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Abstract: High-resolution land cover mapping is crucial in various disciplines but is often hindered by
the lack of accurately matched labels. Our study introduces an innovative deep learning methodology
for effective land cover mapping, independent of matched labels. The approach comprises three
main components: (1) An advanced fully convolutional neural network, augmented with super-
resolution features, to refine labels; (2) The application of an instance-batch normalization network
(IBN), leveraging these enhanced labels from the source domain, to generate 2-m resolution land
cover maps for test sites in the target domain; (3) Noise assessment tests to evaluate the impact of
varying noise levels on the model’s mapping accuracy using external labels. The model achieved
an overall accuracy of 83.40% in the target domain using endogenous super-resolution labels. In
contrast, employing exogenous, high-precision labels from the National Land Cover Database in
the source domain led to a notable accuracy increase of 2.55%, reaching 85.48%. This improvement
highlights the model’s enhanced generalizability and performance during domain shifts, attributed
significantly to the IBN layer. Our findings reveal that, despite the absence of native high-precision
labels, the utilization of high-quality external labels can substantially benefit the development of
precise land cover mapping, underscoring their potential in scenarios with unmatched labels.

Keywords: land cover mapping; label super-resolution; domain shift; deep learning

1. Introduction

Land cover mapping plays an instrumental role in depicting the Earth’s surface
characteristics, essential for environmental monitoring and management [1,2]. The dynamic
interplay of policy shifts and natural events continuously alters land cover, necessitating
regular updates to maintain the credibility of these maps [3,4].

Historically, land cover mapping relied heavily on manual delineation, a process
fraught with inefficiencies [5]. The integration of computers, geographic information sys-
tems, and remote sensing technologies has revolutionized this field, leading to the develop-
ment of automated methods, with machine learning emerging as a crucial component [6].
Deep learning, a more recent advancement in this domain, has surpassed traditional
machine learning methods in classification accuracy [7]. However, deep learning’s ef-
fectiveness is contingent on the availability of large, annotated datasets that can be both
costly and labor-intensive [8]. For instance, in the U.S., a Chesapeake Bay watershed’s
land cover map was produced with costly labels (USD 1.3 million over 10 months) [9].
The current trend in land cover mapping utilizes existing land cover products as training

Remote Sens. 2024, 16, 1449. https://doi.org/10.3390/rs16081449 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081449
https://doi.org/10.3390/rs16081449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0002-3802-5564
https://orcid.org/0000-0003-1055-9345
https://orcid.org/0000-0002-8454-5440
https://orcid.org/0000-0001-7894-0359
https://doi.org/10.3390/rs16081449
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081449?type=check_update&version=1


Remote Sens. 2024, 16, 1449 2 of 22

labels [10,11], a practice supported by the availability of various global-scale products, in-
cluding FROM-GLC30 [12], Globaland30 [13], ESA WorldCover [14], and so on. However,
these products are limited by their resolution, typically ranging from 10 m to 30 m, and are
influenced by the data sources, classification techniques, and scales.

Now, there is a growing demand for high-resolution (HR) land cover mapping [15].
Some studies have attempted to improve the resolution of these labels using techniques
like up-sampling [16] (i.e., the nearest neighbor method [17]), but this approach often
introduces significant noise, compromising the quality of the resulting maps [18]. In
response, researchers have explored label super-resolution (SR) using deep learning, aiming
to generate HR land cover maps from low-resolution (LR) labels. For instance, Malkin
et al. [19] introduced an innovative SR loss function along with a fully convolutional neural
network (FCN) that effectively generate a 1-m resolution land cover map. Nevertheless
with LR labels, HR labels remains indispensable for the realization of this approach. Li
et al. [20] developed an SR loss function that utilizes 30-m low-resolution labels to produce
1-m resolution maps, further advancing this field. However, these methods face challenges
due to the inherent inaccuracies in LR labels and the noise introduced by the resolution
disparity, affecting the final mapping quality.

Global land cover datasets also exhibit inconsistencies in accuracy and spatial con-
gruity, influenced by varying classification techniques, data collection timelines, and sensor
types. For instance, the ESRI 2020 Global Land Use Land Cover dataset asserts an accuracy
of 85%, while ESA reports a precision of about 75% [14,21]. And the ESRI product’s overall
accuracy in China is now at 64%, whereas that of the ESA product hovers around 67% [22].
Furthermore, classification accuracy can significantly differ even within the same dataset,
such as the FROM-GLC 30 dataset, with user accuracy for grassland and shrubland at
merely 38.13% and 39.04%, respectively [12]. Consequently, the reliability of utilizing these
publicly available global land cover datasets for land cover mapping directly remains open
to debate.

Compared to global products, certain publicly accessible national-scale land cover
products display a better level of accuracy. For instance, within the U.S. region, the National
Land Cover Database (NLCD) with a resolution of 30 m shows an overall accuracy of
approximately 83.1% [23], which has become fundamental in various applications related
to land cover within the U.S. [24]. However, these datasets are confined solely to the
U.S. Considering the temporal, spatial, and thematic discrepancies, models trained on
national-scale data encounter limitations when it comes to being direct applied to different
regions [25]. To address such challenges, domain shift methodologies are commonly
employed, such as maximum mean discrepancy (MMD) [26] and generative adversarial
networks (GANs) [27]. Among them, the Instance-Batch Normalization Network (IBN-
Net) [28], a network focused on domain shift, effectively mitigates the effects of seasonal
land cover changes, light effects, and internal grade variations on domain shift [29].

