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Abstract: The proliferation of invasive plant species poses a significant ecological threat, necessitating
effective mapping strategies for control and conservation efforts. Existing studies employing un-
manned aerial vehicles (UAVs) and multispectral (MS) sensors in complex natural environments have
predominantly relied on classical machine learning (ML) models for mapping plant species in natural
environments. However, a critical gap exists in the literature regarding the use of deep learning
(DL) techniques that integrate MS data and vegetation indices (VIs) with different feature extraction
techniques to map invasive species in complex natural environments. This research addresses this
gap by focusing on mapping the distribution of the Broad-leaved pepper (BLP) along the coastal
strip in the Sunshine Coast region of Southern Queensland in Australia. The methodology employs
a dual approach, utilising classical ML models including Random Forest (RF), eXtreme Gradient
Boosting (XGBoost), and Support Vector Machine (SVM) in conjunction with the U-Net DL model.
This comparative analysis allows for an in-depth evaluation of the performance and effectiveness
of both classical ML and advanced DL techniques in mapping the distribution of BLP along the
coastal strip. Results indicate that the DL U-Net model outperforms classical ML models, achieving
a precision of 83%, recall of 81%, and F1–score of 82% for BLP classification during training and
validation. The DL U-Net model attains a precision of 86%, recall of 76%, and F1–score of 81% for
BLP classification, along with an Intersection over Union (IoU) of 68% on the separate test dataset not
used for training. These findings contribute valuable insights to environmental conservation efforts,
emphasising the significance of integrating MS data with DL techniques for the accurate mapping of
invasive plant species.

Keywords: broad-leaved pepper; convolutional neural network; deep learning; drone; machine
learning; remote sensing

1. Introduction

The preservation and effective management of plant species within foreshore bushland
reserves are paramount for maintaining biodiversity and ecological equilibrium. However,
classifying plant species in these ecologically sensitive areas has proven to be a formidable
challenge due to their remarkable floristic diversity and intricate spectral characteristics.
The utilisation of unmanned aerial systems (UAS) for image acquisition has emerged as
a powerful tool in remote sensing research [1–3], offering a promising solution to over-
come the challenges in identifying and mapping plant species within foreshore bushland
reserves. UAS-based image acquisition involves deploying unmanned aerial vehicles
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(UAVs) equipped with various sensors such as multispectral (MS) [4–7] and red, green, blue
(RGB) [8–11] to capture high-resolution imagery of the Earth’s surface. These sensors allow
for the collection of data across different spectral bands, providing valuable information on
vegetation health, structure, and composition. This approach presents several prospects for
remote sensing, including high spatial resolution, which enables detailed mapping of land
cover and vegetation, and temporal flexibility, which allows researchers to acquire data at
specific times and respond rapidly to dynamic environmental changes [12,13]. Additionally,
UAV platforms facilitate targeted data acquisition over areas of interest, enhancing data
quality and reducing the need for extensive postprocessing. However, the adoption of UAV
technology in remote sensing research also presents challenges. Regulatory restrictions [14]
such as airspace regulations and permit requirements can pose barriers to UAV deployment.
Furthermore, unpredictable weather parameters [15] such as wind conditions, cloud cover,
and precipitation can impact flight stability and sensor performance, further complicating
data acquisition efforts. UAV-based MS imagery presents distinct differences compared to
conducting research over satellite MS imagery. This is different to satellite imagery, which
typically provides researchers with a unique combination of high spatial and temporal
resolutions [16]. This means that UAVs can capture detailed imagery with fine-grained
spatial information, allowing for more precise analysis of vegetation health, land cover,
and other environmental variables [17–19]. Additionally, UAVs offer greater flexibility
and maneuverability in terms of flight paths and angles compared to satellite platforms,
enabling researchers to target specific areas of interest with optimal perspectives. These
advantages make UAV-based MS imagery particularly well-suited for applications such as
the mapping of invasive plant species in natural eco systems.

Artificial intelligence (AI) techniques, including classical machine learning (ML) and
deep learning (DL), leverage the power of airborne-collected datasets to automate the clas-
sification of plant species covering large extensions of land [20–25]. Convolutional Neural
Networks (CNNs), a subset of DL algorithms, have revolutionised the field of computer
vision and image analysis due to their ability to automatically learn hierarchical representa-
tions from raw data [26,27]. Unlike classical ML algorithms and logistic regression, CNNs
can automatically discover and leverage complex patterns and relationships within the
data, leading to more accurate and robust classification results. Additionally, CNNs can
adapt to variations in spectral characteristics and environmental conditions, enhancing their
generalisation capabilities [28] across different geographic regions and time periods. By
leveraging the spatial and spectral information provided by UAV-based imagery, CNNs can
effectively discriminate between different plant species and land cover types, facilitating
more detailed and comprehensive mapping of vegetation distribution and dynamics. U-
Net CNN architecture was selected for this study due to its well-documented effectiveness
in semantic segmentation tasks, particularly in handling complex spatial relationships and
capturing fine-grained details in imagery [19,29–31]. U-Net architecture possesses several
distinctive features that make it suitable for semantic segmentation tasks [32]. Its design
comprises a contracting path, often referred to as the encoder, which progressively down
samples input images through convolutional and pooling operations, thereby capturing
contextual information, and learning hierarchical features at various scales. This process
allows U-Net to extract high-level features from input data while reducing spatial dimen-
sions. Following the contracting path is the expanding path (or decoder), which employs
transposed convolutions or up sampling operations to restore spatial resolution and localise
features with pixel-level accuracy [32–35]. The skip connections between corresponding
layers in the contracting and expanding paths facilitate the propagation of fine-grained spa-
tial information, enabling the network to retain detailed features from earlier layers while
incorporating context from higher-level features. This unique architecture enables U-Net
to effectively capture both local and global spatial dependencies, making it particularly
suitable for extracting fine-grained spatial information from high-resolution multispectral
imagery captured by UAVs [36].
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Broad-leaved pepper (BLP) (Schinus terebinthifolius) is a garden escapee and is native
to Brazil [37]. It has the potential to impact terrestrial biodiversity and conservation
environments by smothering and transforming ecosystems, outcompeting recruitment of
native plants and reducing the ecological values of natural areas. Additionally, it has the
potential impact on community and residential areas by reducing amenity and scenic value
of the natural areas. Growing up to 10 m high and broad [37], it can dominate the canopy.
Its seeds can be easily dispersed by birds and mammals as well as reproduced from root
suckers and human movement, allowing easy encroachment in the coastal dune system. To
effectively manage and mitigate the impact of this invasive species, there is a crucial need
for tools that can classify and map its distribution, aiding in strategic management and
conservation efforts. Therefore, this study explores the application of classical ML models
such as Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector
Machine (SVM) and DL models, exemplified by U-Net, for the classification of BLP within
the confines of the study area.

