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Abstract: Forests play a vital role in maintaining ecological balance and provide numerous benefits.
The monitoring and managing of large-scale forest plantations can be challenging and expensive. In
recent years, advancements in remote sensing technologies, such as lightweight drones and object-
oriented image analysis, have opened up new possibilities for efficient and accurate forest plantation
monitoring. This study aimed to explore the utility of lightweight drones as a cost-effective and
accurate method for mapping plantation characteristics in two 50 ha forest plots in the Nayla Range,
Jaipur. By combining aerial photographs collected by the drone with photogrammetry and limited
ground survey data, as well as topography and edaphic variables, this study examined the relative
contribution of drone-derived plantation canopy information. The results demonstrate the immense
potential of lightweight drones and object-oriented image analysis in providing valuable insights for
optimizing silvicultural operations and planting trees in complex forest environments.

Keywords: forests; ecological balance; remote sensing technologies; lightweight drones; forest
plantation monitoring

1. Introduction

The importance of forests in maintaining ecological balance, providing habitats for
diverse species, and mitigating climate change is well recognized [1,2]. Forest plantations
play a significant role in meeting the global timber demand and providing economic and
social benefits [3]. However, monitoring and managing large-scale forest plantations can
be challenging because of their vast extent and complex terrain. Traditional methods
of forest monitoring often rely on ground-based surveys, which are time-consuming,
expensive, and have limited spatial coverage. For the purpose of monitoring the forest,
identifying changes, and creating effective conservation plans, high-quality forestry data
on plant distributions must be collected and integrated with other factors [4,5]. However,
the Rajasthan Forest Department’s conventional field surveys may be costly and time-
consuming. For instance, a field crew of 7–8 people had to work for 15 days to conduct
a plantation inventory for a 50-hectare plot. Additional measurements and monitoring
of tree height, canopy openness, forest disturbance, and other characteristics are further
constrained by the lack of available human labor and financial resources [6]. Thus, the
analysis and monitoring of short- and long-term changes are not performed using ground-
based surveys, as frequently as required. Therefore, a significant challenge lies in finding
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ways to collect forest attribute data in a timely and cost-effective manner. In recent years,
advancements in remote sensing technologies, particularly lightweight drones and object-
oriented image analysis, have opened up new possibilities for efficient and accurate forest
plantation monitoring [7]. Lightweight drones, also known as unmanned aerial vehicles
(UAVs), offer several advantages over traditional monitoring approaches. They can capture
high-resolution images from different perspectives and altitudes, covering large areas
in a relatively short time [8,9]. Furthermore, drones equipped with various sensors can
provide valuable information beyond visual imagery, such as LiDAR data, for precise
terrain modeling.

Compared to satellite and airborne remote sensing techniques, drones have the ad-
vantage of flying at low altitudes and slow speeds, allowing them to capture ultra-high
spatial resolution imagery (2.5–10 cm) and collect near-earth data on plant and biophysical
variables [10]. Drones also overcome several limitations associated with satellite data,
such as insufficient spatial resolution to detect and measure critical biophysical properties,
including forest canopy gaps and individual tree identification [11]. In addition, they
can provide the necessary temporal resolution to detect changes in phenology and stand
structure caused by disturbance events. Moreover, the cost of equipping drones with cam-
eras is relatively low. Despite these advantages, cost-effective drones have limited spatial
coverage per flight, small payloads, and moderate spectral resolution [12]. Consequently,
this technology has not yet received much attention from forest departments, especially
in long-term studies. Although ground-based long-term datasets have value, there are
still many data gaps [13]. First, ground-based monitoring sites cover only a small fraction
of the total work required and may suffer from geographic biases, sometimes leading to
overrepresentation [14]. The high cost associated with monitoring and maintaining these
sites is a major reason for their scarcity. Second, challenges persist in linking broad-scale
remote-sensing data with local-scale ground data. Mismatches at spatial scales limit the
monitoring and prediction of species distribution and dynamics, and similar mismatches
can occur at temporal scales. Broad-scale remote sensing data are often insufficient to
address various pressing monitoring questions [15].

The data obtained from the drone undergo various preprocessing and post-processing
challenges. Object-oriented image analysis (OBIA) is an innovative approach that utilizes
spatial relationships and contextual information within images to extract meaningful
objects and features [16]. Unlike pixel-based analysis, OBIA focuses on the identification
and classification of objects based on their size, shape, texture, and contextual attributes [17].
This approach allows for more accurate and detailed information extraction, making it
suitable for analyzing complex forest ecosystems and plantation areas [18]. The combination
of lightweight drones and OBIA has shown immense potential for various applications
related to forest plantation monitoring [19]. This integration enables rapid and cost-effective
data collection, detailed vegetation mapping, accurate tree counting, and the early detection
of pests and diseases. Additionally, it facilitates the assessment of forest health, growth
rate, and biomass estimation, all of which are crucial for effective forest management and
sustainable plantation practices.