The challenge of achieving precise, high-resolution land cover mapping is exacer-
bated by the limited availability of detailed labels. Within this context, the utilization of
pre-existing LR land cover products to facilitate HR land cover mapping constitutes a
challenging yet auspicious venture. Malkin et al. [30] used epitomic representations and
a label SR algorithm to create HR land cover maps of the northern U.S. using LR data
from the southern U.S. However, this methodology exclusively navigated domain shift
within the confines of the U.S. Comparatively, prior scholarly exploration has understudied
the amalgamation of label SR and domain shift, thereby presenting a relatively uncharted
enigma. Research on domain shift has laid the groundwork for integrating data from
different regions, yet the combination of label SR and domain shift remains a relatively un-
explored territory. This synergy could potentially overcome regional variations in precision
and the limitations of LR labels in deep learning.

To address these challenges, this study introduces a novel approach for enhancing land
cover mapping accuracy without matched labels. This novel methodology encompasses
the integration of FCN for SR and IBN-Net for land cover mapping, capitalizing on HR
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Google Earth imagery and LR land cover products from the source domain. As a result,
it yields finely detailed 2-m resolution land cover maps for the target domain without
matching labels. The overall procedure of this study is depicted in Figure 1.

Figure 1. Procedural overview of the experimental process.

2. Materials and Methods
2.1. Study Area and Dataset
2.1.1. Data Acquisition

In this research, the United States and China were selected as the source and target
domains, respectively. The study involved the selection of sample points across 23 distinct
regions within each domain. These regions comprised three non-overlapping testing
zones specifically designated for precision assessment, in addition to 20 training sample
areas. These samples collectively encompass an estimated land area of 262,202.05 km2,
encompassing a diverse range of landscapes. The spatial arrangement of these sample
points in both the source and target domains is visually represented in Figure 2. In support
of our experimental endeavors, we acquired several key datasets, as detailed in Table 1.
While NLCD pertains to national-scale data, covering only the source domain, we procured
the other global products for both the target and source domains. To ensure synchronization
in a temporal context with the labeled data, 2.04-m Google Earth images for the respective
time periods were obtained.
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Table 1. Datasets description and access information.

Datasets Year Scale URLs

NLCD (level II) 2019 National (U.S.) https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
ESA WorldCover

v100 2020 Global https://esa-worldcover.org

FROM-GLC10 2017 Global https://data-starcloud.pcl.ac.cn/zh
ESRI-LULC 2020 Global https://livingatlas.arcgis.com/landcover/
GLC_FCS30 2015 Global https://doi.org/10.5281/zenodo.3986872

Figure 2. Geospatial distribution of sampling sites for experimental data acquisition.

2.1.2. Reclassification

Five distinct land cover datasets were utilized in this experiment. To standardize the
classification criteria and enhance the validation of the proposed methodology, a reclassifi-
cation of sample labels was imperative. Owing to the absence of ice and snow across the
chosen sample points, this specific land type is excluded from consideration. By harmoniz-
ing the label taxonomy, these classifications of all land cover products are amalgamated,
culminating in the formation of four ultimate classes: water (W), low vegetation (LV),
impervious surface (I), and forest (F). The detailed classification criteria are delineated in
Table 2.

2.1.3. Preprocessing of Dataset

Bilinear interpolation resampling [31] was employed, by which LR labels underwent
resampling to 2 m and were subsequently reprojected onto the WGS84 coordinate system,
ensuring conformity with the Google Earth imagery. Utilizing a sliding window approach
with a 0.2 overlap, both imagery and labels underwent cropping to generate an aligned
dataset (4000 × 4000). To guarantee dataset quality, image tiles of subpar quality (with
missing data, imaging abnormalities, and excessive cloud cover) were filtered out.

All processing was implemented using Python 3.9. Ultimately, for each of the five
labels, this iterative process resulted in a total of 1442 training pairs for the target domain
and 1994 training pairs for the source domain, respectively. The training pairs were further
divided into training and validation sets, in a 9:1 ratio, respectively, used for training the
model and determining the hyperparameters, as discussed in Sections 2.2.1 and 2.2.2. An

https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
https://esa-worldcover.org
https://data-starcloud.pcl.ac.cn/zh
https://livingatlas.arcgis.com/landcover/
https://doi.org/10.5281/zenodo.3986872
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isolated extraction of 20% of the training pairs was manually re-annotated for accuracy
assessment in Section 3.1. And the optimal land cover dataset generated in Section 2.2.1
was subsequently used to serve as training data for Section 2.2.2. For the testing region, the
same approach as described above was employed, with the only difference being that the
size of the testing images was 256 × 256. Ultimately, a total of 8020 and 8308 testing images
were obtained from the test sites in the source and target domains, respectively, which
were solely utilized for the evaluation (Section 3.2) of the model from Section 2.2.2. More
details are shown in Table 3. In Section 2.2.2, the Maryland HR land cover map (https:
//planning.maryland.gov/Pages/OurWork/landuse.aspx) was utilized as supplementary
data for assisting in the calculation of the loss function parameters; it was similarly cropped
to a size of 4000 × 4000 to align with the LR label.

Table 2. Reclassification protocols and category merging for LR land cover products. The numbers in
the table represent different land class IDs. For more details, please refer to the corresponding URLs
in Table 1.

NLCD ESA FROM ESRI GLC Target Classes

11 80 60 1 210 W

23 50 80 7 190 I24

62
60
61
80

41 81
42 10 20 2 82 F
43 50

71
70
72
90

11
51 10
52 202
72 200
71 30 153
22 20 40 4 152
21 100 30 11 130
73 90 10 5 150 LV
74 95 90 8 140
95 40 180
90 60 20
81 121
82 122
31 120

201

Table 3. Details of preprocessed data.

