. China, located
on the western rim of the WNP, with a coastline extending over 18,000 km, ranks among
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the most severely and frequently affected areas by TC, and storm surge disasters. The
TCs originating in the WNP (including the South China Sea) amount to approximately
27 per year, with about 16 affecting China per year and about 7 making landfall per year [1],
resulting in annual direct economic losses of up to USD 9 billion for China [2]. Moreover,
with the rapid population and economic growth in the coastal areas of eastern China, the
losses caused by TC disasters continue to increase, and the risk of TC disasters grows [3].
Consequently, research on TC disasters has gained widespread attention [4,5]. The landing
TCs in China not only bring extreme weather phenomena, such as heavy rainfall, strong
winds and storm surges locally, but also seriously affect inland areas, posing a serious
threat to the safety of people’s lives and property by causing urban waterlogging and
flooding. Therefore, accurately forecasting the heavy rainfall caused by landing TCs is
crucial for disaster prevention and mitigation. However, due to the complex multiscale
dynamic and thermodynamic processes, as well as the influence of the landform and
boundary condition in the typhoon landfall area, forecasting the intensity and location
of landing TC precipitation still faces considerable uncertainty, which is a formidable
international challenge.

Furthermore, there are still several objective problems, such as the intricate interactions
of dynamic and thermodynamic processes of the TCs at multiple spatio-temporal scales,
the shortcomings of the framework and physical processes of current forecasting models,
the incompleteness of observation systems specific to the TCs, and issues with assimilation
algorithms and systems for high-resolution models. Therefore, large errors remain in
single deterministic forecasts for the location and intensity of TC precipitation, even in
the most advanced assimilation/forecast systems [6–8]. Moreover, deterministic forecasts
are unable to quantitatively estimate the uncertainty of forecast results. Given these
challenges, an increasing number of international research and operational institutions have
adopted ensemble forecasting to quantitatively predict TC precipitation, i.e., using ensemble
averaging, ensemble spread, and the probability to perform quantitative estimates.

Among these metrics, ensemble averaging has been widely applied due to its sim-
plicity in calculation and effectiveness in extracting predictable information to reduce
forecast errors. The track and intensity of a TC include scalar quantities, and their ensemble
averages can be obtained through a straightforward calculation of the average values of
TC track and intensity among ensemble forecast members (a consensus forecast). Nu-
merous research findings have demonstrated that ensemble mean forecasts remarkably
improve the forecast skills for the TC track and intensity compared with single determin-
istic forecasts [9–13]. Nevertheless, unlike TC track and intensity, TC precipitation is a
spatial variable, making its forecasting inherently unique. On the one hand, the location
deviations of TC centers among ensemble members increase with the forecast leading
time, which inevitably leads to substantial deviations in the TC rainfall area among en-
semble members. On the other hand, TC precipitation mainly originates from the inner
rainbands caused by eyewall vortices and the outer rainbands associated with outflow
layers. These precipitation processes show a large uncertainty due to the complexity of
internal physical processes in vortex-relative coordinates. This further exacerbates the
deviations in TC precipitation intensity and locations among ensemble members. The
distinctive nature of TC precipitation poses challenges for the application of the arithmetic
mean (AM) algorithm, which is a simple ensemble averaging method based on point-wise
averaging, in TC precipitation ensemble forecasts. Specifically, the AM algorithm tends to
overlook differences in precipitation locations, which can result in the false smoothing of
precipitation fields and the deformation of precipitation structures. This smoothing effect
often causes AM forecasts to underestimate TC precipitation intensity but overestimate
the TC precipitation range. Furthermore, some scholars shifted TC precipitation structures
based on the TC center position and then calculated the average values [14–18]. While this
approach partly mitigates the problems associated with the first aspect mentioned above, it
still neglects the impact of the second aspect on TC precipitation forecasts. The limitations
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of the AM method in precipitation ensemble average forecasts largely restrict the broader,
deeper, and more effective application of ensemble forecasting methods.

Although this issue in TC precipitation ensemble forecasting has long been recognized,
a satisfactory solution remains elusive. [18] proposed a novel perspective to enhance TC
ensemble forecasting skills by reducing the location deviations of precipitation structures
among ensemble members. This ensemble algorithm, based on the feature-oriented mean
(FM), adjusts the similar structural features of different ensemble forecasting fields to their
mean position before calculating the amplitude average. The results indicate that the FM
method has demonstrated superior performance in continuous variables. However, since
the precipitation pattern is a spatially discrete variable, the applicability of the FM method
in TC precipitation ensemble forecasting warrants further investigation. Therefore, in this
study, we aim to develop the FM method and investigate its feasibility in TC precipitation
ensemble average forecasting. In addition, the effectiveness of the FM in improving TC
precipitation forecast skills is comprehensively evaluated.

In this study, we specifically investigate the following questions:

(1) Considering the spatial non-continuity of TC precipitation, can an FM algorithm
be developed for TC precipitation fields, and how can it be effectively employed to
regionally adjust precipitation fields, reducing deviations in TC precipitation locations
among ensemble members?