Several studies have explored the benefits of using lightweight drones and OBIA
to monitor forest plantations. Tang and Shao (2015) explored the growing use of drones
in remote sensing, with a particular focus on their application in forestry. The authors
emphasize that drones offer a cost-effective, flexible, and high-resolution alternative to
traditional remote sensing methods, filling data gaps and enhancing the capabilities of
manned aircraft and satellite systems. They outlined the benefits of drone remote sensing,
including its low operational costs, customizable spatial and temporal resolution, and high-
intensity data collection without risking human safety. The authors also discussed various
forestry applications of drones, such as forest surveying, canopy gap mapping, canopy
height measurement, wildfire tracking, and intensive forest management support [20].
Ahmed et al. (2021) investigated real-time object detection and segmentation in drone-
based remote sensing. By employing the deep learning-based U-Net model, they evaluated
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multiple object segmentation with various base architectures, including VGG-16, ResNet-50,
and MobileNet. To enhance model efficiency, data augmentation and transfer learning were
utilized. The study revealed that the MobileNet-based U-Net achieved the best results,
attaining segmentation accuracies of 92% with VGG-16, 93% with ResNet-50, and 95% with
MobileNet. These findings indicate that deep learning techniques can significantly improve
drone-based real-time object detection and segmentation [21].

Srivastava et al. (2022) discussed the potential of drones in environmental monitoring
for forest inventories, particularly in private native forests. Their research highlighted
how drone-derived images combined with digital photogrammetry can effectively esti-
mate tree height, thereby enhancing forest inventory accuracy and reducing reliance on
labor-intensive field assessments [22]. Natesan et al. (2019) examined the classification
of tree species in forest management utilizing deep learning with high-resolution RGB
images obtained from a UAV platform. Specifically, this study aimed to differentiate red
pine and white pine from other species using Residual Neural Networks (ResNets). The
researchers trained the network with UAV images collected over a period of three years,
considering variations in season, time, illumination, and angle. Using this approach, the
study achieved a classification accuracy of 80% when using data from all three years and
51% accuracy when using data from just one year. This research contributed towards a
unique, high-resolution dataset of labeled tree species for further deep neural network
studies in forestry [23]. Nduji et al. (2023) combined object-based image analysis (OBIA)
with super-resolution mapping (MRF-SRM) to detect individual trees from satellite images
in Mali. This approach addresses challenges such as spectral mixture and background
class interference, enhances detection accuracy, and offers valuable insights for urban and
ecological planning [24]. Zhou et al. (2021) reviewed the application of infrared thermal
imagery in precision agriculture to assess crop water stress. They discussed the potential of
integrating deep learning techniques with thermal imaging to refine crop stress detection,
underscoring the growing importance of thermal sensors in efficiently managing agricul-
tural resources [25]. Bāders (2022) compared the effectiveness of lightweight drones and
ground-based surveys in monitoring pest infestations in pine plantations. The researchers
found that drone-based monitoring detected pest outbreaks earlier than ground-based
surveys, enabling timely intervention and minimizing damage to plantations [25]. Lausch
et al. (2013) investigated the vulnerability of spruce forests in the Bavarian Forest Na-
tional Park, Germany, to bark beetle infestations (Ips typographus L.) caused by climate
change or emissions. The researchers employed hyperspectral remote-sensing methods
using HyMAP data at ground resolutions of 4 m and 7 m to assess the biochemical and
biophysical characteristics of the forest. The study revealed that specific spectral bands
in the 450–890 nm range, which correspond to chlorophyll absorption, were effective in
classifying spruce vitality and detecting the early stages of green attack. However, the 64%
accuracy rate is insufficient for practical forestry applications. The results indicated that
hyperspectral data with a resolution of 4 m provided better insights into spruce vitality
than 7 m data. This study suggests that early warning signs for bark beetle outbreaks may
be linked to pre-existing forest vulnerabilities [26].

