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Abstract: Degradation of black soil areas is a serious threat to national food security and ecological
safety; nevertheless, the current lack of information on the location, size, and condition of black
soil farmland productivity is a major obstacle to the development of strategies for the sustainable
utilization of black soil resources. We synthesized remote sensing data and geospatial thematic
data to construct a farmland productivity assessment indicator system to assess the productivity
of black soil cropland at the regional scale. Furthermore, we conducted research on the spatial
differentiation patterns and a spatial autocorrelation analysis of the assessment results. We found
that farmland productivity within this region exhibited a decline pattern from south to north, with
superior productivity in the east as opposed to the west, and the distribution follows a “spindle-
shaped” pattern. Notably, the Songnen and Sanjiang typical black soil subregions centrally hosted
about 46.17% of high-quality farmland and 53.51% of medium-quality farmland, while the Mondong
typical black soil subregion in the west predominantly consisted of relatively low-quality farmland
productivity. Additionally, farmland productivity displayed a significant positive spatial correlation
and spatial clustering, with more pronounced fluctuations in the northeast–southwest direction. The
developed indicator system for farmland productivity can illustrate the spatial differentiation and
thereby offer a valuable reference for the sustainable management of farmland resources.

Keywords: soil quality; farmland productivity; indicator system; black soil

1. Introduction

Farmland is closely linked to food security, ecological sustainability, and human devel-
opment, serving as an indispensable resource and material foundation for humanity [1,2].
In the current era of extensive land degradation, food security and sustainable agricul-
tural development challenges are substantial. Factors such as climate change, population
growth, economic development, and land-use alterations continually intensify the strain
on farmland resources [3,4]. There is a consensus that the most critical aspect of land
degradation lies in reducing land productivity attributed to natural factors or human activ-
ities [5–8]. In response to land degradation’s status as a significant environmental threat,
the United Nations Sustainable Development Solutions Network (SDSN) recommends
quantifying the pivotal role of farmland productivity in achieving the United Nations
Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger) and SDG 15.3
(Land Degradation Neutrality), to address the food security crisis [9–11]. Therefore, an
immediate requirement exists to develop a set of reasonably efficient and reproducible
large-scale farmland productivity assessment methodologies for global land degradation
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mapping [12]. This is essential to facilitate necessary actions in regions experiencing severe
land degradation, with the goal of ensuring human well-being and food security.

Farmland productivity assessment should prioritize farmland productivity and sys-
tematically elucidate its fundamental structure, connotations, and dimensions [13,14].
Recently, theories and methodologies related to farmland productivity assessment have
become more sophisticated, and the multifunctionality of farmland has been acknowl-
edged [15,16]. Assessment criteria have shifted from singular natural elements such as soil,
climate, and topography towards a comprehensive approach that encompasses multi-level
indicators spanning ecological, socio-economic, and human activity domains [17–19]. Büne-
mann et al. systematically synthesized international soil quality definitions, assessment
methodologies, and indicator selection, proposing that soil quality assessment should
encompass the identification of soil threats, functions, and ecosystem services [20]. Wu
et al. asserted that cultivated productivity, site conditions, and soil health collectively
determine the sustainable development potential of farmland, emphasizing the need to
fully consider the coupling and coordination effects among these three subsystems [21]. Shi
et al. established a regional farmland quality assessment system grounded in a resource–
asset–capital attribute analysis framework, which, in addition to its focus on natural factors,
incorporates socio-economic elements such as transportation, location, and investments in
agricultural technology [22]. These studies offer a comprehensive and detailed perspective
for an integrated assessment of farmland productivity. Nevertheless, the heavy reliance on
field observations has resulted in a significant field survey workload, leading most studies
to concentrate on a small scale, with certain limitations in assessing farmland productivity
on a broader scale.

Remote sensing is a potent monitoring tool for the assessment of farmland pro-
ductivity and has witnessed widespread utilization in large-scale assessments in recent
decades [23–26]. Liu et al. employed the global agro-ecological zone (GAEZ) model to
calculate the dataset concerning potential crop yield in China, thus unveiling the influence
of urban expansion on potential yields from 1990 to 2010 [27]. Prăvălie et al. utilized geospa-
tial data to assess the extent and occurrence of five relevant land degradation processes
in arable land across the globe [28]. Sciortino et al. utilized medium- and high-resolution
remote sensing data to monitor land productivity status and trends at national and local
levels [29]. Montfort et al. analyzed potential factors affecting vegetation productivity
to assess land degradation trends in less developed regions, such as Mozambique [30].
Dameneh et al. carried out a long time-series analysis of land desertification trends, com-
bining vegetation and climate indices to identify regions susceptible to land degradation
and to formulate a prioritized work program [31]. However, current research lacks the
assessment of black soil that guarantees food security, and we synthesize Landsat remote
sensing data and geospatial thematic data such as climate and topography to assess the
farmland productivity of black soil at the regional scale, in terms of the synchronicity and
holism considerations of the indicator system.

The suitability of farmland productivity assessment methods is closely related to
spatial location. Targeting different assessment objects or adopting distinct assessment
methodologies exerts a significant impact on assessment outcomes [12,32]. Black soil,
characterized by humus-rich surface layers and fertile soil, is globally acknowledged as a
scarce, high-productivity, and degradation-prone premium land type. In recent years, it
has garnered extensive attention and research from scholars worldwide [33,34]. Among
the world’s four largest black soil regions, the black soil region of northeast China has
historically remained devoid of erosion prevention or soil conservation initiatives. High
agricultural production inputs, advanced technological conditions, and the use of pesticides
and chemical fertilizers have increased crop yields. However, this conceals the fundamental
decline in black soil farmland productivity, which poses a threat to national food security
and ecological safety [35,36]. Therefore, assessing farmland productivity in the black
soil region of northeast China is pivotal for ensuring food security and promoting the
sustainable utilization of farmland resources.
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The primary objective of this study is to synthesize remote sensing and geothematic
data to carry out a farmland productivity assessment of the typical black soil region of
northeast China at the raster scale through remote sensing. Our specific aims include
the following: (1) To develop a universally applicable indicator system for farmland
productivity assessment; (2) To elucidate the spatial differentiation pattern of farmland
productivity in the typical black soil region of northeast China; (3) To reveal the spatial
correlation of farmland productivity in the typical black soil region of northeast China.
This study’s findings will provide valuable insights for decision-makers in the realm of
sustainable farmland utilization and the enhancement of regional farmland productivity to
ensure food security.