(2) To what extent can the FM method improve the forecast skill of TC ensemble mean
precipitation compared to the traditional AM method? How does this improvement
vary with the leading time of ensemble forecasts?

The remainder of this paper is arranged as follows. Section 2 provides the methods
and experimental data used in this research. Section 3 presents the experimental design
and a selection of experimental samples. Section 4 introduces the verification methods for
the forecast results, including the traditional “point-to-point” verification method and the
spatial verification method for object-based diagnostic evaluation (MODE). Section 5 shows
the forecast performance of the FM method for TC precipitation forecasts in the Global
Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction
(NCEP). The main conclusions and discussion are summarized in Section 6.

2. Methods and Experimental Data
2.1. Feature-Oriented Ensemble Mean (FM) Algorithm

In recent years, we have proposed a novel FM algorithm to address the problems
associated with traditional AM ensemble averaging [18]. Unlike the AM method, the FM
algorithm, before calculating the ensemble average, adjusts the structural features of each
ensemble forecast field to their mean positions, thereby reducing location deviations among
the ensemble members. Specifically, the FM method consists of the following four steps
(Figure 1).

Firstly, the field adjustment algorithm in the FM is used to compute the displacement

vectors
−−→
Dj,1 ,

−−→
Dj,2 ,. . .,

−−→
Dj,N between any ensemble member j and every other ensemble

member. The field adjustment algorithm, initially proposed, developed, and applied by [19]
for fluid dynamics research, was enhanced by incorporating a spatial-scale restriction
module. This module allows structural position adjustments at a specific scale and smooths
the remaining scales, greatly improving the computational efficiency and applicability to
variable atmospheric fields [18]. The algorithm is expressed by Equation (1).

J(X, q) =
1
2

δXTC
(

X f ·q
)−1

δX +
1
2

δYT R−1δY +
∧
(q) (1)

where J(X, q) represents the cost function concerning the gridded scalar field X after the
adjustment and the displacement vector field q. The objective of the cost function is to
measure the similarity of a solution X in appearance to the prior estimate X f and in
geometry to the second field Y. In our application, X f and Y represent the original field,
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and the target reference field, respectively. The structure of X is similar to that of the original
field X f , but there are some location deviations. The core idea of the field adjustment
algorithm is to minimize the cost function J(X, q) to estimate the adjusted field X and the
displacement vector field q. This minimization ensures that, under certain constraints of the
displacement vector

∧
(q), X has the least total fitted variance with the position-adjusted

X f field and the target reference field Y. Here, (X f ·q) represents the field after X f moves
along the displacement field at q. δX =

[
X − X f ·q

]
and δY = [Y − X]. C(X f ·q) and R

indicates the error covariance matrixes of (X f ·q) and the target field, respectively.
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In the cost function, a constraint term
∧
(q) regarding the displacement vector q is

introduced, which allows the field adjustment algorithm to be performed for features
above a specific scale with smooth smaller-scale features. This dramatically improves
computational efficiency [18]. The displacement vector q obtained from Equation (1)

represents the needed displacement vectors
−−→
Dj,1 ,

−−→
Dj,2 ,. . .,

−−→
Dj,N .

Then, all ensemble members are moved to the mean position, as shown in Figure 2.
Specifically, assuming three ensemble forecast members, we first use the field adjustment
algorithm to estimate the displacement vectors between each ensemble member. The dis-

placement vectors of Member 1 relative to Members 2 and 3 are denoted as
−−→
D1,2 and

−−→
D1,3 ,

respectively. Therefore, the displacement vector of Member 1 relative to the mean position

can be roughly estimated as the red arrow
−−→
D1 in Figure 2, i.e.,

−−→
D1 =

(−−→
D1,2 +

−−→
D1,3

)
/3.

Similarly, the displacement vectors of Members 2 and 3, relative to the mean position,

are denoted as
−−→
D2 and

−−→
D3 , respectively. Subsequently, the fields of the three en-

semble members are adjusted to the mean position based on their respective displace-

ment vectors,
−−→
D1 ,

−−→
D2 , and

−−→
D3 . By analogy, if there are N ensemble forecast mem-

bers, the jth ensemble forecast member xj is moved to the mean position according

to
−−→
Dj = (1/N)∑N

i=1 Dj,i, becoming the adjusted member x′j.
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Thirdly, the above steps are repeated for each ensemble forecast member, i.e., j = j + 1.
Thereby, all N ensemble members are sequentially shifted to their mean positions.

Finally, the ensemble average for the shifted N ensemble members (x′j) is calculated,
yielding the FM mean field (x). It should be noted that in the FM method, adjustments are
conducted separately for each grid point in the entire field. Thus, the distance and direction
of movement are different for each grid point.