Despite the promising results and advantages of lightweight drones and OBIA, several
challenges and limitations remain to be addressed. Issues related to image processing, data
storage, and the development of automated algorithms for object detection and classifica-
tion require further refinement. Furthermore, all the research carried out is limited to the
classification of images and identification of attributes, but no one deals with its implica-
tions, such as forest plantations in complex ecosystems. The objective of this study was to
explore the utility of lightweight UAVs as a flexible, cost-effective, and accurate method
for mapping plantation characteristics in two 50-hectare forest plots in the Nayla Range,
Jaipur by combining aerial photographs collected by the drone with photogrammetry and
utilizing limited ground survey data and topography and edaphic variables. Furthermore,
we examined the relative contributions of the drone-derived canopies.
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2. Materials and Methods
2.1. Study Area

The study site for this investigation was the Nayla Plantation Site, which encompasses
an area of 50 ha within the Bassi Range of the Rajasthan Forest Department, India. Estab-
lished approximately 15 to 20 years ago, based on information gathered from local sources
and forest guards, this site presents a mature forest environment with well-established
tree species, making it an ideal location for advanced forestry research (Figure 1). The
climate of the Nayla area is categorized under the Köppen climatic classification as hot,
semi-arid (BSh) [27]. This region is distinctly impacted by the Indian monsoon season,
leading to specific climatic patterns that influence the local ecosystem. Winters here are
relatively short and can range from mildly to very cold conditions, while the summers
extend longer, characterized by extreme heat and dryness. Annually, the area receives more
than 601 mm of precipitation, predominantly during the monsoon months of July and
August. These months generally experience lower average temperatures compared to the
hotter, drier months of May and June. Although the region is subjected to heavy rainfall
during the monsoon season, significant flooding is rare; however, the season is marked
by frequent heavy rainfall and thunderstorms. Temperature extremes have been recorded
with a maximum of 48.5 ◦C (119.3 ◦F) during May and a record low of 2.2 ◦C (28.0 ◦F) in
the winter months, which are typically pleasant, dry, and moderate.
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Figure 1. Nayla Plantation Sites in the Jaipur District. Displaying two 50-hectare plots managed by the
Rajasthan Forest Department, this image highlights the study area for drone-based forest assessment.

The forest composition at the Nayla Site includes predominant species such as Churel,
Sheesham (Dalbergia sissoo), and Neem (Azadirachta indica). Additionally, the area hosts
other significant species like Ronj, Akesia, Ber (Ziziphus jujube), and Desi Babool (Vachellia
nilotica). These species add to the ecological diversity and complexity of the site, providing
varied habitats and contributing to the overall ecological dynamics of the region. Despite
the rich biodiversity and established forestry at the Nayla Plantation Site, there are gaps in
the historical data records, including the absence of initial inventory records or subsequent
re-census data at the district forest officer’s office. This lack of historical data presents chal-
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lenges for conducting comparative analyses over time but also underscores the importance
of implementing advanced monitoring techniques like those proposed in this study.

This research employs lightweight drones integrated with object-oriented image anal-
ysis (OBIA) to monitor and assess forested areas effectively. OBIA works by segmenting
images into distinct objects using a multi-resolution segmentation approach, which clusters
pixels based on spectral, spatial, and textural similarities. Initially treating each pixel
as a separate entity, the method merges them progressively based on their homogeneity.
Following segmentation, feature extraction is conducted to determine attributes such as the
shape, size, texture, and average spectral values of these objects. These extracted features
are then utilized in a supervised classification process to differentiate between various
forest types, vegetation densities, and other pertinent ecological categories. This technique
is especially adept at dissecting complex forest structures, providing more precise and
detailed environmental assessments than traditional pixel-based analysis methods. The
innovative application of this methodology is expected to yield profound insights into the
forest structure, health, and dynamics, which are crucial for effective management and
conservation. This comprehensive approach, merging advanced remote sensing technolo-
gies with conventional forest assessment techniques, is depicted in Figure 2 of the study
documentation and aims to deepen the understanding of forest ecosystems and refine
management strategies in these intricate environments.
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capture by drones to analysis through OBIA at Nayla Plantation.

2.2. Control Point Survey

A control point survey was conducted at both sites to establish correlations between
image coordinates and real-world ground coordinates for aerial triangulation, thereby
enhancing the accuracy. This was performed in conjunction with geo-tagging the aerial
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photographs using the on-board Global Navigation Satellite System (GNSS), as shown
in Figure 3. The survey refers to marking and identifying points (control points) on the
ground, observing and measuring the points using GeoMax dual-frequency DGPS Model
Zenith 35 PRO to acquire coordinates with less than 10 cm level accuracy. In this project,
six control points were surveyed for Nayla (Table 1): Technology-perceptive higher-ranked
officials from the forest department oversaw and observed the surveying team, provided
advice, and discussed work procedures on the site. Each control point was photographed
during aerial data acquisition from different flight line viewpoints and was identified later
at the time of photogrammetric processing. The control points were properly marked on the
ground using Chuna (baked limestone) powder, while ensuring that they could be easily
identified among individual aerial photographs overlapping with each other (Figure 4).
The points were further triangulated and the results were within the permissible limit of
the desired accuracy.
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Table 1. Ground control points, Nayla Plantation Site.