2. Materials and Methods
2.1. Study Area

The black soils referred to in this study correspond to Mollisol in the U.S. Soil System
Classification and Isohumosol in the Chinese Soil System Classification. The Northeast
Typical Black Soil Region (NETBSR) is the most significant crop-yielding region in China
(Figure 1). It is situated between 116◦E–136◦E and 42◦N–52◦N, covering an expansive area
of 333,000 km2. The area of black soil and chernozem in the area is 59.7 and 98.6 thousand
km2, respectively, accounting for 47.5% of the total area of the typical black soil area; the
proportion of meadow soil in the interspersed area is 28.8%. Within this region, farmland
comprises approximately 55.65% of the total NETBSR area, encompassing Heilongjiang
Province (57.14% farmland), Jilin Province (25.47%), the Inner Mongolia Autonomous
Region (17.32%), and Liaoning Province (0.07%). NETBSR spans four provincial-level
administrative divisions, 21 municipal-level administrative divisions, and 138 county-
level administrative divisions [37]. The NETBSR can be divided into three distinct typical
black soil subregions (TBSSs) based on geographic location: Mengdong TBSS in the west,
Songnen TBSS in the center, and Sanjiang TBSS in the east. The region experiences a
temperate continental monsoon climate characterized by concurrent rainfall and warmth
during the growing season. However, in the non-growing season, the soil undergoes deep
freezing and remains frozen for an extended period, with a noticeable seasonal frozen layer.
The combined area of black soil and black calcareous soil within the district accounts for
47.5% of NETBSR’s total area. Additionally, there is an interspersed area of meadow soil,
constituting 28.8%. Due to the absence of adequate soil and water conservation measures
over the past century, soil erosion in the black soil layer has escalated recently, leading to a
decline in black soil farmland productivity. This situation poses a significant challenge to
the sustainable utilization of China’s black soil resources and food security.

2.2. Chosen Indicators for the Farmland Productivity Assessment System

Defining the connotation of farmland productivity is the cornerstone of farmland pro-
ductivity assessment, serving as a fundamental theoretical underpinning for farmland pro-
ductivity research, land preservation, and remediation [14,38]. Diverse regional demands
for farmland resources have led to the emergence of varying perspectives and assessment
methodologies in farmland assessment systems, resulting in the absence of a universally ac-
cepted definition of “farmland productivity” [39,40]. Farmland productivity requirements
differ among various stakeholders. The Chinese government, committed to farmland
protection and sustainable land resource management, emphasizes the preservation of
farmland. Local governments, prioritizing regional economic development, sometimes
view farmland preservation as hindering progress and advocate for non-farmland use.
Farmers focus on the economic output potential of farmland and seek social security for
farmland. Urban residents are concerned with the environmental productivity of farmland
and aspire to reconnect with idyllic life, thereby placing ecological, aesthetic, and cultural
demands on farmland [41,42]. Hence, drawing upon the Ecosystem Services Cascade
(ESC) framework [43], this study comprehensively considers human needs, whether direct
or indirect, arising from the functions provided by farmland ecosystems [44–46]. This
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comprehensive perspective defines the connotation of farmland productivity as follows:
The extent or capacity of farmland to fulfill human material, spiritual, and safety needs
in terms of production, livelihood, and ecology through a multitude of interactions and
system linkages within the farmland ecosystem. On this foundation, we have formulated a
three-dimensional assessment indicator system (Figure 2), encompassing the Production
Conditions Index (PCI), Soil Properties Index (SPI), and Remote Sensing Ecological Index
(RSEI). The relationships are described below:
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Fulfilling human material needs mirrors the productive role of farmland ecosystems.
The most basic and stable function of farmland ecosystems is to enable agricultural produc-
tion and income generation, which is essentially centered on the potential and efficiency
of farmland production as determined by production conditions dominated by natural
elements [43,47]. Population reflects the potential impact of human activities, particularly
unsustainable farming practices, on the farmland productivity. In densely populated areas,
urbanization and human disturbance are often more pronounced, and these factors may
lead to greater pressure on farmland [48]. Therefore, in the context of the PCI, human
material needs can be delineated in terms of climatic conditions, such as temperature (TEM)
and precipitation (PRE), along with topographic conditions, including slope (SLO) and
curvature (CUR), which constitute the natural factors. Additionally, human activities, as
represented by the population (POP), are a vital component of this assessment.
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Figure 2. Framework of farmland productivity assessment indicators from the perspective of human
needs and farmland ecosystem services.

Meeting human spiritual needs reflects the livelihood function of farmland ecosys-
tems. With the advancement of productivity, human priorities have transitioned from
merely increasing the quantity of agricultural products to an emphasis on achieving high
product quality, necessitating farmland to exhibit both high sustainable productivity and a
robust capacity for ensuring product quality. The level of farmland productivity, in turn,
profoundly influences human economic development and quality of life. Soil properties
stand out as pivotal factors in assuring agricultural production sustainability and product
quality stability [3,49]. Hence, in the context of the SPI, catering to the spiritual needs
of individuals within farmland ecosystems involves using surrogate indicators, such as
the Soil Degradation Index (Ratio Vegetation Index, RVI), Soil Moisture Index (Difference
Vegetation Index, DVI), Soil Organic Carbon Index (SOCI), and Modified Soil Adjusted
Vegetation Index (MSAVI).