Existing Studies

This literature review reveals a diverse array of studies employing MS, hyperspectral
(HS), LiDAR, and thermal imagery for tree species classification, predominantly utilising RF
models. Xu et al. (2020) focused on MS and RGB imagery to classify conifer and broadleaf
species, achieving an overall accuracy (OA) of 80.2% [38]. Hartling et al. (2021) expanded
the sensor suite to MS, HS, LiDAR, and thermal data for classifying specific tree species
with an OA of 83.3% [39]. Sivanandam and Lucieer (2022) employed MS and RGB imagery
to classify six tree species, reporting OAs of 84% and 93% using RF [40]. Dash et al. (2019)
integrated MS and LiDAR data for classifying conifer and background, achieving Kappa
values ranging from 40% to 70% [41]. Otsu et al. (2019) focused on MS and RGB imagery
to distinguish defoliated, pine, evergreen oak, and shadow categories, demonstrating a
high OA of 95% [42]. Franklin and Ahmed (2018) utilised only MS data for classifying
sugar maple, aspen, birch, red maple, and other species, achieving an OA of 78% [43].
Collectively, these studies underscore the efficacy of RF models in the classification of tree
species across various sensor combinations, showcasing advancements in accuracy and
versatility. Another set of studies employed various imageries and SVM models for tree
species classification. Hartling et al. (2021) utilised MS, HS, LiDAR, and thermal imagery
with SVM to classify specific tree species [39]. Abdollahnejad and Panagiotidis (2020)
focused on MS imagery to categorise broad leaves, Norway Spruce, and Scots Pine, and
differentiate between dead, healthy, and infected trees, achieving an OA of 81.1% using
SVM [44]. Sothe et al. (2019) applied HS imagery to classify 12 tree species with SVM,
reporting OAs ranging from 11% to 72.4% [45]. Onishi and Ise (2021) utilised RGB imagery
for deciduous broad-leaved tree classification, achieving a high OA of 90% with SVM [46].

Several studies not only employ classical ML methods but also explore the application
of DL techniques for enhanced accuracy and precision in plant species classification. The
literature review encompasses a series of studies employing RGB imagery and DL mod-
els for tree species classification, showcasing remarkable achievements in accuracy and
segmentation. Onishi and Ise (2021) achieved a 90% OA using a CNN for deciduous broad-
leaved tree classification [46], while Kentsch et al. (2020) applied ResNet50 and U-Net
models for distinguishing between deciduous and evergreen trees, reporting high DICE
coefficients [47]. Other studies applied U-Net for diverse applications, including classifying
nine tree species and related elements [48], tree species classification with different DL archi-
tectures [49], semantic segmentation of a single tree species in an urban environment [50],
mapping forest types in the Atlantic rainforest [51], and fine-grained segmentation of plant
species and communities [52]. There are a few studies applying MS imagery and U-Net
models for distinct applications. Hamdi et al. (2019) focused on forest damage assessment
using DL such as vegetation mapping and analysis on high-resolution remote sensing data,
achieving an impressive OA of 92% with the U-Net model [53]. Freudenberg et al. (2019)
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targeted large-scale palm tree detection in high-resolution satellite images using U-Net,
reporting OAs ranging from 89% to 92% [54].

A notable research gap emerges in the literature concerning the lack of studies that
integrate UAV MS imagery and DL models for the classification of tree species in complex
natural environments, particularly focusing on BLP species. There is a noticeable lack of
exploration regarding the use of DL models, especially concerning their integration with
specific vegetation indices (VIs) for classifying invasive plant species. Additionally, while
some studies have shown the effectiveness of DL models when applied to RGB data, there
is a shortage of research that delves into the application of DL techniques specifically with
MS data. The objectives of this study are to (1) explore mapping options using classical
ML and DL with UAV-based MS imagery and VIs for BLP along the coastal strip and
(2) contribute to biodiversity preservation and sustainable practices, informing decision
making for management options within the study area.

2. Methodology
2.1. Processing Pipeline

The methodology section outlines the systematic approach employed in this study
to achieve the identification of BLP within the study area. The research methodology
encompasses four key stages (Figure 1): (1) data collection and preprocessing, (2) data
labelling, (3) model training, and (4) the subsequent testing and prediction processes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 30 
 

 

damage assessment using DL such as vegetation mapping and analysis on high-resolution 
remote sensing data, achieving an impressive OA of 92% with the U-Net model [53]. 
Freudenberg et al. (2019) targeted large-scale palm tree detection in high-resolution satel-
lite images using U-Net, reporting OAs ranging from 89% to 92% [54]. 

A notable research gap emerges in the literature concerning the lack of studies that 
integrate UAV MS imagery and DL models for the classification of tree species in complex 
natural environments, particularly focusing on BLP species. There is a noticeable lack of 
exploration regarding the use of DL models, especially concerning their integration with 
specific vegetation indices (VIs) for classifying invasive plant species. Additionally, while 
some studies have shown the effectiveness of DL models when applied to RGB data, there 
is a shortage of research that delves into the application of DL techniques specifically with 
MS data. The objectives of this study are to (1) explore mapping options using classical 
ML and DL with UAV-based MS imagery and VIs for BLP along the coastal strip and (2) 
contribute to biodiversity preservation and sustainable practices, informing decision mak-
ing for management options within the study area. 

2. Methodology 
2.1. Processing Pipeline 

The methodology section outlines the systematic approach employed in this study to 
achieve the identification of BLP within the study area. The research methodology encom-
passes four key stages (Figure 1): (1) data collection and preprocessing, (2) data labelling, 
(3) model training, and (4) the subsequent testing and prediction processes. 

 
Figure 1. Processing pipeline for BLP identification using UAV-based spectral data and AI. 

2.2. Study Location 
This study focuses on the foreshore bushland reserves situated in the Sunshine Coast 

region of Southern Queensland (Figure 2). The selected areas represent a spectrum of eco-
logical conditions and diverse plant species, including the ecologically significant BLP. 
The research spans the coastal strip extending from Point Cartwright to Wurtulla within 
the control of the Sunshine Coast Council (SCC), covering a total area of 93 hectares (ha) 
along a nine-kilometer stretch of the beach. 

Figure 1. Processing pipeline for BLP identification using UAV-based spectral data and AI.

2.2. Study Location

This study focuses on the foreshore bushland reserves situated in the Sunshine Coast
region of Southern Queensland (Figure 2). The selected areas represent a spectrum of
ecological conditions and diverse plant species, including the ecologically significant BLP.
The research spans the coastal strip extending from Point Cartwright to Wurtulla within
the control of the Sunshine Coast Council (SCC), covering a total area of 93 hectares (ha)
along a nine-kilometer stretch of the beach.
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Figure 2. Study site of coastal strip from Point Cartwright to Wurtulla.