UTM Coordinates Geographic Coordinates

Point ID Date Description Northing Easting Elevation (m) Longitude Latitude

1 6 February 2023 BASE-1 2,978,882 597,205.9 402.6608 75◦58′44.762 26◦55′42.269
2 13 February 2023 GCP-1 2,978,850 597,219.4 397.1401 75◦58′45.241 26◦55′41.220
4 20 February 2023 GCP-2 2,978,456 597,218.2 407.881 75◦58′45.088 26◦55′28.405
8 27 February 2023 GCP-3 2,979,172 597,392.7 387.494 75◦58′51.615 26◦55′51.642
9 6 February 2023 GCP-4 2,979,429 597,313.4 399.0403 75◦58′48.814 26◦56′0.0279

10 5 March 2023 GCP-5 2,978,855 597,394.5 378.6349 75◦58′51.591 26◦55′41.352
12 5 March 2023 GCP-6 2,978,977 597,311.5 391.3266 75◦58′48.616 26◦55′45.339

2.3. Aerial Data Acquisition

Quad-rotor systems enhance flight stability by minimizing vibrations and eliminating
the need for large, movable rotor units. The quadrotor UAV utilized for data collection
in this study was the DJI Mavic 2 PRO, with specific details on its specifications and
imagery provided in Table 2 (Figure 5). The DJI Mavic 2 PRO quadcopter is designated
as “micro” under the Directorate General of Civil Aviation (DGCA) proposed regulation
of drone operations and is only permitted to fly at altitudes of less than 200 feet [28]. In
accordance with these recommendations, the maximum flying height was set at 200 ft
above sea level [29].

Table 2. Specifications of DJI Mavic 2 PRO used in this study.

Takeoff Weight Mavic 2 Pro: 907 g
Mavic 2 Zoom: 905 g

Dimensions

Folded:
214 × 91 × 84 mm (length × width × height)
Unfolded:
322 × 242 × 84 mm (length × width × height)

Diagonal Distance 354 mm

Max Ascent Speed 5 m/s (S-mode)
4 m/s (P-mode)

Max Descent Speed 3 m/s (S-mode)
3 m/s (P-mode)

Max Speed (near sea level, no wind) 72 kph (S-mode)

Maximum Takeoff Altitude 6000 m

Max Flight Time (no wind) 31 min (at a consistent 25 kph)

Max Hovering Time (no wind) 29 min

Max Flight Distance (no wind) 18 km (at a consistent 50 kph)

Max Wind Speed Resistance 29–38 kph

Max Tilt Angle 35◦ (S-mode, with remote controller) 25◦

(P-mode)

Max Angular Velocity 200◦/s

Operating Temperature Range −10 ◦C to 40 ◦C

Operating Frequency 2.400–2.483 GHz
5.725–5.850 GHz
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Table 2. Cont.

Takeoff Weight Mavic 2 Pro: 907 g
Mavic 2 Zoom: 905 g

Transmission Power (EIRP)

2.400–2.483 GHz
FCC: ≤26 dBm
CE: ≤20 dBm
SRRC: ≤20 dBm
MIC: ≤20 dBm
5.725–5.850 GHz
FCC: ≤26 dBm
CE: ≤14 dBm
SRRC: ≤26 dBm

GNSS GPS+GLONASS

Hovering Accuracy Range

Vertical:
±0.1 m (when vision positioning is active)
±0.5 m (with GPS positioning)
Horizontal:
±0.3 m (when vision positioning is active)
±1.5 m (with GPS positioning)

Internal Storage 8 GB
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2.4. Close Range Photogrammetry: Data Processing

The demand for accurate surveying and mapping methods is increasing because of the
availability of high-resolution aerial data. Close-range photogrammetry is a popular choice
for monitoring and surface modeling because it can measure a large number of points
with high accuracy without interfering with the subject. It can determine coordinates in
local or global reference systems, is economical and fast, and can create permanent records
through photographs. The workflow for the photogrammetric process involved using
Agisoft PhotoScan Professional version 1.4.0. The main steps included loading the aerial
photographs, removing irrelevant photos (criteria for irrelevance included factors such as
image blur, inadequate overlap, and poor lighting conditions, which affect the quality and
usability of the images for analysis), aligning the photos to determine camera positions
and generate tie points, building a dense point cloud model, creating a 3D mesh (TIN) by
connecting adjacent points with triangular faces, building texture by mapping the object
surface, and generating a Digital Surface Model (DSM) and ortho-photo mosaic (Figure 2).
The DSM and DTM (Digital Terrain Model) were computed with a ground pixel size of
9 cm. Ortho-rectification was performed based on the mesh and DSM, and a seamless
ortho-mosaic was prepared with a spatial resolution of 2.5 cm (Figure 2).