Note that, in contrast to the overall consistent movement for vortex repositioning, the
FM employs a region-dependent adjustment for each ensemble member field. In other
words, if a large (or small) location deviation exists in a specific region among the ensemble
members, a corresponding large (or small) positional adjustment is applied. The field
adjustment of the FM method is achieved by minimizing the cost function of the spatial
field fitting through a variational algorithm.

2.2. Data

Data of the model ensemble forecast used in this study are from the National Centers
for Environmental Prediction-Global Ensemble Forecast System (NCEP-GEFS) product,
focusing on all landfalling TC cases in China from July to October in 2019–2021 (a total
of 18 cases). The NCEP-GEFS product comprises 20 ensemble forecast members, with
four forecasts per day at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC. The forecast
variables include sea-level pressure, geopotential height, wind field, temperature field,
precipitable water, and 6 h accumulated precipitation. The vertical levels include 250 hPa,
500 hPa, 850 hPa, and 1000 hPa, and the horizontal resolution is 0.5◦ × 0.5◦.

To evaluate the forecasting performance of the FM method, the precipitation data for
verification in this research used the precipitation fusion product from the China Meteoro-
logical Administration (CMA) Multisource Precipitation Analysis System. This precipita-
tion product integrates ground-based observations, satellite-retrieved data, and radar-based
quantitative precipitation estimates using key technologies such as bias correction and fu-
sion analyses. The product covers the region of China (0–60◦N, 70–140◦E), with a horizontal
resolution of 0.05◦ × 0.05◦ (regular latitude–longitude grid).

3. Experimental Design

This study aims to improve the forecast skill of land precipitation caused by TCs that
result in landfall. Therefore, in several cases, the verification time for precipitation forecasts
is fixed to assess the TC precipitation forecast skill at different leading times. Super Typhoon
Lekima (1909) is taken as an example to introduce the experimental design of this study
(Figure 3). Typhoon Lekima resulted in landfall in the coastal area of Chengnan Town,
Wenling City, Zhejiang Province, China, at 01:00 Beijing Time (BJT) on 10 August 2019 (TC
information in Table 1). Therefore, the verification time was chosen as the forecast time
closest to this moment (00:00 UTC on 10 August 2019), and the accumulated precipitation
of the landing TCs during the 6 h before this time (from 18:00 UTC on 9 August 2019 to
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00:00 UTC on 10 August 2019) was used as the forecast object. Then, the precipitation
forecast skills for different leading times were assessed. The forecast initiation times were
set at 00:00 UTC on 7 August 2019, at 00:00 UTC on 8 August 2019, and at 00:00 UTC on 9
August 2019, corresponding to the leading times of 72 h, 48 h and 24 h, respectively.
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Table 1. Information on the landing TCs in China in 2019, “BJT” indicates the Beijing Time, and
“UTC” represents the Coordinated Universal Time.

International
Number Name Intensity

First Landfall in China
Model Forecast

Time (UTC)Landfall
Time (BJT)

Landfall
Time (UTC)

Landfall
Location

1904 Mun Tropical storm 00:45 on 3 July 18:00 on 2 July Wanning City,
Hainan Province

00:00 on 2 July (24 h);
00:00 on 1 July (48 h);

00:00 on 30 June (72 h)

1907 Wipha Tropical storm 02:15 on 1 August 18:00 on 31 July Wenchang City,
Hainan Province

00:00 on 31 July (24 h);
00:00 on 30 July (48 h);
00:00 on 29 July (72 h)

1909 Lekima Super typhoon 01:45 on
10 August 18:00 on 9 August Wenling City,

Zhejiang Province

00:00 on 9 August (24 h);
00:00 on 8 August (48 h);
00:00 on 7 August (72 h)

1911 Bailu Severe tropical
storm

13:00 on
24 August

06:00 on
24 August

Pingtung County,
Taiwan Province

12:00 on 23 August (24 h);
12:00 on 22 August (48 h);
12:00 on 21 August (72 h)

1914 Kajiki Tropical storm 10:40 on
2 September

00:00 on
2 September

Wanning City,
Hainan Province

06:00 on 1 September
(24 h);

06:00 on 31 August (48 h);
06:00 on 30 August (72 h)

1918 Mitag Typhoon 20:20 on
1 October

12:00 on
1 October

Zhoushan City,
Zhejiang Province

18:00 on 30 September
(24 h);

18:00 on 29 September
(48 h);

18:00 on 28 September
(72 h)

Figure 4 presents all 18 TCs that resulted in landfall in China during 2019–2021. These
TCs primarily landed in South China and East China. The TCs landing in South China were
typically generated in the waters east of the Philippines. Driven by southeasterly wind on
the south side of the subtropical high and the north side of the monsoon trough, these TCs
moved northwestward, landed in Taiwan through the Bashi Channel, and then crossed the
Taiwan Strait to approach the eastern Guangdong Province or the coastal areas of Fujian
Province. Eventually, they led to landfall on the coasts of Taiwan, Fujian, Guangdong, and
the surrounding areas. If the TC originates from a relatively higher latitude, they cross the
Ryukyu Islands and land on the coasts of Zhejiang Province, Shanghai, Jiangsu Province,
and even Shandong Province and Liaoning Province. As the landfall locations of these TCs
are usually in the more developed coastal cities of China, the economic and property losses
caused by landfalling TC precipitation are huge. Improving the ensemble average forecasts
of heavy rainfall caused by landing TCs is the central goal of this study.
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The information on all TCs that made landfall in China during 2019–2021 can be
found in Tables 1–3, covering details such as TC number, TC name, TC intensity level,
and the time and location of the TCs’ first landfall in China. Additionally, the last column
in Tables 1–3 show the forecast starting time and forecast leading time selected for each TC
case in the experiments.