Addressing human safety needs underscores the ecological role of farmland ecosys-
tems. With the progression of urbanization, there is an increasing emphasis on the eco-
environmental contributions of farmland ecosystems. On one hand, the ecological quality
of farmland profoundly impacts the level of sustainable farmland use and the quality of
agricultural products. On the other hand, it reflects the ecological value inherent to farm-
land itself, a dimension of growing significance within the context of ecological civilization
construction [50]. Therefore, utilizing the RSEI, which is an ecological environment quality
assessment system, in conjunction with critical indicators, such as the Greenness Index
(Normalized Difference Vegetation Index, NDVI), Dryness Index (Normalized Difference
Built-Up and Soil Index, NDBSI), Heat Index (Land Surface Temperature, LST), and Hu-
midity Index (Wetness, WET), all directly associated with the quality of the ecological
environment, allows for an intuitive and swift evaluation of ecological security status [51].

2.3. Sources and Pre-Processing of Indicator Data

We derived the five indicators’ data in the PCI from analyzing fundamental geospatial
data. Climatic data (1 km × 1 km) for TEM and PRE were extracted from the spatially
interpolated dataset representing average meteorological conditions in China. SLO and
CUR were determined through spatial analysis of digital elevation data (30 m × 30 m) from
ASTER GDEM V3. The data of POP were sourced from LandScan Global (1 km × 1 km), a
global population distribution database developed by the US Department of Energy’s Oak
Ridge National Laboratory.

Data for the eight indicators in the two dimensions of SPI and RSEI were acquired
by extracting bands from remotely sensed images and conducting the corresponding
band operations. Remote sensing image data (30 m × 30 m) were sourced from Land-
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sat 8–9 OLI/TIRS Collection 2 Level-2 high-resolution imagery provided by the United
States Geological Survey (USGS) through their website (https://earthexplorer.usgs.gov/
(accessed on 2 September 2022)). Selection of remote sensing images with less than 5%
cloud cover was ensured. To ensure the validity of the assessment results, we optimized
the time for the period from July to September, when the vegetation on the farmland is in
full growth. This data product encompasses surface reflectance in multispectral bands and
incorporates a surface temperature product in the thermal infrared band (TIRS Band 10). It
adheres to the conventional Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) procedure, encompassing atmospheric corrections, geometric corrections, and
radiometric calibrations.

All data acquisition occurred in the year 2020. Following the collection or calculation of
all indicators (Table 1), each of the 13 indicators underwent processing, including projection
raster, resampling, and outlier removal, ultimately yielding raster maps for each indicator.

Table 1. Data sources or formulas for indicators along the three dimensions.

Dimensions References Indicators Data Sources or Formulas Range

PCI

Zhang et al. [32],
2022

Montfort et al. [30],
2021

TEM
PRE

Data Center for Resources and Environmental Sciences
(https://www.resdc.cn/ (accessed on 11 December 2022))

-
-

SLO
CUR

Geospatial Data Cloud (http://www.gscloud.cn/ (accessed
on 29 November 2022))

-
-

POP LandScan Global (https://landscan.ornl.gov/ (accessed on
15 December 2022)) -

SPI

Wang et al. [52],
2018

Bai et al. [53] 2022
Chen et al. [54],

2000

RVI RVI = b5/b4 [0, 30]
DVI DVI = b5 − b4 -

MSAVI MSAVI =
2b5+1−

√
(2b5+1)2−8(b5−b4)

2
[−1, 1]

SOCI SOCI = exp(1.71499 − 0.0113b2 + 0.01281b3 − 0.01576b4) [−1, 1]

RSEI
Li et al. [50], 2023
Li et al. [51], 2020

WET WET = 0.1511b2 + 0.1937b3 + 0.3283b4 + 0.3407b5 −
0.7117b6 − 0.4559b7

[−1, 1]

NDVI NDVI = (b 5 − b4) / (b5 + b4) [−1, 1]

NDBSI

NDSI = (SI + IBI) /2
SI = (b6 + b4)− (b5 + b2)/(b6 + b4) + (b5 + b2)

IBI =
2∗b6

b6+b5
−
(

b5
b5+b4

+
b3

b3+b6

)
2∗b6

b6+b5
+
(

b5
b5+b4

+
b3

b3+b6

)
[−1, 1]

LST LST = 0.00341802 ∗ b10 + 149 − 273.15 -

where: BIi is the normalized pixel value of a certain indicator, bi is the pixel value of a certain indicator, bmax , bmin
are the maximum and minimum values of the indicator, respectively. X is the original pixel value, and µ is the
mean value.

Except for SOCI, the other indicators listed in Table 1 are commonly used indicators
that have been widely verified and applied, and their accuracy has been confirmed in
several studies. Although the calculation of SOCI is based on empirical relationships of
historical measurement data, these coefficients still provide us with relatively reasonable
approximations in remote sensing band calculations in the absence of region-specific data,
thus supporting our assessment of farmland productivity at the current geographic scale.

2.4. Farmland Productivity Assessment Model

To mitigate the influence on assessment results caused by variations in the base
unit of the indicators during the calculation process, it is essential to standardize the
indicators, making them dimensionless and homogenized. Given the attributes of the
indicators, they were categorized into positive indicators (benefit-based indicators) and
negative indicators (cost-based indicators), and the original values of each indicator were
normalized (Equations (1) and (2)), ensuring a standardized range between [0, 1]. Mean
centering (Equation (3)) aligned the PCA’s first principal component with the direction of
maximum variance while eliminating discrepancies in variable means.

BIi = (bi − bmin)/(bmax − bmin) (1)

https://earthexplorer.usgs.gov/
https://www.resdc.cn/
http://www.gscloud.cn/
https://landscan.ornl.gov/
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BIi = (bmax − bi)/(bmax − bmin) (2)

X′ = X − µ (3)

where BIi is the normalized pixel value of a certain indicator, bi is the pixel value of a
certain indicator, and bmax, bmin are the maximum and minimum values of the indicator,
respectively. X is the original pixel value, and µ is the mean value.