2.3. Data Collection
UAV Data Collection

The studied area encompassed five foreshore bushland reserves, Wurtulla, Boka-
rina, Warana, Buddina, and Point Cartwright. Aerial spectral imageries were collected
through the utilisation of two distinct sensor types including DJI Zenmuse–P1 (Shenzhen,
Guangdong, China) for RGB imaging and MicaSense Altum-PT (Eagle Aerial Systems,
Inc., Witchita, KS, USA) for MS imaging, both sensors affixed to the DJI Matrice 300 UAV
(Shenzhen, Guangdong, China) equipped with Real-Time Kinematic Global Navigation
Satellite System (RTK GNSS) technology. The total flight time to capture the RGB imagery
was just over 4 h, capturing over 13,312 images. The MS imagery collection took longer,
with over 5.5 h needed to capture a total of 26,763 images. Table 1 shows the specification
of MicaSense Altum-PT used in this study and Table 2 shows the summary of flight param-
eters used for RGB and MS data collection. Table 3 outlines the specific dates of the data
collection campaigns for UAV RGB and MS imagery.

Table 1. Comprehensive sensor specifications for MicaSense Altum-PT.

Specification MicaSense Altum-PT

Weight 577 g

Spectral Bands
Blue (475 nm center, 32 nm bandwidth), Green (560 nm center, 27 nm bandwidth), Red (668 nm

center, 14 nm bandwidth), Red-edge (717 nm center, 12 nm bandwidth), and Near-IR (842 nm center,
57 nm bandwidth)

Sensor Resolution
2064 × 1544 (3.2 MP per MS band)

4112 × 3008 (12 MP panchromatic band)
320 × 256 thermal infrared

Field of View 50◦ HFOV × 38◦ VFOV (MS) 46◦ HFOV × 35◦ VFOV (panchromatic) 48◦ × 40◦ (thermal)
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Table 2. Summary of flight parameters for UAV data collection.

Image UAV Sensor AGL GSD Speed Front Overlap Side Overlap

RGB DJI Matrice 300 DJI Zenmuse–P1 45 m 0.57 cm/pixel 6.1 ms−1 80% 70%

MS DJI Matrice 300 MicaSense Altum–PT 45 m–50 m 2.59–2.88 cm/pixel 5.9 ms−1 80% 80%

Table 3. Dates of data capture for RGB and multispectral imagery in five foreshore bushland reserves.

Mapping Area
Date of UAV Data Collation

RGB Multispectral

Pt Cartwright 24 October 2022, 7 November 2022, 9 November 2022 14 November 2022, 22 November 2022

Buddina 26 October 2022, 7 November 2022 15 November 2022

Warana 9 November 2022 17 November 2022

Bokarina 28 November 2022 18 November 2022, 21 November 2022

Wurtulla 28 November 2022 21 November 2022, 22 November 2022

2.4. Ground Truth Data Collection

Five foreshore bushland reserves were further sub divided into eight mapping areas
to identify the canopy and sub-canopy of BLP. The ground surveys created polygons over
samples of canopy consisting of more than 80% of the selected species. Table 4 presents the
time taken and date of ground truth data collection in each mapping area. In Figure 3, the
ground truth locations, and designated areas of the Wurtulla site are shown, providing an
overview of geographical features and reference points.
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Table 4. BLP ground truthing dates time allocation.

Mapping Area Time Taken Date of Ground Truth Data Collection

Pt Cartwright 2:00 23 March 2023
Buddina (BA 201–202, BA 211–212) 2:00 23 March 2023

Warana 237–238 7:00 16 March 2023
Warana 233–234 6:30 27 March 2023

Bokarina 242–243 11:00 16 March 2023, 3 April 2023
Bokarina 245–246 3:00 3 April 2023
Wurtulla 248–249 11:00 31 March 2023
Wurtulla 251–252 5:00 31 March 2023

Total 47.5 h

2.5. Preprocessing of UAV Imagery

The MS and RGB data obtained from the survey missions along the coastal region were
postprocessed to obtain georeferenced orthomosaics. The MS orthomosaics were generated
using Agisoft Metashape 1.6.6 (Agisoft LLC, Petersburg, Russia) and the RGB orthomosaics
were developed using the Cloud-based platform of DroneDeploy. The MicaSense Altum-
PT processing workflow in Agisoft Metashape Professional involved several key steps
(Figure 4) to ensure accurate MS data processing.
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Reflectance Calibration) in Agisoft Metashape Professional.

Georeferencing

The methodology (Figure 5) employed involves georeferencing MS orthomosaic using
the RGB orthomosaic as a reference through a third-order polynomial transformation
model, comprising parameters for scaling, rotation, and translation using ArcGIS Pro 3.1
(Esri, Redlands, CA, USA).
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A total of 20 ground control points (GCPs) were chosen strategically across the imagery
to ensure a well-distributed representation. This step is crucial due to the challenges posed
by identifying different classes in the MS orthomosaic. Using the georeferencing technique
significantly reduced the time required for the laborious process of labelling the various
classes in the MS orthomosaic data.

2.6. Data Labelling and Extraction of Region of Interest

The labelling process was conducted exclusively for the BLP class, while the remaining
areas (background class including other vegetation and non-vegetation) were left unlabeled
using image analyst extension tool in ArcGIS Pro 3.1. The data labeling begins with the
application of georeferenced high-resolution RGB imagery, ensuring spatial accuracy for
subsequent analysis. Ground truth polygons delineating BLP, as detailed in Section 2.4,
are overlaid onto the RGB imagery. These ground truth polygons are thoroughly verified
by domain experts to ensure accuracy. BLP identification characteristics such as leaf
serrations, leaf arrangement, and leaf colour were taken into consideration for labelling
purposes. Leveraging the Image Analyst extension tool within ArcGIS Pro, specifically the
Classification Wizard and Training Sample Manager functionalities, enables precise labeling
of BLP. Drawing tools are employed to manually digitise polygons or points encapsulating
BLP class. Each labeled feature is assigned a class ID value, typically denoted as “1”,
representing the presence of BLP. Subsequently, the labeled dataset is saved or converted to
a GIS vector file format, accompanied by an attribute table containing pertinent information.
Figure 6 shows the ground truth labeling of BLP at the Bokarina site with selected ROIs.
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The Python script was developed to rasterise the labelled vector file into raster for-
mat (mask) for model training. After labelling, the orthomosaic datasets (12 sites) were
subdivided into 104 regions of interest (ROI). These ROIs represent specific areas within
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the orthomosaic datasets that are selected for further processing and extracted based on
ground truth information and labelling. The ROIs vary in size and are not uniform; each
one differs in dimensions, with sizes ranging from 400 × 400 to 1600 × 1600 pixels. Training
ML models on ROIs offers advantages such as focused training and reduced computational
cost. Out of these, 75% of ROIs were allocated for training and validation (number of ROIs:
83), while the remaining ROIs were designated for testing (number of ROIs: 21). The testing
ROIs were employed solely for verifying the classification performance of the model and
were not applied during the training process.

2.7. Machine Learning for BLP Semantic Segmentation

In this section, we outline our approach to integrating AI techniques such as classical
ML and DL U-Net for the semantic segmentation of BLP, encompassing processes such as
estimation of VIs, feature selection, and model training and testing.

Estimation of Vegetation Indices and Feature Selection

In Table 5, a set of various VIs (27) employed across different studies showcases
the diversity in approaches to classify the vegetations in environmental research. The
selected VIs (27) cover a range of vegetation and chlorophyll-related measures, offering a
comprehensive set for analysis in the study.