2.5. Object-Based Image Analysis (OBIA)

The main goal of this project was to classify vegetation at the individual plant level.
Ten data layers, including ortho-rectified images and three topography layers (elevation,
DSM, DEM, and slope), were loaded into the eCognition Trial program. The program
automatically resampled these layers to the maximum resolution, even though they had
different ground sample distances (GSDs). The topographic layers were resampled from a
9.0 cm pixel size to 2.5 cm. Based on extensive trial-and-error of different scale parameter
values, we identified three sets of suitable parameters for segmentation. A scale parameter
of 500 was used for the first level to define shadows, 250 for the second level to separate
tree cover from other land cover categories, and 120 for the third level to focus on species
categorization. For all three segmentation levels, eCognition’s other parameters were set
as color/shape weight of 0.8/0.2 and a smoothness/compactness weight of 0.5/0.5. After
segmentation, the segmented images were classified into the tree class using the nearest
neighbor classification. Some image objects were selected as training samples visually, and
the algorithm was applied to the entire tree crown map. In subsequent steps, wrongly
classified objects were added to the correct classes of training samples to improve the
accuracy of the ground-truth map.

2.5.1. Object-Based Feature Extraction for Pits

Automatic feature extraction from images continues to represent a challenge and
has received substantial attention for decades. This study presents an object-based and
machine learning-based approach for automatic pit detection from UAV high-resolution
ortho-rectified images. We carried out vegetation elimination which involved the systematic
removal and isolation of vegetation elements from our dataset, which we derived from
Drone LiDAR technology. LiDAR datasets consist of points in the three-dimensional space,
each containing X, Y, and Z coordinates along with other attributes. Initially, a Digital
Surface Model (DSM) was generated from the LiDAR data. Simultaneously, a Digital
Terrain Model (DTM) was created, representing the bare ground surface devoid of any
above-ground features like vegetation. The process of vegetation elimination consisted
of subtracting the DTM from the DSM, resulting in a dataset that primarily captured
above-ground features (termed as DSM minus DTM). This dataset contained information
predominantly related to vegetation, as it excluded the ground surface and other non-
vegetation elements. Various techniques, such as thresholding or segmentation algorithms,
were then applied to isolate and remove vegetation points from this dataset, effectively
performing vegetation elimination. The resultant dataset after vegetation elimination
provided a clearer view of the terrain, without the influence of vegetation, which enabled
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more accurate analysis and interpretation for applications of urban planning, forestry
management, and environmental assessment. We also carried out template matching-based
object detection, which is the simplest and easiest method for object extraction, as shown in
the methodology flowchart in Figure 2. This category of approaches involved two main
steps, First, a template for each to-be-detected object class was manually created. Secondly,
we carried out similarity measurements. This step matched the stored templates onto the
source image at each possible position to find the best matches according to the maximum
correlation or minimum difference.

2.5.2. Dataset Composition

The training set consisted of 70% of the aerial images from the Nayla Range, which
ensured a diverse representation of forest conditions. The validation set comprised 15%
of the images, used for tuning model parameters during the training phase. The re-
maining 15% served as the test set for final model evaluation to assess the performance
and generalizability.

2.6. Stream Network Extraction and Pit Density Mapping

The study undertook comprehensive methodologies for stream network extraction and
pit density mapping at the Nayla Plantation Site. Stream network extraction from a Digital
Surface Model (DSM) was crucial for water management, erosion control, and riparian zone
preservation. The process involved utilizing the ArcGIS spatial analyst module to compute
the stream network, with various pre-processing and processing algorithms applied to
identify minor non-perennial streams. The results delineated both primary and secondary
stream networks, with the latter primarily developed in the depositional piedmont area
due to high runoff from higher slopes. Pit density mapping was conducted using ArcGIS
spatial analyst to compute the magnitude-per-unit area from point features within a defined
neighborhood (Figure 6). High- and very high-density areas were identified as suitable for
future plantation endeavors, while very low-density areas indicated dense canopy cover,
demonstrating an inverse relationship between pit density and tree density. The object-
based image analysis (OBIA) methodology was employed to delineate a total of 4508 pits.
Pre- and post-monitoring activities such as pit repairing, hoeing, weeding, and preparatory
work were conducted based on the classification results, resulting in 74 correctly identified
sites across various categories out of a total of 95 reference sites, achieving an overall
accuracy of 77.9%. The methodologies detail the processing procedures for stream network
extraction and pit density mapping, with discussion and interpretation focusing on the
distinction between primary and secondary stream networks and the relationship between
pit density and tree density. Table 3 shows the fishnet ID and the corresponding no. of pits
in the Nyla forest boundary used for pit density mapping.