Table 2. Same as Table 1, but for the year 2020.

International
Number Name Intensity

First Landfall in China
Model Forecast Time

(UTC)Landfall Time
(BJT)

Landfall Time
(UTC)

Landfall
Location

2002 Nuri Tropical storm 08:50 on 14 June 06:00 on 14 June
Hailing Island,

Guangdong
Province

12:00 on 13 June (24 h);
12:00 on 12 June (48 h);
12:00 on 11 June (72 h)

2003 Sinlaku Tropical storm 07:15 on 1 August 00:00 on 1 August Wanning City,
Hainan Province

06:00 on 31 July (24 h);
06:00 on 30 July (48 h);
06:00 on 29 July (72 h)

2004 Hagupit Strong typhoon 03:30 on 4 August 00:00 on 4 August Leqing City,
Zhejiang Province

06:00 on 3 August (24 h);
06:00 on 2 August (48 h);
06:00 on 1 August (72 h)

2006 Mekkhala Typhoon 07:30 on 11
August

00:00 on 11
August

Zhangpu County,
Fujian Province

06:00 on 10 August (24 h);
06:00 on 9 August (48 h);
06:00 on 8 August (72 h)

2007 Higos Typhoon 05:50 on 19
August

00:00 on 19
August

Zhuhai City,
Guangdong

Province

06:00 on 18 August (24 h);
06:00 on 17 August (48 h);
06:00 on 16 August (72 h)

2016 Nangka Severe tropical
storm

19:35 on 13
October

12:00 on 13
October

Qionghai City,
Hainan Province

18:00 on 12 October (24 h);
18:00 on 11 October (48 h);
18:00 on 10 October (72 h)
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Table 3. Same as Tables 1 and 2, but for the year 2021.

International
Number Name Intensity

First Landfall in China
Model Forecast Time

(UTC)Landfall Time
(BJT)

Landfall Time
(UTC)

Landfall
Location

2104 Koguma Tropical storm 09:45 on 12 June 06:00 on 12 June Lingshui City,
Hainan Province

12:00 on 11 June (24 h);
12:00 on 10 June (48 h);
12:00 on 9 June (72 h)

2106 In-fa Strong typhoon 12:30 on 25 July 06:00 on 25 July Zhoushan City,
Zhejiang Province

12:00 on 24 July (24 h);
12:00 on 23 July (48 h);
12:00 on 2 July (72 h)

2107 Cempaka Typhoon 21:50 on 20 July 18:00 on 20 July
Yangjiang City,

Guangdong
Province

00:00 on 20 July (24 h);
00:00 on 19 July (48 h);
00:00 on 18 July (72 h)

2109 Lupit Tropical storm 11:20 on 5 August 06:00 on 5 August
Shantou City,
Guangdong

Province

12:00 on 4 August (24 h);
12:00 on 3 August (48 h);
12:00 on 2 August (72 h)

2117 Lionrock Tropical storm 22:40 on 8
October

18:00 on 8
October

Qionghai City,
Hainan Province

00:00 on 8 October (24 h);
00:00 on 7 October (48 h);
00:00 on 6 October (72 h)

2118 Kompasu Typhoon 15:20 on 13
October

12:00 on 13
October

Qionghai City,
Hainan Province

18:00 on 12 October (24 h);
18:00 on 11 October (48 h);
18:00 on 10 October (72 h)

4. Forecast Verification Methods

In this study, a comprehensive evaluation and comparison of TC precipitation forecast
skills between the FM method and other ensemble averaging methods are conducted
using different metrics. The first category comprises the “point-to-point” metrics, such
as ensemble spread, root mean square error (RMSE) and pattern correlation coefficient
(PCC), and binary classification metrics like the equitable threat score (ETS), probability of
detection (POD), false alarm ratio (FAR) and index of agreement (IOA). This category is
used to evaluate the performance of overall precipitation forecasts. The second category is
object-based verification metrics, such as the object-based diagnostic evaluation (MODE)
for spatial precipitation patterns.

4.1. Traditional Point-to-Point Verification

(1) The ensemble spread is calculated as follows:

Spread =

√
1
m∑m

i=1
1

n − 1∑n
j=1 ( f − f (j))2 (2)

where f = 1
n ∑n

j=1 f (j) represents the ensemble mean value, n is the number of ensemble
members, and m is the total number of samples. Ensemble spread is used to measure the
uncertainty of the ensemble forecast system.