Table 5. VIs derived from spectral bands including blue (B), green (G), red (R), near-infrared (NIR),
and red-edge used for BLP model training and improvement.

Vegetation Indices Formula References

Normalised Difference Vegetation Index (NDVI) NDVI = NIR−R
NIR+R [55]

Green Normalised Difference Vegetation Index (GNDVI) GNDVI = NIR−G
NIR+G [56]

Normalised Difference Red Edge Index (NDRE) NDRE = NIR−RedEdge
NIR+RedEdge

[57]

Leaf Chlorophyll Index (LCI) LCI = NIR−RedEdge
NIR+R [58]

Difference Vegetation Index (DVI) DVI = NIR − R [59]
Enhanced Vegetation Index (EVI) EVI = 2.5(NIR−R)

(NIR+6R−7.5B+1)
[58]

Triangular Vegetation Index (TVI) TVI = 60(NIR − G) − 100(R − G) [58]
Green Chlorophyll Index (GCI) GCI = NIR

G − 1 [60]
Green Difference Vegetation Index (GDVI) GDVI = NIR − G [61]

Normalised Green Red Difference Index (NGRDI) NGRDI = (G−R)
(G+R)

[62]

Modified Soil-Adjusted Vegetation Index (MSAVI) MASVI = (2*NIR+1−sqrt((2*NIR+1)2−8*(NIR−R)))
2

[63]
Atmospherically Resistant Vegetation Index (ARVI) ARVI = (NIR−(R−2*(B−R)))

(NIR+(R−2*(B−R)))
[63]

Structure Insensitive Pigment Index (SIPI) SIPI = (NIR−B)
(NIR−R)

[64]

Optimised Soil-Adjusted Vegetation Index (OSAVI) OSAVI = 1.16×(NIR−R)
NIR+R+0.16

[65]
Green Optimised Soil Adjusted Vegetation Index (GOSAVI) GOSAVI = NIR−G

NIR+G+0.16 [65]
Excess Green (ExG) ExG = 2G−R−B

R+G+B [66]
Excess Red (ExR) ExR = 1.4R−G

R+G+B [66]
Excess Green Red (ExGR) ExGR = ExG − ExR [66]

Green, Red Vegetation Index (GRVI) GRVI = R−G
R+G [66]

Normalised Difference Index (NDI) NDI = G−R
G+R [66]

Red Green Index (RGI) RGI = R
G [66]

Enhanced Normalised Difference Vegetation Index (ENDVI) ENDVI = ((NIR+G)−(2B))
((NIR+G)+(2B))

[64]

Simple Ratio Index (SRI) SRI = NIR
R [67]

Green Chromatic Coordinate (GCC) GCC = G
(R+G+B) [68]

Red edge chlorophyll Index (RECI) RECI = NIR
RE − 1 [69]

Normalised Difference Water Index (NDWI) NDWI = G−NIR
G+NIR [69]

The methodology for VI feature extraction involved the utilisation of four distinct
techniques: spectral signature analysis, correlation matrix, Variable Importance Factor (VIF)
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analysis, and Principal Component Analysis (PCA). Each technique was chosen to provide
unique insights into vegetation characteristics. Spectral signature analysis leveraged the
distinct spectral properties of vegetation to extract relevant features. Correlation matrix
analysis was used to select VIs with low correlation. The correlation matrix allowed for the
identification of VIs that exhibited minimal correlation with each other, thereby reducing
redundancy and enhancing the diversity of information captured by the selected features.
VIF analysis was employed to identify and prioritise important features related to VIs. PCA
was employed to reduce dimensionality and extract meaningful vegetation features based
on principal components. These techniques were selected to obtain different combinations
of VI feature sets, allowing for comprehensive testing to determine which combination
yielded the best performance for modeling purposes.

2.8. Machine Learning Model Training

The training phase of model was conducted using Python 3.8.10. Geospatial Data
Abstraction Library (GDAL) 3.0.2, XGBoost 1.5.0, Scikit-learn 0.24.2, OpenCV 4.6.0.66,
Matplotlib 3.8.2, TensorFlow 2.10.0, and Keras 2.10.0 were applied for data processing and
ML tasks. Cloud-based high-performance computing (Number of CPUs: 4, Number of
GPUs: 1, GPU: A100 (40 GB), Memory: 64 GB) was used to train the U-Net model.

The classical ML model training and testing involved different processing steps to
segment the BLP for mapping (Figure 7). After importing the essential Python libraries,
the MS input ROIs, and their corresponding mask (labelled raster) ROIs were loaded.
These MS input ROIs underwent preprocessing steps, including histogram equalisation
for enhancement and calculation of VIs to capture relevant features, and these VIs were
integrated into the input MS ROI array using concatenate function. Moreover, a low
pass filter was applied to the MS ROIs to reduce noise and improve model performance.
Subsequently, empty lists X and y were created to accommodate the features (X) and labeled
mask (y). Subsequently, the python scripts proceeded to iterate through each MS input
ROIs, filtering labeled data (Id = 1) by generating a mask based on pixel values greater than
0 in the corresponding input labelled mask. This process effectively identified the labeled
regions within the mask, facilitating the extraction of features and labels. The extracted
features and labels were then converted to NumPy arrays for model training. Following
data preprocessing, the training dataset was split into training and testing sets using the
train-test split function, allowing for the assessment of model performance on unseen data.
Different classical ML classifiers with predetermined parameters were then defined, and it
was fitted to the training data. Once the model was trained, the best-performing model
was saved to a file for future use. Subsequently, the saved best model was loaded, and its
performance was evaluated using the testing ROIs mentioned in Section 2.6.
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Figure 8 depicts the key processing pipeline specifically designed for training DL
U-Net models, emphasising the distinct stages and methodologies essential for leveraging
neural networks in image segmentation tasks. Following Python library imports, a function
for the estimation of VIs is defined to compute VIs from MS input ROIs. Subsequently,
the MS ROIs and labeled mask ROIs undergo a tiling process, dividing them into smaller
patches (32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512) to streamline model training.
Furthermore, masks are transformed into categorical representation through one-hot en-
coding, preparing them for semantic segmentation tasks. Once the data were split into
training and testing sets using scikit-learn’s ‘train_test_split’ function, they were fed to DL
U-Net architecture.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 7. Processing pipeline for classical machine learning model training for BLP classification. 

Figure 8 depicts the key processing pipeline specifically designed for training DL U-
Net models, emphasising the distinct stages and methodologies essential for leveraging 
neural networks in image segmentation tasks. Following Python library imports, a func-
tion for the estimation of VIs is defined to compute VIs from MS input ROIs. Subse-
quently, the MS ROIs and labeled mask ROIs undergo a tiling process, dividing them into 
smaller patches (32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512) to streamline model train-
ing. Furthermore, masks are transformed into categorical representation through one-hot 
encoding, preparing them for semantic segmentation tasks. Once the data were split into 
training and testing sets using scikit-learn’s ‘train_test_split’ function, they were fed to DL 
U-Net architecture. 