Table 3. Fishnet ID and the corresponding no. of pits for the evaluation of pit density.

Fishnet ID No. of Pits Fishnet ID No. of Pits Fishnet ID No. of Pits Fishnet ID No. of Pits

1 4 44 Nil 21 12 64 Nil
2 63 45 Nil 22 292 65 Nil
3 Nil 46 55 23 290 66 Nil
4 Nil 47 296 24 Nil 67 Nil
5 Nil 48 67 25 Nil 68 Nil
6 69 49 Nil 26 23 69 11
7 Nil 50 Nil 27 433 70 123
8 11 51 Nil 28 383 71 Nil
9 8 52 Nil 29 Nil 72 17
10 60 53 Nil 30 Nil 73 58
11 Nil 54 224 31 9 74 Nil
12 Nil 55 142 32 232 75 Nil
13 8 56 Nil 33 240 76 Nil
14 247 57 Nil 34 63 77 49
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Table 3. Cont.

Fishnet ID No. of Pits Fishnet ID No. of Pits Fishnet ID No. of Pits Fishnet ID No. of Pits

15 Nil 58 Nil 35 Nil 78 22
16 Nil 59 Nil 36 Nil 79 1
17 2 60 Nil 37 Nil 80 Nil
18 204 61 8 38 1 81 Nil
19 16 62 139 39 175 82 10
20 Nil 63 92 40 214 83 31
43 Nil 86 9 41 91 84 5
87 23 89 Nil 42 Nil 85 Nil
88 Nil 90 NilRemote Sens. 2024, 16, 1554 12 of 22 
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2.7. Accuracy Assessment
2.7.1. Reference Data Collection and Sampling Procedure

Accuracy assessment in remote sensing is crucial for validating the classification re-
sults obtained from image analysis against the actual ground situation [30]. To ensure that
the reference data accurately represent the area being studied, a structured sampling pro-
cedure was implemented, which includes random sampling, stratified random sampling,
and cluster sampling. These methods ensure comprehensive coverage of the study area,
addressing variations in land cover, vegetation, and elevation. In this study, we carried out
the cluster sampling technique, owing to the fact that the forest was dense at places, and
this method provided the best sampling solution. In this method, we divided the area into
clusters, and the samples were randomly taken from the selected clusters, as shown in the
following schematic diagram (Figure 7).
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2.7.2. Error Matrix Construction and Accuracy Metrics

The collected reference data are compared against the classified data using an error
matrix/contingency table (Table 4), which provides a fundamental basis for calculating
accuracy metrics.

Table 4. Error matrix demonstrating the accuracy of the classification.

Grid-1 (Ref) Grid-2 (Ref) Grid-3 (Ref) Total

Grid-1 (Classified) 29 2 4 35

Grid-2 (Classified) 1 31 3 35

Grid-3 (Classified) 0 1 25 26

Total 30 34 32 96

We calculated the overall accuracy as the ratio of the sum of correctly classified points
(diagonal elements) to the total number of reference points. For this study,

Overall Accuracy =
29 + 31 + 25

96
× 100 = 88.54%

2.7.3. Kappa Coefficient Calculation

The Kappa coefficient is an additional measure that we used to evaluate the accuracy
of classification, accounting for the agreement occurring by chance. The following formula
was used to determine the kappa coefficient:

κ =
Po − Pe
1 − Pe

=
0.8854 − 0.3483

1 − 0.3483
≈ 0.828
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In this study, the Kappa value equaled 0.828, which indicated substantial agreement,
suggesting that the classification accuracy obtained was significantly higher than what
would be expected by chance alone.

3. Results

Long-term forest monitoring using the combination of unmanned aerial vehicle (UAV)
survey and object-oriented image analysis (OOIA) has produced important outcomes and
findings [31]. Utilizing these methods has allowed for effective data collection, processing,
and interpretation, while also revealing important information about forest ecosystems.