Source Domains Target Domains
Training Testing Training Testing

Size 4000 × 4000 256 × 256 4000 × 4000 256 × 256
Quantity 1994 8020 1442 8308
Dataset * NLCD, ESA, FROM, ESRI, GLC ESA, FROM, ESRI, GLC

* NLCD only covers the source domain.

https://planning.maryland.gov/Pages/OurWork/landuse.aspx
https://planning.maryland.gov/Pages/OurWork/landuse.aspx
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2.2. Methodology
2.2.1. Label Super-Resolution

Both the HR image and LR label are georeferenced, facilitating the calculation of
the geospatial correspondences between the individual LR pixel and the numerous HR
prediction pixels (Figure 3b). Consequently, the label SR method is contingent upon
a distribution shared between the LR class categories and the more detailed HR land
cover classes.

Due to the mosaic and LR nature of land cover datasets, there exists a risk of over-
fitting noisy labels when employing advanced networks featuring large receptive fields
or encoder–decoder structures. To mitigate this concern, we adopt the FCN with a small
receptive field as the core segmentation model for label SR [32]. The encoding process
commences with the input image traversing five feature extraction layers. This involves the
utilization of a stack containing 64 filters of 3 × 3 convolutions, along with ReLU and max-
pooling layers. Subsequently, a classification layer employs a 1 × 1 convolution to predict
scores corresponding to each class. To enrich the contextual information extraction from
images, tile-by-tile algorithms are seamlessly integrated into the network [30] (Figure 3a).
Ultimately, the network’s output feature map undergoes processing by the loss function.

Figure 3. Visual representation of label super-resolution. (a) is the structure diagram of FCN; (b,c) are
schematic diagrams of the calculation principle of the joint distribution function.

The loss function proposed by [19] is referenced in this work. Lk is utilized to define
the LR labeling, while Hn corresponds to the HR labeling. For a given LR label, k, the
conjoint distribution pcalculate(n | k) is established. This distribution describes the frequency
distribution of the HR class labels, denoted as n, within an LR block labeled as k (Figure 3c).
The parameters governing this distribution are deduced from the Maryland HR land cover
product [19] for the source and target domains. These parameters encompass both the label
frequencies (η), the anticipated percentage (µ) for each target land cover class, and the asso-
ciated standard deviation (σ). The probabilistic outcome of the core segmentation model,
ppredict({Hn} | X), is envisaged as the independent generation of labels for individual HR
pixels within an HR input image. These labels are then aggregated through a label-counting
layer module. To gauge the disparity between the two distributions, a statistics matching
module is employed. This module quantifies the mismatch between the generated prob-
abilistic labels and the labels derived from the conjoint distribution, D (ppredict, pcalculate).
This disparity acts as an optimization criterion to enhance the core segmentation model’s
performance, wherein the Kullback–Leibler (KL) divergence is employed to quantify the
evaluation of the matching process (Figure 3c), that is
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D(ppredict, pcalculate) = KL(ppredict ∥ pcalculate) = const − 1
2
(µn − ηn,k)

2

ρ2
n,k

− 1
2

log 2πσ2
n (1)

2.2.2. IBN-Net

A discernible disparity in visual land features exists between the landscapes of the
source and target domains. To effectively gain the precise land cover mapping in the target
domain using labels from the source domain, an improved instance-batch normalization
network (IBN-Net) was meticulously devised. The foundational model adopts the U-Net
architecture, enriched with the ResNet-18 encode. This framework encompasses a founda-
tional backbone network tasked with feature extraction, a bottleneck layer housing a pair of
convolutional strata supplemented by dropout functionality, and a classifier engineered to
forecast a coarse segmentation outcome from the highest-level feature stratum. Symmetry
is maintained in both the encoding and decoding processes, bolstered by skip connections.
The encoder module employs the ResNet-18 framework with four clusters of residual
blocks, all dedicated to extracting salient features. Within each residual block, a sequence
of two 3 × 3 convolutions is trailed by a ReLU activation function. Subsequently, the
output undergoes up-sampling. The incorporation of a shortcut mechanism via ResNet-18
serves the dual purpose of mitigating gradient vanishing issues and expediting network
convergence. In the decoder phase, the original U-Net decoding architecture is embraced
(Figure 4a).

Figure 4. Architecture of the improved IBN-Net. (a) is the structure diagram of IBN-Net; (b) is the
basic composition of the IBN residual block; (c) is the basic composition of the original residual block.

Applying an instance normalization (IN) module enhances the performance of the
residual block (Figure 4b,c). The process involves segmenting the output of the convolu-
tional layer and subsequently employing batch normalization (BN) for half of the channels,
while the remaining channels undergo IN application after the initial convolutional layer.
Following the separate calculation of the IN and BN layers, their outputs are amalgamated.
Within the IN layer, normalization is executed on the mean and standard deviation of
the RGB channels, serving to alleviate intricate variations in appearance. This results in
improved visual and appearance invariance. The IN procedure utilizes individual sample
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statistics to normalize features, maintaining uniformity between training and inference
processes. Conversely, BN, designed to preserve texture-related features, is commonly
leveraged in image classification and semantic segmentation tasks. Furthermore, BN
normalizes input data for each layer, lessening the scale disparity among the input char-
acteristic values. This, in turn, magnifies the network’s gradient and mitigates the issue
of gradient vanishing. Notably, shallow neural networks focus on surface-level attributes,
while deeper counterparts convey richer semantic information [29]. To selectively retain a
portion of the BN features, effectively reducing feature variance induced by appearance
disparities in shallow layers, and simultaneously safeguarding content discrimination in
deep layers, IN layers are exclusively added to the first three groups (conv2x-conv4x). The
fourth group (conv5x) remains untouched to maintain its original configuration.