 
Figure 8. Processing pipeline for DL U-Net model training for BLP classification. 

The architecture is characterised by a U-shaped structure featuring a contracting 
path followed by an expansive path (Figure 9). In the contracting path, the input ROIs 
undergo a series of convolutional layers interspersed with max-pooling operations. These 
layers progressively reduce the spatial dimensions of the feature maps while increasing 
their depth, allowing the model to capture hierarchical features at different levels of ab-
straction. After reaching a bottleneck layer, the expansive path begins, where the feature 
maps are up sampled through deconvolutional layers. Concurrently, skip connections are 
established between corresponding layers in the contracting and expansive paths, facili-
tating the integration of both local and global context information. These connections en-
able precise localisation of objects and improve segmentation accuracy. The model is then 
compiled with the Adam optimizer and categorical cross-entropy loss, marking the prep-
aration phase for model training. At the end of the network, a convolutional layer with 

Figure 8. Processing pipeline for DL U-Net model training for BLP classification.

The architecture is characterised by a U-shaped structure featuring a contracting path
followed by an expansive path (Figure 9). In the contracting path, the input ROIs undergo
a series of convolutional layers interspersed with max-pooling operations. These layers
progressively reduce the spatial dimensions of the feature maps while increasing their
depth, allowing the model to capture hierarchical features at different levels of abstraction.
After reaching a bottleneck layer, the expansive path begins, where the feature maps are up
sampled through deconvolutional layers. Concurrently, skip connections are established
between corresponding layers in the contracting and expansive paths, facilitating the
integration of both local and global context information. These connections enable precise
localisation of objects and improve segmentation accuracy. The model is then compiled
with the Adam optimizer and categorical cross-entropy loss, marking the preparation
phase for model training. At the end of the network, a convolutional layer with softmax
activation is applied to generate pixel-wise predictions for each class. This produces a
segmentation map where each pixel is assigned a probability distribution over the different
classes, allowing for the fine-grained classification of regions within the image. After
model training, the best model checkpoint is saved based on validation loss, ensuring
optimal performance. Finally, the best model was evaluated by testing ROIs to assess its
generalisation ability and ensure its effectiveness in segmenting unseen regions.

The complexity and inference speed of the U-Net model are indeed critical consid-
erations in its deployment for practical applications. Various modules within the U-Net
architecture contribute to its overall complexity and inference speed, each playing a crucial
role in its performance. The convolutional layers within the U-Net architecture perform
feature extraction and hierarchical representation learning. The number of convolutional
layers and their filter sizes significantly impact the model’s receptive field and feature
extraction capabilities. However, an excessive number of convolutional layers can increase
model complexity and inference time. Skip connections between corresponding encoder
and decoder layers facilitate the fusion of low-level and high-level features, enhancing the
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model’s segmentation accuracy. However, the inclusion of skip connections increases the
number of parameters in the model, leading to higher complexity.
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2.9. Parameter Tunning for Model Improvement

For the RF model utilised in BLP classification, several key hyperparameters were
fine-tuned. This includes parameters such as the number of decision trees (n_estimators)
and the maximum depth of each tree (max_depth). In the SVM model employed for
BLP classification, a radial basis function (RBF) kernel was utilised. The RBF kernel is
effective in capturing complex relationships within the data and is particularly suitable for
nonlinear classification tasks. XGBoost is configured with parameters specifically designed
for gradient-boosted decision trees. While XGBoost does not directly use kernel functions
like SVM, it allows for fine-tuning of parameters related to boosting rounds, learning rates,
and the objective function. These parameters were adjusted to control the boosting process
and prevent overfitting during model training. Table 6 summarises the key parameters and
configurations used in the U-Net model improvement. It outlines the preprocessing steps,
model architectures, and training settings. Preprocessing involves the selection of different
bands, VIs, patch sizes, and the application of low-pass and Gaussian blur filters. Many
model architectures were employed, each with varying characteristics such as the number
of convolution layers and dropout rates. Also, different number of learning rates, batch
sizes, and epochs were used for model training and tuning.

Table 6. Parameter tunning for U-Net model improvement.

Processing Stages Key Parameters Configurations

Pre processing

Bands Without bands, 5 bands, Top 2 bands
Vegetation indices (VIs) Without VIs, Top 5 VIs, Top 3 VIs

Patch size 32, 64, 128, 256, 512
Low pass filter Without filter, 3 × 3, 5 × 5

Gaussian blur filter Without filter, 3 × 3, 5 × 5
Train test split 20%, 25%, 30%, 40%

Model Architecture
Convolution layers 32–024, 64–1024, 128–1024, 16–512,

32–512, 16–256, 32–256
Dropout 0.1, 0.2

Model compile and Training
Learning rate 0.1, 0.01, 0.001, 0.0001

Batch size 10, 15, 20, 25, 30, 35, 40, 45
Epochs 50, 75, 100, 150, 200, 250, 300, 400, 500, 600

The chosen settings for each parameter category aim to comprehensively explore the
model’s capability to learn from the input data, generalise unseen samples, and achieve
superior performance in segmentation tasks. The selection of different bands, VIs, and
patch sizes allows for the examination of how these factors impact the model’s ability to
extract meaningful features and classify vegetation effectively. By including options such
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as using all bands, selecting specific bands, or incorporating VIs, the aim is to identify
the most informative input data representation for the model. Similarly, applying low
pass and Gaussian blur filters at different sizes enables the evaluation of their effects on
noise reduction and feature preservation in the input data. Variations in the number of
convolution layers and dropout rates in the model architecture influence its capacity to
learn hierarchical representations and prevent overfitting. By testing different architectures
with varying layer configurations and dropout rates, the goal is to find an optimal balance
between model complexity and generalisation ability. Tuning parameters such as learning
rate, batch size, and number of epochs during model compilation and training significantly
impact the convergence speed and final performance of the model. The selection of
appropriate learning rates ensures efficient gradient descent optimisation, while adjusting
batch size and epochs affects the stability and convergence of the training process.

2.10. Model Testing

The models were evaluated and compared based on their performance metrics and
ability to handle different classes effectively in a classification scenario. OA, precision,
recall, F1–score, and Intersection over Union (IoU) were used to evaluate the model’s
performance for the classification of BLP. Evaluation descriptors, including true positive
(TP), false positive (FP), true negative (TN), and false-negative (FN), were used to determine
the overall accuracy (Equation (1)), precision (Equation (2)), recall (Equation (3)), F1–score
(Equation (4)), and IoU (Equation (5)).