The mean-centered and normalized data underwent principal component analysis
(PCA) to derive indicator weights, which were subsequently integrated into a Linear
Weighting Model (LWM) to compute the Farmland Productivity Composite Index (FPCI)
through the following steps [55,56]:

(i) Conducting the Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test to assess the
suitability of the PCA model. (ii) Calculating the eigenvalues of the correlation matrix and
the variance contribution ratio of each indicator, and determining the number of principal
components K with the criterion that the eigenvalue is greater than 1 and the cumulative
variance contribution ratio is greater than 80% [57]. (iii) Deriving linear combination
coefficients using the factor loading values of the indicator correlation matrix (Equation (4)).
(iv) Computation of the coefficients in the comprehensive score model based on the acquired
linear combination coefficients (Equation (5)). (v) Calculation of the weights of each
indicator by determining the ratio of the coefficients in the comprehensive score model
(Equation (6)). (vi) Utilizing LWM to evaluate FPCI, which is expressed as the weighted
sum of the indicator values and their corresponding weights for each assessment unit after
identifying the principal components (Equation (7)). The primary calculation formula is as
follows:

θi = αi/
√

Ak (4)

λi = eiXi/∑ Xi (5)

Fi = λi/∑ λ (6)

FPCI = ∑n
i=1 eiFi (7)

where θi is the linear combination coefficients for the i indicator; αi is the factor loading
values for the i indicator; A is the eigenroot for the K principal components; λi is the
coefficients in the comprehensive score model for the i indicator; ei is the indicator value for
the i indicator; Xi is the principal component variance; Fi is the weight for the i indicator;
and n is the number of assessment units.

The computed FPCI value’s magnitude served as a surrogate for the farmland pro-
ductivity level. Based on previous criteria for classifying farmland productivity categories,
the FPCI was stratified into ten grades utilizing the equal spacing approach. Subsequently,
grades 1–3 were designated as high-quality farmland, grades 4–7 as medium-quality farm-
land, and grades 8–10 as low-quality farmland [14,55].

2.5. Spatial Analysis of Farmland Productivity

Spatial autocorrelation analysis was employed to investigate the spatial correlation
characteristics of farmland productivity. Global Moran’s I (Equation (8)) was utilized to
gauge the extent of spatial clustering or differentiation of attribute values, which falls
within the range of (−1, 1). When Moran’s I is positive, it signifies a spatial positive
correlation, and a higher value suggests a more pronounced spatial correlation. The z-value
was employed to denote data dispersion, with a threshold of 1.96 for the two-sided test and
a 95% confidence interval of the normal distribution as the limit. A z-value greater than 1.96
indicates significant spatial positive autocorrelation, signifying non-significant differences
between the observation point’s value and surroundings, indicating spatial clustering.
Conversely, a z-value lower than −1.96 implies the opposite, and if the Z-value falls
between −1.96 and 1.96, it signifies that the spatial autocorrelation of the study indicator is
not significant and is randomly distributed across the study area. The p-value is used to
indicate probability, which is convenient for hypothesis testing of spatial autocorrelation.
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The G*
i statistical index (Equation (9)) proposed by Getis and Ord, a local spatial

autocorrelation indicator, was employed to identify cold and hotspots in the study area’s
farmland productivity. This method aims to explore the spatial clustering of low or high
values of farmland productivity, revealing areas where low or high values of farmland
productivity tend to cluster. Hotspots refer to regions with a high concentration of attribute
values, where the surrounding features also exhibit high values. Conversely, coldspots
are the opposite, indicating areas with a clustering of low attribute values. Cold and
hotspot analysis can only reveal the local spatial autocorrelation characteristics of farmland
productivity, identifying clustered areas with similar productivity. It is unable to distinguish
regions with significant differences in productivity within local space. However, Local
Moran’s I and LISA values precisely address the shortcomings of the cold and hotspot
analysis method.

Local Moran’s I (Equation (10)) classified the distribution of farmland productivity in
the study area into five categories. When the value of Local Indicators of Spatial Association
(LISA) is positive, it indicates a spatial cluster, including “High-High Cluster” (H-H) and
“Low-Low Cluster” (L-L), signifying that the value of the observation point itself and
the value of its surrounding observation points are both higher or lower. Conversely, a
negative LISA value indicates a spatial outlier, including “Low-High Isolated” (L-H) and
“High-Low Isolated” (H-L), which means that the value of the observation point itself
is higher (or lower), while the values of the surrounding observation points are lower
(or higher), reflecting the distribution of high and low neighbors. “Not Significant” (NS)
denotes that the value of the observation point and the value of its surrounding observation
points are not statistically significant.

Global Moran′s I =
n∑n

i=1 ∑n
j=1 Wij

(
Yi − Y

)(
Yj − Y

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

i=1
(
Yi − Y

) (8)

G*
i =

∑n
j=1 WijYj

∑n
j=1 Yj

(9)

Local Moran′s I =
(
Yi − Y

)
∑n

i=1(Yi−Y)
2

n

n

∑
j=1

Wij
(
Yi − Y

)
(10)

where n is the total number of spatial units; Wij is the spatial weight matrix; Y is the pixel
mean; and Yj, Yi are the elemental attribute values of the spatial units.