The loss function used by the model is the cross-entropy loss [33]. Assuming n is the
total number of categories (n = 4), and i represents the category (i = 1, 2, 3, 4). For each
pixel, the loss function is defined as follows:

L(y, ŷ) = −
n

∑
i=1

yi log(ŷi), (2)

where L(y, ŷ) is the loss value, yi is the value of class i in the true labels, and ŷi is the
probability of class i in the model’s output.

2.3. Implementation Details

The proposed method was implemented in PyTorch 1.8 on a GeForce RTX 3080 GPU.
The AdamW optimizer was applied for training. In the training process of label SR, every
tile, where each includes 4000 × 4000 pixels, was randomly cropped into 100 patches with
the size of 256 × 256. After obtaining the SR labels, the aligned dataset of 4000 × 4000 HR
tiles was cropped into non-overlapping patches of size 256 × 256 as input for IBN-Net. The
detailed parameters of the model are presented in Table 4 and the specific details regarding
the involvement of different types of data from various land cover datasets have been
elaborated in Section 2.1.3.

Table 4. Details of experiment set.

Parameters Label SR Land Cover Mapping

Input Size 4000 × 4000 256 × 256
Batch Size 16 8

Weight Decay 0.005 0.005
Iteration Number 10 20

Initial Learning Rate 1 × 10−3 1 × 10−4

2.4. Comparison Methods

In the label SR section, a comparative evaluation was initially conducted on various
land cover products to identify the optimal LR and SR labels (SR-B), which were than used
in Sections 2.2.2 and 3.2. This section not only compares the accuracy of the original LR
land cover data across the source and target domains but also evaluates the changes in
accuracy of the land cover data following label SR processing, as well as the differences
between various SR datasets.

The land cover mapping section encompasses seven control group comparison meth-
ods designed to validate the performance of land cover mapping from SR endogenous
(labels from the target area) and exogenous (labels from other areas) labels, along with a
comparative analysis between domain-shift and non-domain-shift outcomes. Furthermore,
a baseline assessment is conducted using an unmodified Resnet18-UNet. To ensure a
fair evaluation, the configuration of these models adheres to the guidelines elucidated in
Section 2.3. A comprehensive overview of the comparative experimental design and the
explanation of abbreviations corresponding to the experiments are provided in Table 5.
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Table 5. Detailed configuration of comparative experiments.

Experiment Training Pairs Framework Predicted Site

UNRU
US_NLCD (data from US)

Resnet18-Unet US
UNRC Resnet18-Unet China
UNIC IBN-Resnet18-Unet China

UERU
US_SR-B (data from US)

Resnet18-Unet US
UERC Resnet18-Unet China
UEIC IBN-Resnet18-Unet China

CEIC China_SR-B (training data from China) IBN-Resnet18-Unet China

2.5. Evaluation Metrics

This study utilizes established quantitative metrics for a comprehensive assessment
of the research findings [34]. These metrics encompass the mean intersection over union
(mIoU), the frequency-weighted intersection over union (FWIoU), the Kappa coefficient,
and the overall accuracy (OA). Among these metrics, mIoU is a metric that evaluates the
average overlap between predicted and actual target areas, providing insight into the
model’s precision in spatial segmentation tasks. FWIoU enhances the mIoU by incorpo-
rating class frequency into the calculation, thereby giving more weight to more common
classes and ensuring a balanced evaluation across varied class distributions. The Kappa
coefficient measures the agreement between two sets of categorical data, accounting for
the possibility of the agreement occurring by chance, which offers a robust indicator of the
model’s classification accuracy beyond mere chance. Lastly, OA quantifies the proportion
of correctly predicted observations to the total observations, offering a straightforward
metric of the model’s performance across all categories.

For the datasets related to the source and target domains, 20% of the training and
testing pairs were manually annotated. These annotated pairs are utilized as the ground
truth for assessing the accuracy of label super-resolution and for the final evaluation of
land cover prediction.

Assuming n is the total number of categories (n = 4), and i represents the category
(i = 1, 2, 3, 4). Define TP, TN, FP, and FN as representing true positives, true negatives,
false positives, and false negatives, respectively. Ptotal,i = TPi + FNi + TNi + FPi. The
calculation formulas and descriptions are as follows:

IoUi =
TPi

TPi + FPi + FNi
, (3)

mIoU =
1
n ∑n

i=1 IoUi, (4)

OA =
∑n

i=1(TPi + TNi)

∑n
i=1 Ptotal,i

, (5)

FWIoU =
∑n

i=1

(
TPi

TPi+FPi+FNi

)
× TPi

Ptotal,i

∑n
i=1

(
TPi

Ptotal,i

) , (6)

pe =
∑n

i=1(TPi + FPi)(TPi + FNi)

(∑n
i=1 Ptotal,i)

2 , Kappa coefficient =
OA − pe

1 − pe
. (7)

3. Results and Analysis
3.1. Super Resolution

To assess the quantitative impact attributed to labeling errors and instances of category
confusion within LR labels, as well as to gauge the enhancements brought about by SR, a
confusion matrices comparison for the LR labels was undertaken (Figure 5a,b). Confusion
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between the forest and low vegetation categories occurs most frequently, with an average of
5.01× 107. The improved matrix (Figure 5c) and visual result (Figure 6) demonstrates a sub-
stantial improvement in the classification accuracy of the classes following the application
of label SR. This is due to the small receptive field of FCN for label SR, which successfully
reduces the negative impacts of spatial blurring seen in the coarse labels. Notably, there
are noteworthy increments observed in the detection of TP for both the forest and low
vegetation categories, accompanied by corresponding reductions in FP and false negatives
FN for these classes.