(2) The root mean square error is obtained as follows:

RMSE =

√
1
m∑m

i=1 ( f i − oi)2 (3)

RMSE can be used to represent forecast accuracy. m denotes the total number of
samples, and fi and oi indicate the forecasted and observed values for the ith sample, re-
spectively. The RMSE can gauge whether an ensemble forecast system exhibits a reasonable
spread by comparing it with the ensemble spread.

(3) The pattern correlation coefficient is calculated as follows:

PCC =

1
N ∑N

i=1

(
fi − f

)
(oi − o)√

1
N ∑N

i=1 ( fi − f )2 1
N ∑N

i=1 (oi − o)2
(4)
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where N denotes the total number of grids in the spatial field, and fi and oi indicate the
forecasted and observed values for the ith grid, respectively. f and o represent the average
values of the forecasted and observed values of all N grid points. The PCC is used to assess
the similarity between the observed and forecasted precipitation distributions, with values
ranging from −1 to 1. A higher PCC value indicates greater similarity, reflecting higher
forecast skills.

(4) The index of agreement is obtained from the following:

IOA = 1 − ∑N
i=1( fi − oi)

2

∑N
i=1 (| fi − o|+ |oi − o|)2 (5)

where f and o represent the model and observation, respectively. o represents the observed
mean value and N is the number of total data/grid points. The IOA is bounded between 0
and 1, where a value close to one indicates more efficient forecasting skills [20].

(5) Binary event evaluation metrics are obtained as follows:
Various metrics can be used to evaluate the model forecast results for binary event

forecasts with precipitation exceeding a certain threshold. These metrics include the ETS,
POD, and FAR, which are employed to examine and evaluate the forecast results of the model.

ETS =
NA − R(a)

NA + NB + NC − R(a)
(6)

R(a) =
(NA + NB)(NA + NC)

NA + NB + NC + ND
(7)

POD =
NA

NA + NC
(8)

FAR =
NB

NA + NB
(9)

As shown in Table 4, NA represents the number of correct forecasts (where both
forecasted and observed events occurred), NB is the number of false alarms (occurrence
in forecasts but not in observations), NC is the number of missing alarms (occurrence in
observations but not in forecasts), and ND is the number of correct rejections (occurrence
neither in forecasts nor observations). The ETS is used to assess the forecast skill relative to
random forecasting, penalizing both false alarms and missing alarms. Its value ranges from
−1/3 to 1. Higher ETS values indicate better forecast skills and an ETS value less than or
equal to 0 implies no forecasting skill. The POD and FAR have values of [0, 1]. POD refers
to the proportion of the predicted actual precipitation area in the total actual precipitation
area, and the larger the value, the higher the forecast accuracy. FAR refers to the proportion
of the area with no actual precipitation to the total forecast precipitation area; here, the
smaller the value, the smaller the forecast null rate. Higher POD and smaller FAR values
indicate higher forecast skills.

Table 4. Confusion matrix for binary events (forecasts vs. observations).

Forecasts
Positive Negative

Observations Positive NA (correct forecasts) NB (false alarms)
Negative NC (missing alarms) ND (correct rejections)

4.2. Spatial Verification

Due to the double-penalty effect of the traditional “point-to-point” statistical evalua-
tion metrics such as the ETS, we also employed the MODE, a spatial verification method, to
assess the spatial structural characteristics of precipitation. We aim to provide a more com-
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prehensive evaluation and analysis of the forecast results from the two ensemble forecast
methods from multiple perspectives.

The MODE method is object-based or feature-based. Initially, it identifies precipita-
tion objects of interest through spatial smoothing and threshold control. To obtain more
continuous rainfall regions, the original precipitation field needs to undergo convolution
processing in space with a convolution radius R (unit: grid spacing or kilometers), as
described by Equations (10) and (11).

C(x, y) = ∑u,v φ(u, v) f (x − u, y − v) (10)

φ(u, v) =
{ 1

πR2 , u2 + v2 ≤ R2

0, u2 + v2 > R2 (11)

where f represents the original data field, C is the convolution field, and φ is the filtering
function. (x, y) and (u, v) are the coordinates of the grid points. The focus is solely on rainfall
areas with intensity greater than or equal to the threshold value T in the convolution field.
Subsequently, threshold control is applied to the convolution field to obtain a mask field M.

M(x, y) =
{

1, C(x, y) ≥ T
0, C(x, y) < T

(12)

Finally, the grid points within the continuous region where M = 1 are assigned the
values of grid points corresponding to the original precipitation field to obtain the recon-
structed field F. The reconstructed field retains the most original precipitation information
for each object (unprocessed rainfall amount), and also, the objects worthy of attention that
meet the precipitation threshold are identified.