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1–score =
2TP

FP + 2TP + FN
(4)

Intersection over Union (IoU) =
Area of intersection

Area of Union
(5)

2.11. Model Prediction and Segmentation Map

Each orthomosaic underwent cropping into 256 × 256 tiles (image patches) using the
split raster function within ArcGIS Pro to enable the prediction of the entire orthomosaic
for each site. To address the challenge of detecting BLP lying at the edges of consecutive
tiles, a deliberate strategy was employed during the orthomosaic splitting phase. Firstly,
the orthomosaic was divided into 256 × 256 tiles, incorporating a 10% overlap between
neighboring tiles. This overlap ensured that BLP spanning the boundaries of adjacent
tiles were not missed during prediction. Following this, the individual tiles underwent
prediction employing the selected best model based on testing performance. To preserve the
spatial reference integrity of prediction tiles, the geotransform parameters and projection
information of the original MS image tiles were retrieved using the GDAL library, ensuring
accurate georeferencing of the predicted image. Subsequently, the predicted image was
reshaped to 2D by selecting the class with the highest probability for each pixel, achieved
through argmax function provided by the NumPy library in Python along the specified
axis. A new file was then created to store the predicted image data in ENVI format, written
to the specified directory, and supplemented with spatial reference information. Finally,
in ArcGIS Pro, the merging of predicted tiles for each site was facilitated by accessing the
merge raster tool under the raster function in the data management category. This enabled
the seamless combination of individual predicted tiles into a single raster (orthomosaic)
dataset, ensuring a cohesive representation of the entire study area’s distribution of BLP.
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3. Results
3.1. Selection of Vegetation Indices

From the spectral signature plot analysis (Figures 10 and 11), the top five features
included two specific bands (NIR and red-edge) and five VIs (MSAVI, EVI, OSAVI, TVI,
and DVI) were selected for ML model training. These features were identified based on
spectral difference between two classes through spectral signatures.
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The VIF analysis highlighted several crucial VIs based on their VIF values (Figure 12).
These included SRI, RECI, EVI, GCI, and RGI. Through correlation matrix analysis, the VIs
including GCI, SRI, RGI, OSAVI, and RECI were selected based on their low correlation
coefficients (Figure 13). Additionally, PCA revealed essential vegetation features, with the
following prominent features including GOSAVI, NGRDI, GRVI, EVI, and RECI. Table 7
illustrates the selected VIs through different feature selection techniques.

Table 7. Summary of selected VIs using different feature extraction techniques.

Spectral Signature VIF Correlation Matrix PCA

MSAVI SRI GCI GOSAVI
EVI RECI SRI NGRDI

OSAVI EVI RGI GRVI
TVI GCI OSAVI EVI
DVI RGI RECI RECI
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3.2. Performance of Classical Machine Learning Models

The best performances were obtained using a feature set with five spectral bands
and the top five VIs selected from PCA feature extraction technique. Among the explored
models, the RF Classifier performed well with “n_estimators” = 150 and “max_depth” = 16.
SVM used a radial basis function (RBF) kernel for capturing complex relationships within
the data. The XGBoost Classifier, employing gradient-boosted decision trees, showed
efficacy with an objective set to “binary: logistic” and “n_estimators = 100”. Table 8
provides a comprehensive comparison of best performance metrics, including precision
(P), recall (R), F1–score, and OA, for the background and BLP classes across three different
classical ML models (XGBoost, RF, SVM) during the training, validation, and testing phases.
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During the training and validation stages, RF exhibited the highest overall accuracy at
93%, outperforming both XGBoost (91%) and SVM (76%). In the subsequent testing phase,
RF maintained a relatively high overall accuracy of 77%, surpassing XGBoost with 80%,
while SVM exhibited a lower overall accuracy of 62%. However, RF demonstrated the best
performance in predicting BLP compared to XGBoost and SVM, particularly in terms of
BLP precision. Figure 14 showcases the BLP prediction outcomes derived from the RF
model, delineating the training and testing phases, within a specified region of interest in
the Bokarina study site.

Table 8. Comparison of performance metrics (precision, recall, F1–score, Overall Accuracy) for
Background and BLP classes across different classification models (XGBoost, RF, SVM) in training,
validation, and testing phases.

Class

XGBoost RF SVM

Training and Validation Training and Validation Training and Validation

P R F1 OA P R F1 OA P R F1 OA

Background 94% 95% 94%
91%

95% 92% 93%
93%

86% 62% 72%
76%

BLP 74% 68% 71% 92% 95% 94% 70% 90% 79%

Class
Testing Testing Testing

P R F1 OA P R F1 OA P R F1 OA

Background 86% 90% 88%
80%

91% 81% 85%
77%

96% 55% 70%
62%

BLP 45% 35% 39% 43% 64% 51% 32% 90% 47%

P: precision, R: recall, F1: F1–score, OA: Overall Accuracy, XGBoost: eXtreme Gradient Boosting, RF: Random
Forest, SVM: Support Vector Machine.
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Figure 14. BLP prediction outcomes generated by RF model at region of interest in Bokarina study
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3.3. Performance of U-Net Model

The results obtained from the best hyperparameters are explained in this section.
The best hyperparameters include patch size of 256 × 256. Without any filters, optimal
configuration includes convolution layers ranging from 64 to 1024, dropout rate of 0.2,
learning rate set at 0.001, and batch size of 30 with 200 epochs. Tables 9–11 present
performance metrics, including precision, recall, F1–score, and IoU, for both background
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and BLP classes throughout the training, validation, and testing phases of the U-Net model
using the best hyperparameters with different feature sets. All VIs (27) feature set generally
performs better in terms of precision, recall, F1–score, and IoU for the background class,
while the five bands feature set performs better for the BLP class, especially in terms of
precision and recall during training and validation. However, when it comes to testing,
the performance drops for both feature sets, with the All VIs (27) showing a slightly better
performance for the background class and the 5 bands showing better results for the BLP
class (Table 9).

Table 9. U-Net model in training, validation, and testing performance metrics (precision (P), recall
(R), F1–score (F1), and Intersection over Union (IoU)) for background and BLP classes using two
feature sets (5 bands and all 27 vegetation indices) without feature extraction technique.

Feature Sets Matrix
Training and Validation Testing

Background BLP Background BLP

5 bands (Blue, Green,
Red, NIR, and
Red-edge) only

P 94% 89% 92% 77%
R 96% 85% 96% 60%
F1 95% 87% 94% 68%

IoU 90% 76% 88% 51%

All VIs (27)

P 95% 61% 92% 67%
R 93% 68% 97% 42%
F1 94% 64% 94% 52%

IoU 89% 47% 89% 35%

Table 10. U-Net model in training, validation, and testing performance metrics (precision (P), recall
(R), F1–score (F1), and Intersection over Union (IoU)) for background and BLP classes using four
feature extraction techniques.