The IoU scores and OA for virtually all classes show improvement after label SR
(Figure 7). The quality of various land cover products varies. The NLCD stands out as the
label with the highest OA, while the ESA product emerges as the global product showcasing
the optimal quality for the target region. While the presence of LR label noise is commonly
observed at the edges, the substantial noise within the original LR labels due to factors such
as resolution and mapping techniques hinders the clear differentiation of closely related
land cover classes. Consequently, the application of these products with more noise proves
unsuitable for the precise delineation of intricate land cover nuances. Subsequent land
cover mapping will incorporate labels from US_NLCD, US_ESA, and China_ESA.

Remote Sens. 2024, 1, 0 11 of 23

Figure 5. Confusion matrices before and after label SR. (a) is the comparing confusion matrices for
different land cover products before and after SR in source domain. (b) is comparing confusion
matrices for different land cover products before and after SR in target domain. (c) is the improved
confusion matrices after label SR depicting the transformation from LR label to SR. For (a,b), values
on the diagonal represent the number of pixels that are correctly labeled. The improved matrix is
obtained by subtracting (a) from (b).

Figure 5. Cont.
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confusion matrices after label SR depicting the transformation from LR label to SR. For (a,b), values
on the diagonal represent the number of pixels that are correctly labeled. The improved matrix is
obtained by subtracting (a) from (b).

Figure 5. Confusion matrices before and after label SR. (a) is the comparing confusion matrices for
different land cover products before and after SR in source domain. (b) is comparing confusion
matrices for different land cover products before and after SR in target domain. (c) is the improved
confusion matrices after label SR depicting the transformation from LR label to SR. For (a,b), values
on the diagonal represent the number of pixels that are correctly labeled. The improved matrix is
obtained by subtracting (a) from (b).

Figure 6. Visualized results of labeled SR. (a) is the visual comparison for different land cover
products before and after SR in source domain; (b) is the visual comparison for different land cover
products before and after SR in target domain.
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Figure 7. OA and IoU scores of each category for different labels. (a) shows the OA of LR and SR
labels; (b) shows the IoU score of LR and SR labels in various land cover categories.

3.2. Land Cover Mapping

Divergent land cover characteristics and distributions distinguish the source and
target domains. To assess the efficacy of the proposed approach across diverse scenarios,
a comprehensive comparative analysis, encompassing both visual and statistical aspects,
was conducted.

3.2.1. Visualization and Qualitative Analysis

In order to provide a visualization comparison, typical land cover scenarios from the
target domain and the source domain are presented in Figures 8 and 9.

In Figures 8a–h and 9a–t, the predicted outcomes derived from the model incorporat-
ing ESA labels are characterized by a noticeable coarseness and errors. In Figure 9i,j,m,n,
there is an imprecise and intermittent recognition of continuous water boundaries. This
could potentially be attributed to the images of water exhibiting characteristics similar
to water vegetation. Consequently, in the LR ESA product, a substantial portion of W
is classified as either LV or F, thus culminating in the subsequent misclassification of W
through similar spectral imaging by models with ESA labels. The model with NLCD labels
demonstrates a heightened degree of precision in the extraction of water body boundaries.
Concurrently, all the experimental findings concur in unveiling the presence of varying
levels of incongruous noise related to low vegetation. Furthermore, of note is the proximity
of impervious surfaces derived from UNRU and UNIC to the ground truth. Notably, the
capacity for detecting features of diminutive buildings within the LR product proves to
be consistently subpar. However, a discernible improvement is observable within LR
NLCD, where a multitude of modest structures situated within urban landscapes, along-
side the foliage encompassing these buildings, are classified as impervious surfaces [35].
Consequently, this phenomenon enhances the efficacy of impervious surface mapping.

In comparison to land cover mapping within the source domain, the models employ-
ing SR NLCD and ESA data from the source domain yielded unsatisfactory outcomes when
applied to the target domain directly, as evident in Figure 9a–d,i–l, among which, UERC
exhibits its most pronounced shortcomings across various scenarios. Notably, disparities
in land cover attributes between the target and source domains emerged, encompassing
not only surface imaging characteristics, such as texture, color, and size of ground cover
entities, but also the spatial distribution pattern of the ground cover [36]. The direct transfer
of model frameworks trained on the source domain labels to the target domain revealed
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that, although models like UNRC produced results exhibiting precise boundaries, their per-
formance remained lackluster concerning intricate land cover categories. This discrepancy
culminated in predictions suffering from incongruous noise and a lack of fitting.

Figure 8. Qualitative comparison of source domain mapping results in the sample area. (a–h) show
the predictions of the UNRU and UERU in four scenarios.



Remote Sens. 2024, 16, 1449 14 of 22

Figure 9. Qualitative comparison of target domain mapping results in the sample area. (a–t) show
the predictions of the UNRC, UERC, UEIC and CEIC in four scenarios.
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UNIC and UEIC, utilize labels originating from the source domain, the singular
divergence of which lies in the presence of IBN layers within the model architecture.
Specifically, scenarios 1 and 2 encompass a diverse array of dense structural formations,
wherein diminutive edifices interlace with shrubbery and the canopies of trees. Within the
subplots of Figure 9b,n, instances arise where shadows around the building are incorrectly
identified as I class. In Figure 9a,i,j, the erroneous classification of roads and structures
adjacent to them is apparent, with incorrect allocation to alternative land cover categories.
In contrast to this, UNIC and UEIC, incorporating the IBN layer, demonstrate an augmented
capacity for generalization, yielding a heightened efficacy in recognizing diverse land cover
features and preserving a more intricate spectrum of land cover nuances.