F(x, y) = M(x, y)· f (x, y) (13)

Then, the attributes of precipitation objects, predefined and user-selectable, are cal-
culated. For two precipitation objects, one from the forecast field and the other from the
observation field, attributes such as the area ratio (ratio of forecasted to observed object
areas), axis angle difference (difference in the main axis direction between forecasted and
observed objects), overlapping area (area of overlap between forecasted and observed
objects) and centroid distance (distance between the centroids of forecasted and observed
objects) are evaluated, as shown in Figure 5.
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5. Results
5.1. Adjustment of Precipitation Ensemble Forecast Fields via the Feature-Oriented Mean Method

Since TC centers among ensemble members gradually deviate from the forecast leading
time, TC precipitation in ensemble forecasts also suffers from noticeable location deviations.
Moreover, the differences in TC-related dynamical and thermal structures among ensemble
members also gradually increase, further contributing to the inter-ensemble variability in
TC precipitation fields. Figure 6 illustrates the forecasts of 20 NCEP-GEFS members for the
6 h accumulated precipitation after the landfall of Typhoon Lekima (1909). The landfall
time of Typhoon Lekima was at 01:00 (BJT) on 10 August, as indicated in Table 1. The
forecast time selected was at 00:00 (UTC) on August 10, and the accumulated precipitation
for the preceding 6 h, from 18:00 (UTC) on August 9 to 00:00 (UTC) on 10 August 2019, was
used as the prediction. The initial forecast time was at 00:00 (UTC) on 7 August 2019, and a
forecast leading time of 72 h was determined. From Figure 6, it can be found that the rainfall
area of Member 1 is in southeastern Fujian, while that of Member 20 is in northeastern
Taiwan, markedly more eastward and southward compared with Member 1. Members
8, 13, and 14 exhibit weaker precipitation intensity without a pronounced precipitation
circulation structure. The forecasted TC regions and precipitation intensities are quite
different among different ensemble members. The simple arithmetic averaging (“point-
to-point” averaging) of these 20 ensemble members can lead to an overall weakening of
precipitation intensity and the excessive smoothing and distortion of precipitation fields.
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To address the positional differences in the TC precipitation fields among ensemble
forecasts in Figure 6, we employed the field adjustment algorithm in the FM method to
adjust the inter-ensemble disparities. That is, the precipitation fields of individual ensemble
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forecast members were precisely adjusted using the field adjustment algorithm to align with
ensemble mean locations, which can mitigate most positional discrepancies in precipitation.
Typhoon Lekima is taken as an example in Figure 7 to illustrate how the field adjustment
algorithm adjusts the positional features of one precipitation field to another. As shown in
Figure 7a, in terms of the 6 h accumulated precipitation forecast fields from 18:00 (UTC)
on 9 August 2019 to 00:00 (UTC) on 10 August 2019 for two randomly selected ensemble
members, Members 10 and 20 exhibit similar precipitation patterns but have noticeable
positional discrepancies in precipitation distribution. The field adjustment algorithm first
calculates the displacement field between the two fields. Then, it moves each grid point of
Member 10 to Member 20 according to the displacement vector (including displacement
direction and distance). From Figure 7b, it can be found that the precipitation distribution of
the adjusted Member 10 is closer to that of Member 20. It indicates that the field adjustment
algorithm largely mitigates the positional discrepancies of the precipitation fields between
these two ensemble forecasts.
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Figure 7. The 6 h accumulated precipitation forecasts of two randomly selected ensemble members
for Super Typhoon Lekima (1909), initiated at 00:00 (UTC) on 7 August 2019 and a forecast leading
time of 72 h. (a) Ensemble member 20 (shaded plot), ensemble member 10 (red contour lines), and the
displacement vector between them (blue arrows); (b) ensemble member 20 (shaded plot) and the
adjusted ensemble member 10 after displacement (blue contour lines).

Figure 7 illustrates the process of moving one precipitation field to another based on
the field adjustment algorithm. For the GEFS, which included 20 ensemble members, it
was necessary to move the precipitation characteristics of each ensemble member to their
respective average locations. The determination of the average location and the specific
steps are detailed in Section 2.1, or Feng et al. (2020). In this section, the 6 h accumulated
precipitation forecast for the Lekima at 72 h forecast leading time from 18:00 (UTC) on
9 August 2019 to 00:00 (UTC) on 10 August 2019 is taken as an example to display the
performance of the FM method on the adjustment of the 20 ensemble members. From
Figure 8a, it can be seen that the original 10 mm precipitation fields from the 20 ensemble
members exhibit large location deviations and a high ensemble spread. In Figure 8b, the
FM method is applied when moving each of the 20 members to their mean positions,
and the results indicate that this method eliminates most location deviations and makes
a more concentrated area of the 10 mm precipitation. Figure 8c,d show the ensemble
averages obtained by averaging the precipitation ensemble forecast fields in Figure 8a,b,
respectively. It is evident that the FM ensemble forecast field in Figure 8d displays a more
pronounced TC precipitation circulation structure compared with the AM ensemble forecast
field in Figure 8c. Additionally, the precipitation intensity from the FM, which is closer
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to the observation in Figure 8e, is stronger than that from the AM. Similar displacement
performance of the FM method can be found in the 48 h and 24 h forecasts of the 6 h
accumulated precipitation (from 18:00 (UTC) on 9 August 2019 to 00:00 (UTC) on 10 August
2019) for Super Typhoon Lekima (1909) (figure omitted). These forecasts all show a more
distinct TC precipitation circulation structure, and the precipitation intensity of the FM
forecasts is stronger than that of the AM forecasts.
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5.2. Evaluation of the Forecast Performance of the Feature-Oriented Mean Method

