remote sensing

Editorial

Road Extraction and Distress Assessment by Spaceborne,
Airborne, and Terrestrial Platforms

Valerio Baiocchi 11, Xianfeng Zhang 2

check for
updates

Citation: Baiocchi, V.; Zhang, X.; Mei,
A. Road Extraction and Distress
Assessment by Spaceborne, Airborne,
and Terrestrial Platforms. Remote Sens.
2024, 16, 1416. https://doi.org/
10.3390/rs16081416

Received: 27 March 2024
Accepted: 7 April 2024
Published: 17 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Alessandro Mei 3*

Department of Civil Construction and Environmental Engineering, Sapienza University of Rome,

00184 Rome, Italy; valerio.baiocchi@uniromal.it

Institute of Remote Sensing and Geographic Information Systems, School of Earth and Space Sciences,

Peking University, Beijing 100871, China; xfzhang@pku.edu.cn

3 Institute of Atmospheric Pollution Research (CNR-ITA), National Research Council of Italy, Monterotondo,
00185 Rome, Italy

*  Correspondence: alessandro.mei@cnr.it

1. Introduction

The road systems connecting villages, cities, and countries stand as a pivotal trans-
portation infrastructure in modern society [1], and road maps are widely used in navi-
gation, intelligent transportation, location-based services, emergency rescue, and urban
design [2]. Road extraction from remotely sensed imagery is one of the early-stage ap-
plications in the traffic industry. A road is usually seen as linear features in medium-
to low-resolution satellite imagery, or the central line of a road is extracted from high-
resolution imagery [1,2]. With the increasing availability of high-resolution remote sensing,
roads are no longer just extracted as linear features from images, but can be used to eval-
uate the health conditions of road pavements [3,4]. In the fields of computer vision and
autonomous driving, the focus is mainly on the recognition and extraction of targets such
as cracks, curbs, pedestrians, and cars [5]. In addition to conventional shallow machine
learning and mathematical morphology methods, deep neural networks have carried
out a significant amount of work in road pavement distress and road target extraction in
recent years [6,7]. The main remotely sensed data used in these studies are high-resolution
RGB images captured by vehicle-mounted and handheld cameras such as DeepCrack [8]
and RDD2022 [9]. The methods for assessing pavement aging and distress conditions can
be categorized into three types: image classification [10,11], object detection [5,6], and
semantic segmentation [7]. The pavement management system (PMS) often consists of
mounted sensors including CCD cameras and LiDAR, as well as ground-penetrating radar
(GPR) and thermal infrared sensors. At the same time, many researchers in the field of
remote sensing have attempted to use sub-meter satellite image data for pavement aging
assessment [4,11], and apply unmanned aerial vehicle (UAV)-captured RGB, multispectral,
and hyperspectral data for road distress detection and semantic segmentation [3,12]. In
addition, navigation street view images are also used for road distress identification in
urban areas [3]. From this point of view, the various remote sensor data with different
resolutions obtained by spaceborne, UAV, and terrestrial remote sensing systems offer
a new possibility for road aging and distress assessment. A research direction that is
becoming a hot topic is how to integrate remote sensing data from multiple modalities
to enhance sensing capability for pavement health conditions. For example, cracks may
be difficult to distinguish from gasoline stains, shadows, etc., in RGB and multispectral
images, but can be easily differentiated if high-resolution thermal infrared images can be
obtained simultaneously [13]. Closely related to multimodal remote sensing applications,
it is necessary to study new deep learning models that fully utilize the spatial, spectral,
depth, and thermal characteristics of road pavement distresses to construct deep artifi-
cial neural networks with strong generalization ability in order to provide more reliable
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technologies for road maintenance. It is undeniable that remote sensing technology has
become a new tool for assessing road pavement health conditions, and it is worthy of
further study. Therefore, we compiled a Special Issue for the journal Remote Sensing in
2022: “Road Extraction and Distress Assessment by Spaceborne, Airborne, and Territorial
Platforms”, which received contributions from several scholars. The 12 papers published
in this Special Issue will be introduced briefly in the following section.

2. An Overview of Published Articles

In the first analysis of the contributions presented, it can be observed that the majority
of them consistently utilize imagery from ground-based vehicle systems, developing sen-
sors as well as algorithms to automate the extraction of pavement damage in either fully
automatic or semi-automatic modes [2,3,5,7,9]. A growing number of papers, on the other
hand, employ ground-penetrating radar (GPR) techniques either alone [8,10,11] or in com-
bination with optical techniques [12]. Surveys from unmanned aerial vehicles (UAVs) are
also beginning to proliferate [4,6], while the use of true remote sensing techniques appears
to be more limited [1]. This evidence may reflect the fact that satellites and UAVs are not
globally integrated in terms of technical requirements for road management procedures.
Nonetheless, this kind of technology could be efficient and promising, especially when used
with AI techniques, to examine large road networks and to extract valuable parameters to
establish intervention priorities or to set up preventive maintenance programs.