The center of gravity and the trend of farmland productivity distribution in NETBSR
are depicted using a standard deviation ellipse (SDE) [58]. The SDE primarily consists
of three components: the rotation angle θ, the standard deviation along the major axis x,
and the standard deviation along the minor axis y (Equations (11)–(13)). Its distribution
range corresponds to the primary extent of spatial farmland productivity distribution;
the rotation angle indicates the main trend direction of the distribution, and the standard
deviation along the major axis reflects the degree of dispersion of farmland productivity in
the direction of the primary trend. The orientation of the major axis represents the dominant
spatial orientation of farmland productivity. A higher oblateness of the ellipse signifies a
more directional farmland productivity distribution, while a more negligible difference in
length between the major and minor axes indicates a less directional distribution.

x =

√
∑n

i=1(Xi − X)2

n
(11)

y =

√
∑n

i=1(Yi − Y)2

n
(12)
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tanθ =

(
∑n

i=1 Xi
2 − ∑n

i Yi
2
)
+

√(
∑n

i=1 Xi
2 − ∑n

i Yi
2
)
+ 4(∑n

i=1 XiYi)
i

2(∑n
i=1 XiYi)

(13)

where Xi, Yi are the spatial location coordinates of each data point; n is the total number of
spatial units; and (X, Y) is the center of mass coordinates.

3. Results and Analysis
3.1. Construction of FPCI

The KMO coefficient was 0.836, and Bartlett’s test yielded a significance level of 0.000
(p < 0.001), indicating the rejection of the original hypothesis, implying a correlation be-
tween the indicators. The correlation matrix between the indicators revealed significant
associations among the variables, with some correlation coefficients approaching 1. Conse-
quently, this dataset was highly suitable for constructing the PCA-based indicator system
of farmland productivity assessment. Analyzing the eigenvalues and cumulative variance
contribution ratios (Table 2), four principal components with eigenvalues greater than one
were extracted, accounting for 83.595% of the cumulative variance. It can be concluded that
these four principal components, covering the majority of original variable information,
can effectively substitute for the original variables.

Table 2. Interpretation of total variance of principal component analysis.

Components

Initial Eigenvalue Percent of Variance (Unrotated) (%) Percent of Variance (Rotated) (%)

Eigenvalue
Percent of
Variance

(%)

Cumulative
Percent of
Variance

(%)
Eigenvalue

Percent of
Variance

(%)

Cumulative
Percent of
Variance

(%)
Eigenvalue

Percent of
Variance

(%)

Cumulative
Percent of
Variance

(%)

1 6.991 53.780 53.780 6.991 53.780 53.780 6.625 50.962 50.962
2 2.085 16.042 69.822 2.085 16.042 69.822 2.166 16.663 67.625
3 1.068 8.212 78.034 1.068 8.212 78.034 1.334 10.263 77.888
4 1.003 7.561 85.595 1.003 7.561 83.595 1.081 7.707 83.595
5 0.785 6.041 91.636 - - - - - -
6 0.661 5.082 96.718 - - - - - -
7 0.301 2.316 99.034 - - - - - -
8 0.074 0.570 99.604 - - - - - -
9 0.040 0.308 99.912 - - - - - -

10 0.007 0.057 99.969 - - - - - -
11 0.003 0.021 99.990 - - - - - -
12 0.001 0.007 99.997 - - - - - -
13 0.000 0.003 100.00 - - - - - -

The factor loading values in the indicator correlation matrix (Table 3) were obtained
from the component matrix. The first principal component had significant loadings on
SOCI, DVI, WET, NDBSI, NDVI, MSAVI, and RVI, representing the information contained
in these seven variables. The second component had notable loadings on TEM, PRE, and
LST, reflecting the information from these three variables. The third and fourth components
exhibited higher loadings on SLO and POP, respectively, and the first and third components
can jointly represent CUR. As noted above, it reiterated that the four principal components
adequately represent the original 13 indicators.

After calculating the coefficients in the comprehensive score model using
Equations (5) and (6), we obtained the weight values for the three-dimensional and the
13 assessment indicators developed in this study (Figure 3). It is evidenced that the weight
values of the indicators were approximately equal, indicating that each indicator had a
similar influence on the FPCI. Notably, SLO carried the most significant weight, accounting
for 0.125 of the totals.
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Table 3. Factor loading values of the correlation matrix for each indicator.

Indicators 1st PC 2nd PC 3rd PC 4th PC

Factor
loading
values

SOCI 0.991 −0.101 −0.055 0.021
DVI 0.985 −0.102 −0.056 0.022
WET 0.979 −0.096 −0.062 0.019

NDBSI 0.978 −0.104 −0.066 0.026
NDVI 0.977 −0.103 −0.054 0.025

MSAVI 0.975 −0.1 −0.053 0.024
RVI 0.88 −0.069 −0.046 0.005
CUR 0.484 0.214 0.463 −0.223
TEM 0.209 0.922 −0.2 0.032
PRE 0.203 0.904 −0.202 0.036
LST 0.24 0.515 0.118 0.02
SLO 0.255 0.19 0.742 −0.355
POP 0.047 0.064 0.431 0.895
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3.2. Spatial Distribution of FPCI at Various Scales

At the raster scale, this study utilized the equal spacing method to subdivide the FPCI
of NETBSR within ten grades quantitatively. At the raster scale, grades 3–5 accounted for
88.72% of the entire NETBSR farmland area (Figure 4a), which suggested that FPCI levels
were relatively similar within the NETBSR and were dominated by fairly medium to high
levels. The total trend in the spatial distribution of FPCI in NETBSR was decreasing from
south to north, with the east region being better than the west region (Figure 4b). A total
of 46.17% of the high-quality farmland with FPCI grades 1–3 was mainly located in the
south of the Songnen TBSS and the Sanjiang TBSS; 53.51% of the medium-quality farmland
with FPCI grades 4–7 was primarily located in the north of the Songnen TBSS, and 0.32%
of the low-quality farmland with FPCI grades 8–10 was mainly located in the west of the
Mondong TBSS.