The results in Section 5.1 indicate that the positions of TC precipitation forecast fields
for individual ensemble members are more consistent after the FM displacement, and the
FM algorithm makes the average ensemble forecast precipitation intensity increase. In this
section, we comprehensively evaluate the average ensemble precipitation forecast from the
FM method using various indicators, including traditional “point-to-point” rainfall tests
and precipitation spatial structure characteristics tests.

To unify the resolution, data from the GEFS model used for the forecast with a coarser
resolution (0.5◦ × 0.5◦) were first interpolated into the resolution consistent with this
observation (0.05◦ × 0.05◦) using bilinear interpolation. As this study focuses on TC
precipitation forecasts, the areas of the same size in the relative coordinates of the TC
center are selected for testing in both the evaluation and comparison of the AM and
FM methods. Specifically, the TC center positions for the observations, AM, and FM
methods were first determined, and a square region of 3000 km × 3000 km was selected
around each center as the testing area for TC precipitation. This approach can mitigate the
impact of location deviations on precipitation forecast results. Note that the TC center of
observations is from the CMA Tropical Cyclone Best Track Dataset. The TC centers for the
AM and FM methods were determined by the position of the lowest sea-level pressure in
the ensemble-averaged TC vortex fields. As shown in Figure 9, it can be found that the
structures of the ensemble-averaged precipitation fields for the AM and FM methods are
similar for the 72 h forecasts, mainly because these two methods use the same ensemble
forecast members. The same findings can be observed in the 48 h and 24 h forecasts (figure
omitted). However, the FM ensemble-averaged precipitation, closer to the observation, is
stronger and more concentrated than the AM ensemble-averaged precipitation due to the
positional adjustments of the ensemble member features by the FM method. Additionally,
the differences between the AM and FM forecasts become more pronounced with the
increase in the forecast leading time. This was mainly due to the fact that non-linear effects
become more prominent with the forecast leading time, resulting in clearer differences
among TC ensemble members and a more noticeable impact of the feature adjustment
made by the FM method.
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Furthermore, a binary classification method was used to quantitatively evaluate the
precipitation forecast skills of 18 landing TCs in China from 2019 to 2021. The information
on each typhoon case is found in Tables 1–3, and the evaluation method is described in
Section 4.1. Higher POD, lower FAR, and higher ETS values indicate better precipitation
forecast performance. From Figure 10, it is clear that the ETS value of the FM method is
higher than that of the AM method for light rain (0.1 mm), moderate rain (4 mm), heavy
rain (13 mm), and torrential rain (25 mm) in 72 h, 48 h, and 24 h forecasts. The ETS of the
FM method is improved by approximately 10% compared to the AM method. Regarding
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the POD, the FM method outperforms the AM method for heavy rain forecasts. In most
cases, the FM method also performs better in light, moderate, and torrential rain forecasts.
Additionally, the FAR of the FM method is always lower than that of the AM method for
light, moderate, and torrential rain forecasts.
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Figure 10. The probability of detection (POD), false alarm ratio (FAR), and equitable threat score (ETS)
of the 72 h, 48 h, and 24 h forecasts of the AM (blue) and FM (red) methods for the 6 h accumulated
precipitation of the 18 landing TCs in China from 2019 to 2021 at grades of (a–c) light rain (0.1 mm),
(d–f) moderate rainfall (4 mm), (g–i) heavy rain (13 mm), and (j–l) torrential rain (25 mm). (24 h, 48 h,
and 72 h).

We further utilized the PCC, RMSE, and IOA to evaluate the precipitation forecasts
averaged over all cases (Figure 11). The results indicate that the PCC and IOA values
of the FM forecasts are larger than those of the AM forecasts, while the RMSE values
of the FM forecasts are smaller for different forecast leading times, which suggests that
the FM method performs better than the AM method in capturing the overall structural
characteristics of the precipitation associated with these landing TCs.
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Figure 11. The variations in the (a) pattern correlation coefficient, (b) root mean square error,
and (c) index of agreement for the 72 h, 48 h and 24 h forecasts of the AM (blue) and FM (red)
methods for the 6 h accumulated precipitation of the 18 landing TCs in China from 2019 to 2021.

The above traditional “point-to-point” rainfall tests and the tests focused on pre-
cipitation structure indicate that the ensemble average precipitation forecast skill of the
FM method is higher than that of the AM method. Additionally, in this section, we also
employed the MODE to examine the spatial characteristics of the precipitation structure.
The goal was to comprehensively evaluate and analyze the capabilities of both ensemble
forecasting methods to capture the spatial structural features of TC precipitation. The
details on the MODE test method are in Section 4.2.