Despite LR China_ESA exhibiting lower accuracy compared to LR US_ESA, the map-
ping effect of CEIC exceeds that of UEIC and UERC. After incorporating the IBN module,
CEIC witnessed an improvement in the result, but it demonstrates limited efficacy in
scenarios involving intricate land cover classes (e.g., Figure 9r,t fail to identify buildings
and roads). Even CEIC with local labels (Figure 9e–h) does not overshadow the superiority
exhibited by UNIC in qualitative comparisons.

3.2.2. Quantitative Analysis

For quantitative comparison, the computation of all metrics was predicated upon
the HR ground references. To fortify the reliability of our comparative analysis, we
present the IoU score heatmaps corresponding to distinct methods in Figure 10. After
this, Figures 6 and 11 juxtapose the mIoU, FWIoU, Kappa, and OA scores across all meth-
ods in all test sites.

Figure 10. Heatmap of average IOU score of all land cover classes.

As depicted in Figure 10, the classification of forest yields consistently favorable
outcomes, with IoU values surpassing 0.7 in nearly all experiments. This trend may be at-
tributed to the substantial availability of training samples for the forest category. In contrast,
the performances of the “water” and “impervious surface” classes are markedly subpar.
Within these categories, the IoU scores exhibit a comparatively limited range, spanning
from 0.41 to 0.63 for water and from 0.46 to 0.64 for impervious surfaces, respectively.

The IoU scores from distinct experiments also exhibit variations in the classification
of diverse land cover categories. During the execution of land cover classification within
identical geographical extents, the IoU score trends of the experimental outcomes harmo-
nize predominantly with those of the LR labels (Figure 7). Specifically, the IoU scores for
each classification category within models with NLCD_US surpass those with ESA_US.
Across varying geographical zones, even with the same labels, the IoU scores for individual
classes deviate. It is evident that beyond the influence of training data on the efficacy of
land cover classification, the attributes and distinguishability of the ground entities within
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the target area also exert an impact on the performance of mapping. In terms of overall
performance, a balanced and robust outcome is observed in the case of UNRU and UNIC.
This outcome stands out when juxtaposed with the alternative comparison methods used
in both the source and target domains.

In the context of the Chinese testing data experiment, the inclusion of the IBN layer
(from UNRC to UNIC, and from UERC to UEIC) yields a notable enhancement in the
accuracy of all categories. Particularly noteworthy is the substantial advancement in the
water class, demonstrating an average accuracy increase of 8% in comparison to models
lacking the IBN layer. Nonetheless, discerning between related land cover classes remains
a challenge, attributable to the exacerbation of label noise. This phenomenon compounds
the adverse effect on the classification of analogous ground entities for UEIC [34].

While LR ESA_US exhibits superior IOU scores compared to LR ESA_China in the
categories of impervious surface and forest, the effectiveness of the trained models (UERC
and UEIC) in extracting each land cover type within the target domain falls short of that
achieved by the model trained using Chinese local labels (CEIC). When applied within
the target domain using NLCD labels, UNRC’s performance surpasses that of CEIC in the
forest category but yields less favorable results in the remaining classes. Upon integration
with the IBN layer (UNIC), the scores across all classes generally surpass those of CEIC,
with the forest class achieving an IOU score of up to 0.8.

Through analysis of both Table 6 and Figure 11, a comprehensive evaluation of the
metrics insensitive (mIoU and OA) and sensitive (FWIoU and Kappa) to category pro-
portion reveals that the comparison methods yield closely aligned quantitative outcomes
across distinct test plots. UERC exhibits the least favorable performance, exhibiting average
FWIoU and Kappa values of 0.66 and 0.63, respectively, followed by UEIC. And UERC
more closely approaches that of the LR labels. It is noteworthy that for land cover mapping
in the target and source domains, models utilizing NLCD_US manifest the most favorable
results across all metrics.

Table 6. Quantitative comparison of land cover mapping results from different experiments.

Metric Site Experiment LR Label
UNRU UNRC UNIC UERU UERC UEIC CEIC ESA_US NLCD_US ESA_China

MIoU

1 0.7507 0.6512 0.6862 0.7313 0.5780 0.5977 0.6680

0.5286 0.6606 0.52502 0.7568 0.6479 0.6979 0.7288 0.5616 0.6257 0.6801
3 0.8149 0.6573 0.7043 0.7571 0.5012 0.5607 0.6642

Avg. 0.7742 0.6522 0.6961 0.7391 0.5469 0.5947 0.6707

FWIoU

1 0.7797 0.7278 0.7501 0.7643 0.6644 0.6889 0.7219

0.5791 0.6645 0.54802 0.7974 0.7280 0.7544 0.7601 0.6639 0.6955 0.7249
3 0.8106 0.7310 0.7553 0.7856 0.6383 0.6727 0.7181

Avg. 0.7959 0.7289 0.7533 0.7700 0.6555 0.6857 0.7216

Kappa

1 0.7780 0.7117 0.7395 0.7071 0.6404 0.6610 0.7071

0.5244 0.6431 0.49152 0.7967 0.7120 0.7450 0.7553 0.6374 0.6730 0.7102
3 0.8230 0.7158 0.7463 0.8368 0.6001 0.6371 0.7023