At the county scale (Figure 5), high FPCI grades were primarily found in several
counties (districts) among the 138 county-level administrative districts located in NETBSR.
These areas included Fujin, Longjiang, Wuchang, Baoqing, Shuangcheng, Bayan, and other
districts and counties. Bin, Fuyu, Beilin, Wudalianchi, and other districts and counties
had medium FPCI grades. In contrast, Chenbalhu Banner, Erguna City, Linxi County, and
Uzhumqin Banner exhibited relatively low FPCI grades.
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At the municipal scale, the FPCI of the 21 municipalities within the NETBSR displayed
significant variations. Generally, it exhibited a “spindle-shaped” distribution with smaller
values at the ends and higher values in the middle, with the majority of FPCI grades falling
within the medium range, skewed toward higher values (Figure 6). Specifically, Heihe,
Yichun, Jilin, Changchun, and Tieling cities were regions where higher FPCI grades were
predominantly concentrated. In contrast, Hulunbeier and Tongliao cities and Xilin Gol
league had relatively lower FPCI grades.
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3.3. Spatial Correlation of FPCI at the Raster Scale

The results of the visualization of the cold–hotspot analysis of farmland productivity
(Figure 7) revealed the pattern of its spatial distribution. This analysis identified clustered
areas with similar productivity levels, hotspot areas (highly significant hotspot areas
(99% confidence level), significant hotspot areas (95% confidence), and hotspot areas (90%
confidence)) with a wide spatial distribution area, mainly distributed in the southern part
of the Songnen TBSS in the center and part of the Sanjiang TBSS in the east, and coldspot
areas (highly significant coldspot areas (99% confidence), significant coldspot areas (95%
confidence), and coldspot region (90% confidence)) are mainly distributed Mengdong TBSS
in the west. The distribution space of the FPCI hotspot region of NETBSR is basically
the same as that of the raster high-value region of FPCI, and the distribution space of the
coldspot region is basically the same as that of the raster low-value region. The distribution
of hotspot and coldspot areas are concentrated.

The global Moran’s I of FPCI for NETBSR was 0.819 with a Z-value of 13.311, which
passed the significance test (p = 0.001). This result indicated a highly significant positive
spatial correlation and strong spatial clustering of the FPCI. Concerning the local spatial au-
tocorrelation LISA aggregation map and spatial trend distribution plot (Figure 8), the FPCI
was primarily composed of three categories within the study area: “H-H” (27.6%), “L-L”
(20.1%), and “Not Significant” (NS) (46.8%). While “H-L” (1.6%) and “L-H” (3.9%) cate-
gories represented a smaller proportion, “H-H” was mainly distributed in the southern part
of Songnen TBSS and parts of Sanjiang TBSS. At the same time, “L-L” was predominantly
found in the eastern region of Mengdong TBSS, indicating significant spatial clustering of
the FPCI in these two subregions.

A quantitative analysis of the directional trend of the FPCI center of gravity in NETBSR
using the SDE revealed that an ellipse located at 125◦E, 46◦N, with approximately 541.86 km
as the long semiaxis and 235.73 km as the short semiaxis, can encompass the area where
about 68% of the FPCI in NETBSR was concentrated. The oblateness of the ellipse was
56.5%, and the length of the major axis was about 2.3 times that of the minor axis, indicating
precise directional characteristics. The rotation angle was 86◦, signifying that the FPCI
center of gravity was more prominently distributed in the northeast–southwest direction
than in the northwest–southeast direction, demonstrating distinct features.
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3.4. Robustness of Results

We illustrate the reliability of the assessment results of farmland productivity in typical
black soil regions by comparing and validating them with the dataset concerning potential
crop yield in China by the global agro-ecological zone (GAEZ) model in both quantitative
structure and spatial distribution [59].The dataset concerning potential crop yield in China
by the GAEZ model was the result of a study conducted by Liu et al. [27], conducted to
reveal the impact of urban expansion on farmland production potential, and we extracted
annual standard crop yield data from the statistical yearbooks of Heilongjiang Province,
Jilin Province, and the Inner Mongolia Autonomous Region.
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In the crop production performance validation, we conducted regression analyses of
annual standard crop yield data and our assessment results with the dataset concerning
potential crop yield in China, respectively, to explore the correlation between the two
assessment results and annual standard crop yields. In the spatial pattern correlation
validation method, we compared the FPCI obtained in this study with the results of the
dataset concerning potential crop yield in China by the GAEZ model for validation, both of
which were evaluated from a multidimensional perspective of farmland productivity, and
analyzed the spatial distribution pattern to explore the correlation between the two.

This study used the process of crop production performance validation, employing
the FPCI of NETBSR as the independent variable (x) and the annual standard crop yield
as the dependent variable (y) for linear regression analysis (Figure 9). Provided that the
significance test (p < 0.001) and the test of multicollinearity (VIF < 5) were satisfied, although
both have lower R2, the regression equation between FPCI and annual standard grain yield
in this study had a higher degree of “best fit” (r = 0.637, R2 = 0.419) compared with the
dataset concerning potential crop yield in China by the GAEZ model (r = 0.479, R2 = 0.230),
indicating a stronger correlation between production FPCI and annual standard grain
yield. which indicates a stronger correlation between production FPCI and annual standard
grain yield.
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We employed the spatial pattern correlation validation method to supplement the
process of crop production performance validation. This involved comparing the farmland
productivity assessment results obtained in this study with the existing GAEZ assessment
results. The bivariate plot (Figure 10) illustrated that the spatial pattern distribution was
notably consistent between the two datasets, with higher spatial correlation predominantly
observed in the southern part of the study area compared to the northern part. Of the
138 counties included, 60.9% (84 counties) of the higher-middle spatial correlations were
primarily located in the Mondong TBSS, the Sanjiang TBSS’s eastern section, and the
Songnen TBSS’s southeastern portion. In contrast, the southwestern and northern portions
of the Songnen TBSS displayed a lower spatial correlation.
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4. Discussion
4.1. Rationalization of the Farmland Productivity Assessment System

Perceptions of the concepts, connotations, and dimensions of farmland productivity
significantly influence the scientific precision and accuracy of farmland productivity as-
sessment. Drawing upon the Ecosystem Services Cascade (ESC) framework [43], this study
comprehensively integrates the human well-being aspects directly or indirectly derived
from farmland ecosystems. Human material, spiritual, and safety needs correspond to the
functions of farmland ecosystem services related to production, livelihood, and ecological
well-being, respectively. In this way, farmland productivity is defined, and the system of
assessment indicators is further constructed.