In the MODE spatial test, a convolution radius of four grid distances was employed for
spatial smoothing. Precipitation thresholds of 4 mm and 25 mm were selected. The attributes
of the precipitation objects identified by the observations and two ensemble forecast methods
are shown in Figures 12 and 13. It can be seen that for both 4 mm and 25 mm precipitation,
the attribute distribution of the FM forecast objects is more similar to that of the observed
precipitation objects in terms of the area, longitudinal centroid position, latitudinal centroid
position, axis angle and aspect ratio. In other words, the FM method performs better than the
AM method in capturing the characteristic attributes of precipitation.
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and AM (blue) for the 6 h accumulated precipitation of 18 landing TCs from 2019 to 2021 at the 4 mm
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(d) axis angle, and (e) aspect ratio.
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6. Conclusions and Discussion

Location deviations are noticeable in TC precipitation among ensemble forecast mem-
bers due to the deviations in the TC center locations among ensemble members and the
differences in TC structures. The widely used AM method does not consider the location
deviation of precipitation among ensemble members, resulting in the over-smoothing of the
TC ensemble mean precipitation structure and a remarkably weaker intensity. Effectively
estimating the ensemble average of TC precipitation is a critical and forefront issue in TC
forecasts globally. In this study, an ensemble mean algorithm, FM, is developed based on
structural features suitable for spatially discrete variables in precipitation ensembles. This
method involves adjusting the positions of the precipitation fields to reduce the location
deviations among ensemble members, followed by averaging precipitation intensities. This
enhances the ensemble forecast skill of TC precipitation. To validate the feasibility of the FM
in TC precipitation ensemble forecasts, we selected 18 landfalling TC cases in China from
2019 to 2021 in this research. The precipitation forecast skills of the FM and AM algorithms
were quantitatively evaluated and compared comprehensively at different leading times.
The main conclusions are discussed as follows.

The FM field adjustment algorithm can effectively adjust the TC precipitation struc-
ture to the ensemble mean position, reducing the spatial dispersion among precipitation
fields. Consequently, the ensemble-averaged precipitation field after the FM displacement
(closer to the observations) exhibits a more concentrated precipitation structure and higher
precipitation intensity compared with the AM forecasts.

Through the “point-to-point” verification of the 6 h accumulated precipitation forecasts
of 18 landing TCs between 2019 and 2021, it was found that for the ETS, POD, and FAR,
the FM method outperformed the AM, with an overall improvement of around 10%.
Additionally, compared with the AM ensemble mean, the FM ensemble mean showed a
higher PCC value with observed precipitation and a smaller RMSE value, which meant
that the FM could better preserve the structural characteristics of precipitation. The MODE
verification of the forecast results also indicates that the attribute distribution of the FM
forecast objects is clearly more similar to that of observed precipitation objects, whether in
terms of the area, longitudinal centroid location, latitudinal centroid location, axis angle, or
aspect ratio.
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Nonetheless, future breakthroughs and advancements in TC precipitation ensemble
forecast skills are still needed in several aspects.

Firstly, there is a need for the refinement of the FM algorithm. Currently, the FM
algorithm used involves adjusting the locations of all ensemble forecast members and then
directly conducting an equally weighted ensemble mean forecast. It is noteworthy that
some ensemble members may not reflect the actual state of the atmosphere in operation
and may show large deviations. These outliers or low-probability events carry certain
statistical significance, but they can reduce the overall accuracy of ensemble forecasts.
Therefore, when the FM method is used for ensemble forecasting, exploring the possibil-
ity of sample selection among the ensemble members, or assigning different weights to
different ensemble members before ensemble averaging could potentially enhance FM
forecasting skills.

Secondly, the development of high-performance computing should be taken into
consideration. Due to limited computational resources, the number of TC ensemble forecast
members is typically between 20 and 30 in various operational units. Even with the top-
notch computing conditions in the European Centre for Medium-Range Weather Forecasts,
only around 50 ensemble forecast members are used. Moreover, the resolution of ensemble
forecast systems is noticeably lower than that of control forecasts. It prevents ensemble
member forecasts from effectively distinguishing the convective-scale structure of TCs,
forming a major obstacle to the high-resolution development of TC forecasts. Improving
the computational efficiency and performance of computers to increase model resolution
and the number of ensemble members in TC ensemble forecasts requires collaborative
efforts from experts in computer science, meteorology, and other related fields.

Moreover, there is a need for the development of post-processing methods for TC
ensemble forecasting. Currently, there are various methods for post-processing ensemble
forecasts, such as the deviation correction-based method, Bayesian theory-based method,
and clustering analysis-based method. Combining cutting-edge machine learning, post-
processed TC ensemble forecast data, and conducting intelligent forecasting represents an
important direction for the development of TC ensemble forecasting.
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