Avg. 0.7992 0.7131 0.7436 0.7664 0.6260 0.6570 0.7065

OA

1 0.8722 0.8369 0.8527 0.8619 0.7937 0.8101 0.8343

0.7123 0.7810 0.70292 0.8843 0.8372 0.8556 0.8585 0.7926 0.8158 0.8361
3 0.8938 0.8391 0.8560 0.8757 0.7719 0.7972 0.8316

Avg. 0.8834 0.8377 0.8548 0.8654 0.7861 0.8077 0.8340

Due to the intricate architecture of the network, there may be excessive down-sampling.
This, in turn, fosters congruence between predictions and the overarching coarse labels.
However, it proves unsuitable for effectively capturing the intricate nuances of fine-grained
land cover features, especially when dealing with a substantial volume of inaccurately
annotated samples. Consequently, when employing an identical model, distinct labels
yield disparate outcomes. Upon replacing the labels from the noise-laden ESA with the
less noisy NLCD, a notable enhancement is observed, with the FWIoU and Kappa values
exhibiting improvements ranging from 2.59% to 7.34% and 3.28% to 8.72%, respectively.
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However, compared with the noise caused by ESA_China, the dissimilarities in the visual
characteristics of ground objects between the target and source domains exert a profound
influence on the outcomes. Consequently, the performance of the model trained on ESA_US
data is inferior when compared with CEIC. In comparison to CNRC, UNRC showcases
slightly reduced IoU scores (0.59 and 0.56, respectively) for the water and impervious
surface categories. Nonetheless, their FWIoU, Kappa, and OA scores surpass those of
CNRC due to the relatively minor extent of the water and impervious surface categories
within the region.

Figure 11. Statistical histograms of mean values of different experimental evaluation indicators.

While convolutional neural networks possess a certain generalization capability, they
encounter limitations in classification for images from distinct regions. In contrast, IBN-Net
demonstrates superior generalization and enhanced capacity. The incorporation of the
IBN layer into UNRC (from UNRC to UNIC) yields a remarkable enhancement, with an
augmentation of 2.43–9.78% in FWIoU and 3.04–11.76% in Kappa. When contrasted with
CEIC utilizing local labels, UNIC attains an average MIoU of approximately 0.6961 and
an OA of 0.8548. For both the MIoU and OA metrics, this denotes enhancements of ap-
proximately 2.55% and 2.08%, respectively. Despite observable dissimilarities between the
training and test datasets in terms of appearance, the models exhibit enhanced robustness
towards appearance variations.

Summarizing from the qualitative and quantitative analyses, it is apparent that the
effectiveness of methods employing noisy ESA labels is notably reduced. This leads to the
production of mapping results marked by less distinct boundaries and the exclusion of
intricate details. In contrast, models utilizing NLCD labels yield mapping outcomes with
more accurate boundary delineation. Moreover, the incorporation of the IBN layer into the
model bolsters its generalization capabilities, ultimately leading to improved precision in
delimiting result boundaries.

4. Discussion
4.1. Comparison of Global Products

We present a subset of test regions within the target domain, encompassing diverse
landscapes, such as rivers, buildings, forests, and farmlands. This presentation aims to
illustrate the effectiveness of our proposed methodology in land cover mapping and to
enable a comparative analysis with established global land cover mapping products, specif-
ically, ESA WorldCover, FROM_GLC100, ESRI_LULC, and GLC_FCS. Upon examination of
Figure 12, it becomes evident that our method consistently demonstrates robust and precise
mapping capabilities across varied environments while enhancing resolution. Particu-
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larly noteworthy is the clear delineation of dense concentrations of buildings, along with
improved fidelity in larger land cover categories, such as forests and croplands. Addition-
ally, finer structures are accurately delineated, highlighting the significant advancements
resulting from the combined use of label super-resolution and domain adaptation.

Figure 12. Statistical Comparison of Global Products with UNIC. The yellow, orange, blue and green
rectangles represent the details of the four scenes in the sample area respectively.

In the Introduction section, we highlighted that various factors influence the varying
accuracies of different global land cover products across different regions. Particularly
concerning our target domain (China), many land cover products exhibit lower accuracies,
an assertion validated in Section 3.1 as well. By juxtaposing the results from the method
proposed in this paper with global land cover products, it becomes evident that when
the accuracy and resolution of global products fail to meet the need for finer land cover
information, utilizing higher-accuracy products from other regions as reference labels can
facilitate the generation of superior land cover maps.

4.2. Exogenous Label Noise Testing

The outcomes of our experiments highlight the potential for enhanced performance
through the utilization of exogenous labels in model training. However, it is crucial
to acknowledge that not all exogenous labels yield such benefits. Variations in image
texture characteristics arise due to diverse factors, such as vegetation types, architectural
styles, lighting conditions, and remote sensing image acquisition across different regions.
Moreover, the texture features learned by deep learning models significantly impact their
applicability within target areas. Consequently, under comparable levels of accuracy,
outcomes derived from endogenous labels consistently outperform those from exogenous
labels. Therefore, only exogenous labels attaining a certain level of accuracy with low noise
have promise as training labels for domain shift.