In selecting indicators, we should align with the holistic principles of system theory to
comprehensively assess farmland productivity and avoid overly narrow assessment scopes.
During the derivation process, it becomes clear that elements of farmland productivity
should be synchronized, which serves as a criterion for constraining the breadth of these
elements and preventing overly broad assessment scopes [14,39,60]. Furthermore, we
account for scale effects [11,32]. For instance, climatic factors are assessed at a macro-
scale, exhibiting significant variations within the region; therefore, climatic elements such
as temperature (TEM) and precipitation (PRE) are selected for assessment. However,
assessment indicators like soil thickness and microbial content, which are challenging to
obtain accurately on a regional scale using remote sensing alone, are not considered. It is
also worth noting that the allocation of indicators within each assessment dimension is not
fixed. For instance, we have chosen various aspects, such as soil organic carbon, moisture
index, and degradation index, as assessment indicators in the SPI.

In actual farmland productivity assessment processes, the significance of these indi-
cator weights is often overlooked, resulting in subjective methods for weight determina-
tion, such as specific expert scoring techniques or personal experiential and preferential
approaches [55]. This not only compromises the objectivity of the assessment but also
diminishes its persuasiveness. Our process utilizes PCA to determine indicator weights,
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coupled with LWM to compute the composite score in farmland productivity assessment.
This approach significantly reduces the workload while simultaneously compensating
for PCA’s inherent ambiguity in the actual meaning during the dimensionality reduc-
tion process. Our assessment methodology offers the advantages of heightened time-
liness and spatial resolution. Consequently, it furnishes an equitable and reproducible
assessment system for the sustainable utilization of black soil resources, thereby contribut-
ing to the attainment of food security and the preservation of the social well-being of
smallholder farmers.

Previous data collection efforts for farmland productivity monitoring and assessment
have commonly relied on field sampling methods and data surveys, which come with
certain limitations [16,19]. Firstly, gathering field data demands significant time, human
resources, and materials, resulting in data that often fail to meet real-time assessment needs
and lack timeliness. Secondly, many previous methods primarily offer qualitative assess-
ments of farmland productivity, making quantitative assessments unattainable. Through
the integration of remote sensing technology, we combined multi-source geospatial data
and medium spatial resolution remote sensing image data, to observe in-depth detailed
information at the regional scale. By this method, we refined the information of farmland
productivity to the raster level and successfully realized the quantitative monitoring of
farmland productivity at different regional scales from raster to county and city. This study
provides strong support for accurate assessment of farmland productivity under remote
sensing technology.

4.2. Spatial Differentiation in Farmland Productivity Assessment

We emphasize that variations in definitions, indicators, and even divergent objectives
for ecosystem services among different stakeholders can result in significantly dissimilar
assessment outcomes [30]. Moreover, it is essential to recognize that mapping farmland
productivity is not a universal process; rather, it is contingent upon the specific ecosystem
services being targeted. Therefore, the variance between our assessment results and those
produced by the GAEZ model can be attributed to distinctions in assessment methodologies
and input datasets [27]. Most crucially, the dataset concerning potential crop yield in China
predominantly focuses on the effects of farmland and climate changes on food production
potential in its assessment, whereas our study places greater emphasis on the intricate
interplay between farmland ecosystems and human needs. That again underscores the
importance of precisely defining the connotation of farmland productivity and establishing
the perspective of the assessment indicator system.

Although several studies have highlighted varying degrees of land degradation issues
in specific black soil areas, the findings of our study indicate that the farmland productivity
in NETBSR is predominantly characterized by medium to high values [33,40]. The current
state of farmland productivity in NETBSR, as established in our research, can serve as
a foundation for analyzing the factors influencing farmland productivity in this region.
NETBSR experiences a uniform rainy season with concentrated precipitation and high
temperatures. When combined with the soft upper layer of black soil, there is a notable
risk of soil hydraulic erosion in farmlands with slopes greater than 0.5◦. Moreover, the risk
increases with steeper slopes [52]. The eastern region of the Songnen TBSS stands out as the
primary area where fertile black soil and black calcareous soil are widely distributed in a
crescent shape. However, due to the undulating topography and harsh climatic conditions,
modern erosion is evident. This area, along with the western part of the Sanjiang TBSS,
predominantly comprises medium-grade farmland productivity. In contrast, the Mengdong
TBSS in the west is primarily characterized by grassland ecosystems. Farmland is sparsely
distributed in this region, and the slopes are steeper. Recent years have witnessed a
gradual reduction in average precipitation, elevating the risk of extreme weather events
and natural disasters, such as low-temperature droughts, high-temperature droughts, and
other complex weather phenomena. These conditions are detrimental to the improvement
of farmland productivity.
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4.3. Implications of Spatial Autocorrelation Findings

Relevant theories and practices of regional development indicate the presence of a
diffusion or polarization effect between regions, which can either reduce or expand regional
spatial disparities. It is imperative to elucidate the characteristics of local spatial autocor-
relation categories, as this represents a novel approach for exploring the optimization of
black soil conservation using spatial correlation effects [14]. This approach can provide
farmland productivity data with spatial and temporal reference information, enabling
precise management strategies within NETBSR. Within this study, local spatial autocor-
relation categories predominantly comprise the “H-H” and “L-L” categories. The “H-H”
category designates regions with a high aggregation of farmland productivity in NETBSR;
it is mainly distributed in the southern part of Songnen TBSS and parts of Sanjiang TBSS,
contributing positively to the overall farmland productivity within the region. In contrast,
the “L-L” category represents regions with a high aggregation of low levels of farmland
productivity in NETBSR and serves as the primary target for farmland productivity re-
covery efforts; it is mainly distributed in the eastern region of Mengdong TBSS. These
regions necessitate distinct approaches to improvement, and comprehensive strategies for
enhancement and protection should be actively promoted. Based on the above analysis, it
is evident that there is a high degree of farmland productivity aggregation within NETBSR.
Therefore, in the future, particular attention should be directed toward regions classified
as “H-H” and “L-L”. Based on these findings, government policymakers can formulate
policies for restoring black soil and farmland. For “H-H” category regions, efforts should
be centered around strengthening protection measures to enhance the diffusion effect.
Additionally, if there is a need for land conversion from farmland to non-farmland, regions
classified as the “L-L” category offer a relatively desirable choice.