In Liu et al. (contribution 1), the authors introduce a lightweight dynamic addition
network (LDANet) tailored for rural road extraction. To address the unique characteris-
tics of rural roads—narrowness, complexity, and diversity—they propose an enhanced
Asymmetric Convolution Block (ACB)-based Inception structure to augment low-level fea-
tures in the feature extraction layer. In the deep feature association module, they leverage
depth-wise separable convolution (DSC) to reduce computational complexity and design
an adaptation-weighted overlay to capture salient features effectively. Additionally, they
curate a rural road dataset based on the Deep Globe Land Cover Classification Challenge
dataset. Hence, LDANet exhibits promise for the rapid extraction and monitoring of rural
roads from remote sensing imagery.

The article by Song et al. (contribution 2) presents the creation of the ISTD-PDS7
dataset, the first of its kind aimed at multi-type pavement distress segmentation. This
dataset comprises natural charge-coupled device (CCD) images and encompasses seven
types of pavement distress across nine different scenarios, including negative samples with
texture similarity noise, resulting in a total of 18,527 annotated images, surpassing previous
benchmarks in scale. Additionally, the authors explore the efficacy of negative samples
in mitigating false positive predictions in complex scenes and propose two potential data
augmentation methods to enhance segmentation accuracy. The authors think that these
efforts will catalyze advancements in both academic research and industrial applications
within the field.

In Indcio at al. (contribution 3), the authors introduce a straightforward system
aimed at expediting road pavement surface inspection and analysis to facilitate main-
tenance decision-making. Leveraging a low-cost video camera mounted on a vehicle,
pavement imagery was captured and processed through an automatic crack detection
and classification system based on deep neural networks. The system offers a crack-
ing percentage per road segment, alerting experts to areas requiring attention, as well
as a segmentation map highlighting cracked areas on the road pavement surface. The
system seems to exhibit promising performance in highway pavement analysis, and its
automation and low processing time make it a valuable tool for experts engaged in road
pavement maintenance activities.

In the fourth text (contribution 4), the authors present a methodology for real-time
road extraction and condition detection using video footage captured by UAV multispectral
cameras or pre-downloaded multispectral images from satellites. The primary objective is to
detect road conditions and identify emergencies to provide timely assistance to individuals
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in the wild. By leveraging a normalized difference vegetation index (NDVI), the UAV
effectively distinguishes between bare soil roads and gravel roads, enhancing the accuracy
of route planning data. In the context of low-altitude human-machine interaction, the
authors utilized media-pipe hand landmarks and machine learning techniques to develop
a dataset comprising four fundamental hand gestures for dynamic gesture recognition. The
experimental results demonstrate that the model achieves very high accuracy on the testing
set. Through this proof-of-concept study, the authors claim that the described approach
fulfills the expected tasks of UAV rescue and route planning effectively.

In Wang et al. (contribution 5), the authors propose an improved version of the You
Only Look Once version three (YOLOV3) object detection model, integrating data augmen-
tation and structure optimization, to achieve the intelligent and accurate measurement
of pavement surface potholes. Initially, color adjustment techniques were employed to
enhance the image contrast, followed by data augmentation through geometric transforma-
tions. Pothole categories were further categorized into P1 and P2 based on the presence of
water. Subsequently, the structure of the YOLOv3 model was optimized using the Residual
Network (ResNet101) and complete IoU (CIoU) loss, while the multiscale anchor sizes were
refined through clustering and modification using the K-Means++ algorithm. Lastly, the
robustness of the proposed model was evaluated through the generation of adversarial
examples. The experimental results indicate a significant improvement over the original
YOLOvV3 model.

The article by Qiu et al. (contribution 6) proposes an Adaptive Spatial Feature Fusion
YOLOvV5 Network (ASFF-YOLOV5) for the automatic recognition and detection of multiple
multiscale road traffic elements. Initially, the K-means++ algorithm is utilized for clustering
statistics on the range of multiscale road traffic elements, facilitating the determination of
suitable candidate box sizes for the dataset. Subsequently, a Spatial Pyramid Pooling Fast
(SPPF) structure is integrated to enhance the classification accuracy and speed, enabling
richer feature information extraction. An ASFF strategy based on a Receptive Field Block
(RFB) is then introduced to improve the feature scale invariance and enhance the detection
of small objects. Finally, the experimental effectiveness is evaluated through mean average
precision (mAP) calculations. The results demonstrate that the proposed method achieves
a significant improvement over the original YOLOv5 model.