Feature Sets Matrix
Training and Validation Testing

Background BLP Background BLP

5 VIs from spectral
signature plot (MSAVI,

EVI, OSAVI, TVI,
DVI) only

P 96% 82% 88% 83%
R 93% 87% 92% 75%
F1 94% 85% 90% 79%

IoU 90% 81% 81% 65%

5 VIs from VIF (SRI,
RECI, EVI, GCI, RGI)

P 69% 49% 70% 84%
R 83% 31% 97% 24%
F1 75% 38% 82% 38%

IoU 60% 23% 69% 23%

5 VIs from correlation
(GCI, SRI, RGI,
OSAVI, RECI)

P 90% 68% 83% 83%
R 78% 84% 93% 64%
F1 83% 75% 87% 72%

IoU 72% 66% 78% 56%

5 VIs from PCA
(GOSAVI, NGRDI,
GRVI, EVI, RECI)

P 81% 83% 70% 71%
R 93% 59% 94% 25%
F1 87% 69% 80% 37%

IoU 76% 52% 67% 23%

The findings indicated that the five VIs from spectral signature plot extraction tech-
nique consistently yielded superior precision and recall for both background and BLP
classes across all phases, with precision ranging from 96% to 82% and recall ranging from
93% to 87%. Conversely, the five VIs from VIF extraction technique exhibited notably lower
precision and recall, particularly for the BLP class, with values as low as 49% and 31%,
respectively. During testing, performance generally declined across all techniques com-
pared to training and validation, with the five VIs from spectral signature plot technique
maintaining relatively better performance. These results underscore the critical role of
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feature extraction techniques in optimising the U-Net model performance for land cover
classification tasks (Table 10).

Table 11 outlines the performance metrics of a U-Net model using the spectral signature
technique across training, validation, and testing phases. The second feature set (two bands
with five VIs) consistently demonstrates higher precision, recall, F1–scores, and IoU metrics
for both background and BLP classes during all phases compared to the first set (two
bands and three VIs). Therefore, based on all the techniques mentioned above, two bands
(NIR and red-edge) and five VIs (MSAVI, EVI, OSAVI, TVI, DVI) extracted from spectral
signature plot technique show the best performance to classify the BLP in this study.
Figure 15 shows the visual representation of selected top five VIs from spectral signature
plot for model improvement.
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Figure 15. Visual representation of the RGB regions of interest with respective labelled mask,
multispectral, and selected VIs.

Figure 16 illustrates the precision (P) and recall (R) rates of BLP class for different
feature sets in a testing dataset. Five bands alone attained a precision of 77% and a recall
of 60%, while all VIs yielded a precision of 67% and a recall of 42%. When considering
only five VIs, the precision increased to 83% with a recall of 75%. Combining five bands
with five VIs resulted in a precision of 76% and a recall of 63%. However, using only two
bands with three VIs led to lower rates of precision (59%) and recall (50%). Notably, the
combination of two bands and five VIs achieved the highest precision at 86%, accompanied
by a recall of 76%.
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Table 11. U-Net model in training, validation, and testing performance metrics (precision (P), recall
(R), F1–score (F1), and Intersection over Union (IoU)) for background and BLP classes using spectral
signature technique.

Feature Sets Matrix
Training and Validation Testing

Background BLP Background BLP

2 bands (NIR, and Red-edge)
and 3 VIs (MSAVI,

EVI, OSAVI)

P 94% 53% 92% 59%
R 92% 61% 94% 50%
F1 93% 57% 93% 54%

IoU 87% 39% 87% 37%

2 bands (NIR, and Red-edge)
and 5 VIs from spectral

signature plot ((MSAVI, EVI,
OSAVI, TVI, DVI))

P 94% 83% 88% 86%
R 95% 81% 93% 76%
F1 94% 82% 90% 81%

IoU 89% 89% 82% 68%
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3.4. Training Plots

Figure 17 presents the training plot of the U-Net BLP model, showcasing key perfor-
mance metrics. The training process unfolds over 155 epochs, revealing an evolving trend
in various performance metrics. In the initial stages, the model demonstrates a significant
increase in training accuracy, reaching 70.2% in the first epoch, and progressively climbing
to 99.4% by the 155th epoch. Validation accuracy follows a similar upward trajectory, from
24.6% to 91.4% (Figure 17a). Training and validation losses exhibit a consistent decline over
epochs, with training loss dropping from 628,799,081 to 0.0159 and validation loss decreas-
ing from 8,051,853.5 to 0.4207 (Figure 17b). In summary, the model undergoes substantial
improvement across epochs, achieving high accuracy, low loss, increased precision, and
minimised false positives, indicative of its robust learning and generalisation.
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Figure 17. U-Net BLP model training plot: (a) accuracy, (b) precision (BLP).

3.5. Cross Validation

Figure 18 provides an overview of the K-fold cross-validation results for the BLP U-Net
model. Figure 18a displays the accuracy of the model across different folds, demonstrating
its consistency and performance, while Figure 18b visualises the loss, indicating the model’s
error rate during cross-validation. Additionally, the model’s overall performance across all
folds is summarised with an average validation binary accuracy of approximately 90.83%
with the standard deviation of 1.58 and an average validation binary loss of approximately
0.45 with the standard deviation of 0.15.
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Figure 18. K-fold cross-validation for BLP U-Net model: (a) accuracy, (b) loss metrics.

3.6. Prediction of Multispectral ROIs from Testing Dataset

The methodology involved utilising the best performing U-Net model, optimised
through rigorous hyperparameter tuning, in conjunction with a feature set comprising two
bands and five VIs, to predict ROIs within the testing dataset and the entire orthomosaic
across all designated sites. Figure 19 illustrates the BLP prediction map for the testing
ROIs in Warana 1 site, showcasing the outcomes generated by the U-Net model. The
figure includes key elements such as high-resolution RGB images in the first column, MS
ROIs in the second column, label masks in the third column, and U-Net predictions in the
fourth column. In this representation, the green colour signifies the background, while red
indicates the presence of the target species for BLP.
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Figure 19. BLP prediction outcomes generated by U-Net model showcasing selected ROIs from
testing phase. Representation includes RGB images, MS views, corresponding labelled masks, and
U-Net model predictions.

3.7. Visualisation of Prediction Maps

In Figure 20, U-Net predictions are showcased featuring a high-resolution RGB im-
age of the entire study area at the Bokarina2 site, overlaid on a Google Earth satellite
image. Figure 20b offers a closer examination of the model’s output with a zoomed-in
view, providing finer details of the prediction. Figure 21 illustrates the integration of a
Google Earth satellite image, presenting a specific site within Bokarina2 overlaid with BLP
predictions highlighted in red. This depiction underscores the spatial accuracy of the model
in identifying target species within the study area.
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Figure 20. U-Net predictions, encompassing high-resolution RGB image of entire study area of
Bokarina2 site overlaid on Google Earth satellite image. (a) U-Net predictions depicted with BLP
highlighted in red, (b) offers zoomed-in view of prediction, providing closer examination of model’s
output at a more detailed level.
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4. Discussion

This study investigates an in-depth exploration of the distribution mapping of sig-
nificant coastal invasive plant species of BLP. Our study responds to the critical need for
precise plant species classification in ecologically diverse coastal regions by employing
cutting-edge technologies including UAV-based remote sensing and AI. This research is
a novel approach not explored in previous studies targeting these plant species. In the
broader landscape of plant species classification studies in different plant types in similar
environments, it is noteworthy that the majority have leaned towards the utilisation of
classical ML models, with notable instances of RF, SVM, and KNN [39,44,45,70–73], while
past works [47,48,50,52–54,74] have provided valuable insights into the U-Net model clas-
sification of various plant types using RGB and MS imagery collected by UAV or satellite.
These existing studies obtained an OA range between 84% and 97% for the classification of
different classes in natural environments. Our research extends this narrative by employing
a hybrid approach, utilising classical ML models such as RF, XGBoost, and SVM, alongside
DL models like U-Net which obtained better results than classical ML models. In com-
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parison to existing studies that have primarily focused on different plant types in similar
natural environments, our research looks at applying UAVs and MS technology to classify
the specific plant species of BLP. Comparing our findings to existing studies, our research
builds upon the foundation laid by prior researchers [53,54,75] in utilising MS sensor tech-
nology and UAVs for ecological mapping using different DL models. Our findings reveal
that the DL U-Net model outperformed other models, exhibiting promising results in the
classification of BLP during testing. Other researchers also incorporated the DL models,
such as U-Net to increase the overall accuracy of classification [50,74]. Therefore, our study
stands out in the realm of plant species classification, with a complex environment.