Through the quantitative analysis of the SDE, we found that an ellipse located at
125◦E, 46◦N, with approximately 541.86 km as the long semiaxis and 235.73 km as the
short semiaxis, can encompass the area where about 68% of the FPCI in NETBSR was
concentrated. These finding sheds light on the spatial distribution of farmland productivity
in the region. The oblateness of the ellipse was 56.5%, and the length of the major axis was
about 2.3 times that of the minor axis; this pattern suggests that farmland productivity is
strongly characterized by direction and is not uniformly distributed. The direction of the
long semiaxis of the ellipse is critical to understanding the spatial distribution of farmland
productivity. It reflects the direction of major spatial extension of farmland productivity,
while the short semiaxis represents the relative concentration of farmland productivity in
that direction. In addition, the rotation angle was 86◦, signifying that the FPCI center of
gravity was more prominently distributed in the northeast–southwest direction than in
the northwest–southeast direction, demonstrating distinct features. This may be related
to various factors such as geographic conditions, climatic factors, and agricultural prac-
tices in the region. For example, the northeast–southwest direction may be characterized
by more pronounced topographic variations, climatic differences, or uneven distribu-
tion of agricultural resources, leading to greater variation in farmland productivity in
that direction.

4.4. Study Limitations and Future Directions

The challenge in farmland productivity assessment lies in achieving a scientific under-
standing of the concept and dimensions of farmland productivity. The indicator system
that we have developed is specifically designed to address this challenge by adopting a
perspective rooted in the supply and demand relationship. Any changes in the level of
coupling and coordination within the various dimensions during the process of sustain-
able farmland development can significantly impact the overall farmland productivity [49].
However, our study currently lacks the necessary trade-offs to analyze the coordination and
coupling relationships among these dimensions. Therefore, future research should focus on
exploring these coupling and coordination relationships, which serve as the foundation for
investigating the primary drivers that influence farmland productivity [12]. Another area
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of concern is the variable impact of single-factor or multi-factor coupling on farmland pro-
ductivity. Hence, it is essential to comprehensively consider the differences in the influence
of various factors on farmland productivity. This will aid in further optimizing the method
for determining indicator weights and conducting scientifically grounded classification
research to rate assessment results [15].

It is important to emphasize that a singular definition of farmland productivity does
not align with the global consensus. This discrepancy arises from variations in the re-
quirements and the extent of land resource utilization across different historical periods
and stages of human social development. To enhance our approach, it should consider
additional dimensions such as economic pressures, socio-cultural factors, and land policies,
which are frequently excluded from direct investigation in farmland productivity assess-
ments [6,23]. We recommend that each country or region develop its unique farmland
productivity indicator system and establish baseline datasets. This information can be
derived from the perceptions of relevant and representative stakeholders. Such an approach
would significantly contribute to the global sustainable management of land resources [28].
Finally, we plan to select representative areas for sampling and validation in the future,
collect data on different indicators through field measurements, and compare and analyze
them with the comprehensive productivity indicators to further validate the farmland
productivity evaluation system established in this research.

5. Conclusions and Potential Implications

This study is a timely use of remote sensing to assess the farmland productivity of
the Northeast Typical Black Soil Region (NETBSR) and to provide support for the devel-
opment of strategies for the sustainable utilization of black soil resources. We emphasize
that a precise definition of farmland productivity, along with the accurate selection of
assessment perspectives and dimensions, serves as the foundation for monitoring and
assessing farmland productivity. Therefore, we have devised a comprehensive farmland
productivity indicator system for the NETBSR. This system incorporates 13 indicators
distributed across three dimensions: production conditions, soil properties, and ecological
environment. It is constructed based on the perspective of the supply and demand relation-
ship between human multi-level needs and the supply of farmland ecosystem services. The
assessment encompasses the analysis of the horizontal spatial differentiation pattern and
spatial autocorrelation of farmland productivity at the raster scale. The findings indicate
that farmland productivity in NETBSR exhibits similarity, concentrating predominantly
at relatively medium to high levels. This distribution follows a “spindle-shaped” pattern,
decreasing from south to north. The eastern region is found to be more favorable com-
pared to the western region. Notably, the central Songnen TBSS and the eastern Sanjiang
TBSS demonstrate relatively high productivity levels, while the western Mengdong TBSS
records lower productivity. There is a significant positive spatial correlation between the
productivity of NETBSR, with the “H-H” type distributed mainly in the Songnen TBSS and
the “L-L” type distributed mainly in the Mengdong TBSS, and with significant fluctuation
characteristics in the northeast–southwest direction. Our results show a stronger correlation
and a better fit with annual standard crop yields, thereby providing a valuable reference
for the sustainable utilization of NETBSR. These findings also support the evaluation of
land degradation as part of the SDGs.

We recommend that the Chinese government consider implementing the following
measures to increase attention to and safeguard the black soil, which plays a crucial role in
ensuring China’s food security: Clarify the objectives and scope of black soil protection,
and undertake research, monitoring, and assessment to understand the patterns of change
in black soil farmland quality. Additionally, tailor the preservation and restoration of
black soil to suit the specific conditions of various regions. More importantly, implement
conservation tillage practices to promote environmentally friendly production methods,
aiming to increase organic matter content and enhance the fundamental soil strength of
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black soil. This, in turn, can improve the sustainable utilization of China’s black soil
resources and help mitigate challenges related to food security.
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