Zhang et al. (contribution 7) evaluated mainstream CNN structures for road crack
segmentation and propose a novel method, termed a Recurrent Adaptive Network (RAN),
inspired by the second law of thermodynamics. The RAN dynamically assesses the imbal-
ance degree, adjusts sampling rates, and modifies loss weights during training to maintain
a balanced flow between precision and recall, akin to temperature conduction. The authors
realized a dataset of high-resolution road crack images with pixel-level annotations (HRRC)
from real inspection scenes, enabling the comprehensive evaluation of CNN performance
in highway patrol scenarios. The primary contribution lies in addressing data imbalance
and guiding model training by analyzing precision and recall. The experimental results
seem to demonstrate the effectiveness of the RAN, achieving state-of-the-art performance
on the HRRC dataset.

Qi’s text (contribution 8) concerns a specific problem of some road infrastructure: the
block-stone embankment that is vital for stabilizing underlying warm and ice-rich per-
mafrost. It faces various damages over time, potentially compromising its cooling function
and exacerbating issues along the Qinghai-Tibet Highway (QTH). Ground-penetrating
radar (GPR), a nondestructive testing technique, was employed to assess damage proper-
ties in the embankment. An analysis of GPR imagery alongside other data and method-
ologies revealed several damage categories: loosening of the upper sand—gravel layer,
loosening of the block-stone layer, settlement of the block-stone layer, and dense filling
of the block-stone layer. While the first two conditions were widespread, settlement
and dense filling of the block-stone layer were less common, with occurrences of com-
bined damages also noted. The observed correlations among different damages suggest
underlying causal relationships.
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Chen’s study (contribution 9) introduces LeViT, a novel Transformer method for
automatic asphalt pavement image classification. LeViT comprises convolutional layers,
transformer stages alternating between Multi-layer Perception (MLP) and multi-head self-
attention blocks using residual connections, and two classifier heads. Leveraging three
different sources of pavement image datasets and pre-trained weights from ImageNet,
the authors compare the performance of LeViT with six state-of-the-art (SOTA) deep
learning models trained using transfer learning. The experimental results demonstrate
that after training for 100 epochs with a batch size of 16, LeViT achieves good results on
the Chinese asphalt pavement dataset as well as on the German asphalt pavement dataset,
outperforming all tested SOTA models. Moreover, LeViT exhibits superior inference
speed compared to the original ViT method as well as prominent CNN-based models like
DenseNet, VGG, and ResNet. Furthermore, the authors propose a visualization method
combining Grad-CAM and Attention Rollout to enhance the interpretability of LeViT,
facilitating the analysis of the classification results and insights into the learned features in
each MLP and attention block.

In the tenth study (contribution 10), the authors developed a method for the rapid
target identification and comparison of time-lapse GPR profiles. A field experiment was
conducted to monitor a backfill pit using three-dimensional GPR (3D GPR), with time-lapse
data collected over four months. A U-Net, a fast neural network based on convolutional
neural networks (CNNs), was trained using the collected data. The trained model effectively
segmented the backfill pit from inline profiles, achieving an Intersection over Union (IoU)
of 0.83 on the test dataset. Additionally, the comparison of segmentation masks revealed
potential changes in the southwest side of the backfill pit.

The article by Ling et al. (contribution 11) proposes a road subgrade monitoring
method based on the time-lapse full-coverage (TLFC) 3D GPR technique. The approach
focuses on resolving key challenges related to time and spatial position mismatches in
experimental data. By employing time-zero consistency correction, 3D data combination,
and spatial-position-matching methods, the approach seems to significantly enhance the
3D imaging quality of underground spaces. Furthermore, the authors utilized time-lapse
attribute analysis on TLFC 3D GPR data to extract detailed characteristics and overall
patterns of dynamic subgrade changes.

The last text (contribution 12) introduces a novel approach for the inverse calcula-
tion of material parameters to determine the mechanical response of asphalt pavements.
Initially, a modulus correction method is developed to minimize the error between the
tested and simulated strains. Furthermore, a dual sinusoidal regression model effectively
illustrates the relationship between temperature at various depths within the pavement
structure and atmospheric temperature. An analysis of the pavement monitoring data
reveals that increased loading weight and temperature, coupled with decreased loading
speed, lead to elevated three-way strain in the asphalt layer. Consequently, a relationship
model between loading conditions and three-way strain is established with high fidelity
(R? > 0.95). This comprehensive methodology addresses reliability issues with pavement
structure parameters and provides a quantitative assessment of structural conditions,
supporting the performance prediction and maintenance analysis of asphalt pavements
with a semi-rigid base.
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