3.1. Elevation Profile

Here, the slope is generated mainly from DSM data processed from lightweight drones
(Figure 8). Slope data from DSMs generated by lightweight drones are crucial for forest
plantation management, enabling better planning, soil erosion management, and tree
species selection [32,33]. It aids in identifying suitable areas, implementing erosion control
measures, and ensuring long-term stability and growth of the plantation.
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Figure 8. Slope map of Nayla Plantation Site.

Table 3 provides information on the distribution of slope classes and their correspond-
ing area percentages. The slope classes are categorized based on the percentage of slope
within each range. Slope Class 1 represents slopes ranging from 0% to 3%. The area covered
by this slope range in Nayla is 0.90%. It indicates that a relatively small portion of the
surveyed area consists of very gentle slopes. Slope Class 2 ranges from 3% to 6%. The
area covered by this slope range is 2.33% in Nayla. While still relatively small, it indicates
a slightly larger portion of the surveyed area, with slightly steeper slopes compared to
the previous range. Slope Class 3 ranges from 6% to 20%. The area covered by this slope
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range is 19.81% in Nayla. It suggests that a significant portion of the surveyed area has
moderate slopes, indicating a varied terrain with more pronounced changes in elevation.
Slope Class 4 ranges from 20% to 100%. The area covered by this slope range is 69.14% in
Nayla. It indicates that the majority of the surveyed area consists of steep to very steep
slopes. This can have implications for various activities, such as construction, agriculture,
or land management. Figure 9 shows the stream network extraction from the DSM of the
Nayla Plantation Site.
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Slope Class 5 represents slopes greater than 100%. The area distribution is 16.643% and
the area covered by this slope range is 7.83% in Nayla. This suggests that a considerable
portion of the surveyed area consists of very steep or near-vertical slopes. Table 5 provides
a clear distribution of slope classes and their corresponding area percentages, indicating
the prevalence of different slope ranges within the surveyed area. This information is
valuable for various applications, such as land management, infrastructure planning,
and environmental assessments, where understanding the terrain’s slope characteristics
is essential.

Table 5. Slope distribution, Nayla Plantation Site.

No. Slope Range (%) Area Covered (%)

1 0–3 0.90
2 3–6 2.33
3 6–20 19.81
4 20–100 69.14
5 >100 7.83

3.2. Stream Network Extraction from DSM, Nayla Plantation Site

Stream network extraction from a DEM or DSM is essential for water management,
erosion control, and riparian zone management in plantation sites [34,35]. It helps identify
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stream channels, drainage patterns, and water flow paths, enabling effective water resource
planning and mitigating erosion risks. The extracted stream network aids in managing
water distribution, implementing erosion control measures, and preserving riparian zones,
ensuring the overall health of the ecosystem. Streams have been computed using the
ArcGIS spatial analyst module (Figure 9). A number of pre-processing and processing
algorithms were applied in order to find the minor non-perennial stream network. The
primary and secondary stream network is well depicted. The secondary stream network is
developed on the depositional piedmont area because of high runoff from higher slopes.

3.3. Pit Density Map and Pit Extraction

The pit density map was derived using ArcGIS spatial analyst (Figure 10). It computes
a magnitude-per-unit area from point features that fall within a neighborhood around
each cell [36]. Upon initial observation, areas classified as high and very high density
are presumed suitable for future plantation endeavors, whereas those categorized as very
low density suggest dense canopy cover. This implies an inverse relationship between
pit density and tree density. Utilizing the OBIA methodology, a total of 4508 pits were
delineated. We conducted pre- and post-monitoring activities such as pit repairing, hoeing,
weeding, and other preparatory work, as shown in Figure 11. The classification process
yielded 74 correctly identified sites across various categories, out of a total of 95 reference
sites, resulting in an overall accuracy of 77.9%.
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Figure 11. (a) Pit repairing is not completed, but weeding is completed; (b) small pits occurring 
under a shady tree; (c,d) weeding, hoeing, and pit repairing are not completed. Such cases cannot 
be depicted using manual/automated object-based image analysis. 