In this section, to further investigate the impact of label noise and accuracy on domain
shift with exogenous labels, different levels and types of noise were introduced to SR
US_NLCD labels to assess the performance of the UNIC. Specifically, the noise was added
at proportions ranging from 0.2% to 1.6%, relative to the TP of SR NLCD_US, and this noise
augmentation was repeated across eight trials. The locations for introducing simulated
label noise were randomly selected. For distinct classes, their corresponding confusion
matrix columns, as outlined in Section 3.1, were employed to derive the likelihood of
misclassification concerning other categories. This probability computation determined
how noise was injected into each class. For instance, pixels initially classified as impervious
surfaces were more likely to be mislabeled as low vegetation than as other classes.
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Figure 13 illustrates the evaluation metrics of SR labels following noise augmentation,
along with the land cover mapping achieved by models trained using exogenous labels
with varying degrees of noise. With increase in the proportion of noise, both the accuracy
of SR labels and the mapping performance of UNIC experience varying degrees of decline.
However, once the noise exceeds 0.42%, the mapping outcomes of models trained with
exogenous labels begin to fall behind those with endogenous labels (CEIC). At a noise
augmentation level of 0.58%, while falling within the range indicated by the gray region,
acceptable graphical outcomes can be achieved. However, all metrics about the proposed
method exhibit values lower than those of CEIC. When noise levels escalate beyond 0.66%,
the mapping performance experiences a degradation that even surpasses that for exogenous
training labels. Under such circumstances, the utilization of coarse exogenous training
labels is insufficient to facilitate effective land cover mapping within the target domain.

In conclusion, label noise exerts an influence on the domain shift of deep learning
models. The proposed method with exogenous training labels with a low degree of noise
can achieve commendable outcomes. When the label noise reaches a certain threshold, it
becomes more beneficial to opt for endogenous labels with lower accuracy, as opposed to
selecting higher-precision exogenous labels.

Figure 13. The impact of introduced exogenous label noise on land cover mapping (L represents the
intersection of the polyline of SR label and mapping result).

4.3. Research Constraints and Opportunities

While this study has yielded significant findings, it is imperative to acknowledge its
limitations. The primary constraint lies in the imbalance of the training labels, wherein the
distribution of different label categories within the dataset may be uneven. This imbalance
has the potential to undermine the model’s performance on certain categories, thereby
compromising the accuracy and reliability of the research outcomes. Despite efforts to
diversify the sampled scenarios during selection, the issue of class imbalance remains
inevitable. Addressing this challenge necessitates targeted adjustments to the dataset or
the implementation of other strategies to balance category distributions, thereby enhancing
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the model’s generalization capability and overall performance. On another note, the
methodology proposed in this paper primarily emphasizes a novel approach, with multi-
class land cover mapping merely serving as a medium for illustrating this method. For tasks
involving semantic segmentation or classification in other domains, the applicability of this
method remains pertinent, for instance, for extraction of individual land features, such as
forests, water bodies, or buildings. In such tasks targeting specific object classifications,
concerns regarding sample balance become less pertinent.

While the domains selected for this study encompass only China and the United
States, the methods proposed herein are not confined solely to these regions. Similarly, the
applicability of endogenous labels for domain shift extends beyond NLCD. Regarding the
target domain chosen for this study, although numerous research teams have previously
generated high-resolution land cover maps for local regions within this area, the accuracy
and utility of these maps, produced by individual teams, warrant careful consideration
when compared to NLCD, a nationally authoritative land cover product. In this context,
results generated using existing credible land cover products carry higher credibility. The
primary objective of this research is to address the challenge of insufficient matching fine
labels, which incur high annotation costs. However, it is worth noting that utilizing existing
finely manually annotated labels can also yield effective outcomes for mitigating the lack
of labels in the target domain, thus achieving better performance in handling domain shift.

In terms of models, although this study adopts simple models and makes minor
modifications only to baseline models (FCN, U-Net, ResNet-18), it is noteworthy that this
paper focuses on a novel approach from an unprecedented perspective. Specifically, through
the innovative method of selecting higher-precision remote labels as non-algorithmic
innovations, it addresses the issue of missing training labels in semantic segmentation.
Particularly for tasks with high costs in land cover mapping label production, the proposed
method in this paper offers a new approach to improving mapping effectiveness for such
tasks. From another perspective, the models chosen in this paper may not be the most
effective ones; they serve merely as a means to validate the feasibility of the proposed
approach. However, if simple models can achieve the desired results and prove the
feasibility of the proposed method, further improvements to the models or selection of
better models in the future may yield unexpected benefits.

5. Conclusions

For land cover mapping, achieving highly precise semantic labels through manual
interpretation is typically limited to small geographic areas. Consequently, models trained
with such labels often lack generalizability when applied to diverse global regions. While
global land cover products cover larger spatial scales, they often suffer from varying
degrees of label noise. This article presents a novel HR land cover mapping approach
utilizing deep learning, thereby eliminating the requirement for precisely matched labels.
The methodology involves utilizing FCN for semantic label SR, followed by the application
of IBN-Net for land cover mapping using SR labels.

A comprehensive series of experiments conducted on Google Earth images and NLCD
datasets demonstrates the pronounced superiority of the proposed method. The outcomes
of the land cover mapping experiments reveal that, compared to endogenous labels char-
acterized by higher levels of noise, employing exogenous NLCD labels leads to superior
mapping performance within the target domain. This augmentation results in an average
OA increase of 2.55%, achieving 85.48%. The diversity between the source and target
domains presents challenges for domain shift, while the noise and imprecision of labels
significantly impact the SR of labels and interfere with the accuracy of land cover mapping
results. This necessitates a choice between utilizing local labels with lower precision or
non-local labels with higher precision. Indeed, in the absence of internally generated labels
with high precision and the availability of externally annotated data with a certain level of
accuracy, the utilization of external annotations proves to be a more advantageous approach
for enhancing the accuracy of HR land cover mapping. This helps mitigate the impact of
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the object appearance gap on mapping to some extent, thereby paving the way for the
integration of semantic segmentation models incorporating unmatched labels.
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