The discussion explores the performance of various feature sets in a classification task,
focusing on precision, recall, F1–score, and IoU metrics during training, validation, and
testing phases. The results underscore the significance of feature richness and diversity
in achieving accurate classifications. While feature sets comprised solely of bands or
VIs exhibit limitations in performance, the integration of both spectral bands and VIs
demonstrates more balanced outcomes, suggesting the complementary nature of these
features in capturing relevant information for classification. Notably, the combination of
two bands and five VIs emerges as a promising approach, offering strong performance
across all metrics, particularly in testing. This highlights the importance of considering
a diverse range of features in remote sensing classification tasks to ensure robust and
reliable results, emphasising the potential benefits of integrating multiple data sources for
improved accuracy and generalisation.

We identified two bands (NIR and red-edge) and five VIs (MSAVI, EVI, OSAVI, TVI,
and DVI) as the optimal combination for accurate BLP detection. These features were
chosen based on their strong correlation with the response variable and their demonstrated
effectiveness in capturing relevant spectral information indicative of BLP presence. Tech-
niques such as spectral signature plot analysis revealed the discriminative power of these
features, highlighting their ability to differentiate BLP from surrounding features. Each VI
possesses unique characteristics that contribute to its effectiveness in vegetation classifica-
tion and monitoring. MSAVI excels in reducing soil background noise, ensuring accurate
detection of vegetation even in areas with significant soil influence [76]. EVI stands out
for its ability to minimise atmospheric influences and soil brightness effects, providing
improved sensitivity to canopy structural variations crucial for multi-temporal studies [77].
OSAVI is tailored to address soil brightness variations and atmospheric influences, main-
taining high sensitivity to vegetation changes while minimising soil background noise [78].
TVI comprehensively captures vegetation vigor and health, demonstrating resilience to
atmospheric disturbances and soil variability, thus making it valuable for assessing plant
health [79]. DVI offers a straightforward measure of vegetation greenness and is widely
applicable in vegetation monitoring tasks, owing to its sensitivity to changes in vegetation
biomass and canopy structure [80,81].

In our study, the training plot exhibits a smoother trend compared to the test plot,
a phenomenon attributed to the inherent complexities within our dataset. The dataset
is characterised by significant environmental variations and the coexistence of multiple
plant species including Alectryon coriaceus, Cupaniopsis anacardioides, and Alphitonia excelsa,
which have similar morphological characteristics, leading to more pronounced fluctuations,
especially in the early stages of each epoch. This complexity poses challenges during model
training, making it more difficult for the algorithm to generalise effectively due to spectral
heterogeneity. Moreover, the lower resolution of the MS images further amplifies these
challenges, introducing a layer of ambiguity in feature extraction. Understanding and ad-
dressing these complexities is crucial for improving the model’s performance, particularly
in scenarios where environmental factors and overlapping species contribute to the overall
complexity of the dataset. However, as the epochs progress, there is a noticeable reduction
in fluctuations in the test plot, eventually converging towards a smoother trajectory, indi-
cating improved model stability and generalisation over time. Furthermore, both models
exhibit a very low standard deviation in the context of cross-validation. This suggests that
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the performance metrics across different folds or iterations of the cross-validation process
are consistently close to the mean. This can be interpreted as a positive sign, indicating
that the models are robust and yield stable results across diverse subsets of the data. The
low standard deviation observed in cross-validation metrics for both models signify a high
level of stability and consistency in their performance across various folds or iterations. The
low variability in performance metrics provides confidence in the reliability of the models,
suggesting that their effectiveness is not contingent on specific data splits and reinforcing
their potential for generalisation to test data.

5. Limitations of the Study

One of the fundamental limitations of this study was the absence of ground control
points (GCPs) during flight missions. RTK GNSS technology was used to capture data
from the field, yet we faced difficulties in achieving perfect alignment between the RGB
and MS imagery. Shadow and blur effects within the MS imagery introduced inaccuracies
in the labelling process. In the densely vegetated environment of these study areas, we
frequently encountered challenges from the overlapping canopies of various plant species.
This overlap made it difficult to accurately label the target species and, in turn, reduced the
overall accuracy of our models. The presence of other plant species that closely resembled
the BLP added another layer of complexity to our research. Due to the growth form of BLP,
it was possible to identify their trunks to see overall BLP populations in dense infestations
during ground-truthing. However, mapping the canopy cover by ground distribution was
difficult due to the growth form of BLP and accessibility of the sites. Additionally, in many
of the foredune areas, native Horsetail she-oaks (Casuarina equisitifolia) obscure the aerial
visibility of BLP.

6. Conclusions and Recommendations

In conclusion, this study mapped the distribution of BLP along the coastal strip, lever-
aging UAV-based MS technology and AI. Among the models tested, the DL U-Net model
exhibited the most promising results with a feature set of two specific bands including
(NIR) and red-edge, along with five key VIs including MSAVI, EVI, OSAVI, TVI, and DVI.
It is worth noting that the complexity of BLP presented a particular challenge in accurate
identification from aerial imagery. The findings underscore the importance of tailoring
models to the unique characteristics of plant species and highlight the potential for further
research in addressing the challenges associated with complex plant types. This study pro-
vides valuable insights into the capabilities and limitations of utilising remote sensing and
AI for plant classification and offers a foundation for future research directions in natural
environment settings. The implementation of DL models like the U-Net model for classify-
ing BLP in a natural environment significantly contributes to biodiversity preservation and
informed decision-making for management options.

The vital recommendation for future research is the integration of GCPs during flight
missions. GCPs serve as a crucial reference, aiding in precise georeferencing and aligning
RGB and MS imagery. Future studies should focus on strategies to mitigate shadow and blur
effects in MS imagery. This could involve collecting data under more controlled lighting
and environmental conditions to minimise these issues. To address and minimise shadow
effects in UAV-based studies conducted in natural environments, several recommendations
can be implemented. The effectiveness of plant species identification in complex natural
environments can be greatly improved by diversifying the selection of DL models and
applying various image preprocessing techniques. Incorporating a range of DL models,
including other CNN models, RNNs, and DNNs offers the advantage of harnessing distinct
architectural strengths.
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