  

Figure 11. (a) Pit repairing is not completed, but weeding is completed; (b) small pits occurring
under a shady tree; (c,d) weeding, hoeing, and pit repairing are not completed. Such cases cannot be
depicted using manual/automated object-based image analysis.
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4. Discussion
4.1. Vegetation Cover Monitoring

The results of the vegetation cover analysis in the Nayla Site, as shown in Figure 12,
indicate the distribution and extent of different vegetation types. The methodology em-
ployed for preparing the vegetation cover map, as described in Figure 2, has provided
valuable insights into the composition of the site. According to the results, the scrub forest
covers an area of 10.72 hectares, indicating the presence of vegetation characterized by
low-lying shrubs, bushes, or sparse trees. On the other hand, the dense trees occupy an
area of 9.8 hectares, representing areas with a higher concentration of trees and denser
canopy cover. The total plantation site area is reported as 54 hectares, which encompasses
both the scrub forest and dense trees areas. It is important to note that the remaining area
within the plantation site might include other land cover types such as open spaces, water
bodies, or non-vegetated areas. These results provide valuable information for assessing
the existing vegetation composition and can aid in making informed decisions regarding
future management and planning strategies for the Nayla Site. The distribution and extent
of different vegetation types within the plantation site help in understanding ecological
dynamics, identifying areas for potential restoration or enhancement, and formulating
appropriate management interventions [37–39].
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4.2. Nayla Plantation Sites

The results indicate that pits were generated based on the vegetation cover information
obtained from the previous analysis. These pits were placed in areas where the canopy
gaps were large and suitable for plantation (Figure 13). The selection of plantation sites
followed the rule that high- and very high-density areas on the pit density maps represent
suitable areas for future plantation. By targeting areas with high- and very high-density
pits, the plantation efforts focus on locations where the tree density is relatively low or
where there are significant gaps in the canopy cover [40]. This approach ensured that the
newly planted trees can fill in these gaps, contribute to increasing overall tree density, and
enhance the ecological functions of the forested area [41–43]. The selection of suitable pits
based on the density of existing pits is a practical and efficient method for identifying areas
where the establishment of new plantations would yield the most significant impact, allow
for optimized land use, and promote effective resource allocation by concentrating efforts
on areas with the greatest potential for the successful establishment and growth of new
trees [44–46]. These results and the associated approach provide valuable guidance for
decision-making in forest management, enabling efficient utilization of available resources
and maximizing the success of plantation efforts.

Remote Sens. 2024, 16, 1554 19 of 22 
 

 

4.2. Nayla Plantation Sites 
The results indicate that pits were generated based on the vegetation cover infor-

mation obtained from the previous analysis. These pits were placed in areas where the 
canopy gaps were large and suitable for plantation (Figure 13). The selection of plantation 
sites followed the rule that high- and very high-density areas on the pit density maps 
represent suitable areas for future plantation. By targeting areas with high- and very high-
density pits, the plantation efforts focus on locations where the tree density is relatively 
low or where there are significant gaps in the canopy cover [40]. This approach ensured 
that the newly planted trees can fill in these gaps, contribute to increasing overall tree 
density, and enhance the ecological functions of the forested area [41–43]. The selection of 
suitable pits based on the density of existing pits is a practical and efficient method for 
identifying areas where the establishment of new plantations would yield the most sig-
nificant impact, allow for optimized land use, and promote effective resource allocation 
by concentrating efforts on areas with the greatest potential for the successful establish-
ment and growth of new trees [44–46]. These results and the associated approach provide 
valuable guidance for decision-making in forest management, enabling efficient utiliza-
tion of available resources and maximizing the success of plantation efforts. 

 
Figure 13. Distribution of pits for plantation over study area and detailed view of identified pits. 

5. Conclusions 
The incorporation of lightweight drones and object-oriented image analysis presents 

significant advantages for the monitoring of forest plantations. This study demonstrated 

Figure 13. Distribution of pits for plantation over study area and detailed view of identified pits.

5. Conclusions

The incorporation of lightweight drones and object-oriented image analysis presents
significant advantages for the monitoring of forest plantations. This study demonstrated the
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usefulness of employing lightweight drones to map plantation characteristics in the Nayla
Range, Jaipur. By combining aerial photographs, photogrammetry, and limited ground sur-
vey data, accurate assessments of canopy information and forest biomass estimations were
obtained. The findings from this study offer valuable insights for optimizing silvicultural
operations, detecting pest infestations at an early stage, and supporting effective forest
management practices.The utilization of lightweight drones and object-oriented image
analysis provides a cost-effective and efficient approach to collect high-resolution data over
vast areas, which can be applied for detailed vegetation mapping, accurate tree counting,
and early detection of pests and diseases. Moreover, the assessment of forest health, growth
rates, and biomass estimation is crucial for sustainable plantation practices and carbon ac-
counting for climate change mitigation efforts. Despite the promising outcomes, challenges
and limitations still need to be addressed. Issues related to image processing, data storage,
and the development of automated algorithms for object detection and classification require
further refinement. Furthermore, the implications of employing this technology in complex
ecosystems, beyond image classification and attribute identification, need to be explored in
future research.
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