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Abstract: The distribution and variation of top-of-atmosphere longwave cloud radiative forcing
(LCRFTOA) has drawn a significant amount of attention due to its importance in understanding the
energy budget. Advancements in sensor and data processing technology, as well as a new generation
of geostationary satellites, such as the FengYun-4A (FY-4A), allow for high spatiotemporal resolutions
that are crucial for real-time radiation monitoring. Nevertheless, there is a distinct lack of official
top-of-atmosphere outgoing longwave radiation products under clear-sky conditions (OLRclear).
Consequently, this study addresses the challenge of constructing LCRFTOA data with high spatiotem-
poral resolution over the full disk region of FY-4A. After simulating the influence of atmospheric
parameters on OLRclear based on the SBDART radiation transfer model (RTM), we developed a
model for estimating OLRclear using infrared channels from the advanced geosynchronous radiation
imager (AGRI) onboard the FY-4A satellite. The OLRclear results showed an RMSE of 5.05 W/m2

and MBE of 1.59 W/m2 compared to ERA5. The corresponding RMSE and MBE value compared to
CERES was 6.52 W/m2 and 2.39 W/m2. Additionally, the calculated LCRFTOA results were validated
against instantaneous, daily average, and monthly average ERA5 and CERES LCRFTOA products,
supporting the validity of the algorithm proposed in this paper. Finally, the changes in LCRFTOA due
to varied cloud heights (high, medium, and low cloud) were analyzed. This study provides the basis
for comprehensive studies on the characteristics of top-of atmosphere radiation. The results suggest
that high-height clouds exert a greater degree of radiative forcing more frequently, while low-height
clouds are more frequently found in the lower forcing range.

Keywords: satellite remote sensing; top-of-atmosphere; FengYun-4A; outgoing longwave radiation;
clear-sky; cloud radiative forcing

1. Introduction

Assuming that the climate system is in balance, the solar radiation will be exactly
equal to the longwave radiation emitted into space [1]. Radiative forcing refers to any
external factor that has the potential to disturb this balance and, consequently, alter the
Earth’s climate. Cloud radiative forcing (CRF) refers to the influence that clouds have on the
Earth’s atmospheric system; this is a key concept in climate science and is a valuable tool
for quantifying and comparing the potential impacts of various human and natural factors
on the climate [2]. Understanding the mechanisms behind CRF is crucial for improving
the predictive ability of climate models—at present, there is still a significant amount of
uncertainty regarding the nature of cloud feedback mechanisms in current models [3].
Consequently, in-depth research on the role of clouds in atmospheric longwave radiative
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forcing is crucial for accurately predicting future climate change, as well as developing
effective climate policies and adaptation measures [4,5].

To obtain CRF, a significant amount of research on surface and top-of-atmosphere ra-
diation has been conducted using satellite data and model simulations [6–9]. The accuracy
of CRF primarily depends on the accuracy of radiation components since the CRF can be
estimated by the difference in radiation between all-sky and clear-sky conditions [10]. Ever
since Fritz et al. (1964) proposed the first radiation retrieval algorithm based on satellite
remote sensing, there has been a significant amount of research into the measurement of
radiation using remote sensing, including estimates of surface and atmospheric longwave
radiation [11]. Traditional atmospheric radiation algorithms mostly rely on empirical formu-
las for calculation, and tend to have poor generalizability [12]. Consequently, the theoretical
algorithms based on remote sensing-derived radiation measurements are constantly being
improved. These algorithms can be divided into several categories, including radiative
transfer models (RTM) [13], parameter algorithms [14], machine learning algorithms [15],
and lookup table (LUT) algorithms [16,17].

Several methodologies have developed with the increasing availability of broadband
and multispectral satellite observations from polar orbit or geostationary satellites. Satellites
equipped with broadband-based instruments include the Clouds and the Earth’s Radiant
Energy System (CERES) [18], the Scanner Radiometer for Radiation Budget (ScaRab) [7],
and the Earth’s Radiation Budget Experiment (ERBE) [19]. These instruments use short-
wave and longwave (or full-wave) broadband channels for scanning observations. Since
these instruments observe the Earth at a specific viewing direction, angular distribution
models (ADM) or RTMs utilize input from atmospheric and surface characteristics from
other sources to calculate the reflected shortwave radiation (planetary albedo) or emitted
longwave radiation [20]. However, the application of these retrieval algorithms, which are
based on physical radiation transfer mechanisms, is challenging as they are based on strict
physical mechanisms and require high-precision atmospheric parameters as inputs. This
may result in errors as well as insufficient temporal and spatial resolutions. Indeed, the
broadband sensors installed on polar-orbiting satellites only have a 12- or 24-h revisit time,
as well as a spatial resolution that is still insufficient for several applications [21].

With the development of more precise methods of obtaining cloud observations, as
well as the measurement of surface and atmospheric features using satellites, radiation
methods based on multispectral narrowband sensors have become increasingly attrac-
tive. These products are more diverse and provide higher spatial resolutions, such as
the Advanced Very-High-Resolution Radiometer (AVHRR), the High Resolution Infrared
Radiation Sounder (HIRS) [22], the Communication Oceanography Meteorological Satellite
(COMS) [23], and the Rotating Enhanced Visible and Infrared Imager (SEVIRI) radiometer
on the Meteosat second-generation (MSG) satellite [24]. Since the values recorded by these
detection channels represent only a part of the radiation and include the main factors that
influence reflected or emitted radiation, measurements of reflected and emitted terrestrial
radiation can be achieved through specific retrieval models composed of spaceborne nar-
rowband infrared radiometers, as well as a combination of one or more radiation spectral
regions. However, current LUT methods typically depend on a single band, which may be
insufficient to accurately distinguish complex atmospheric conditions [15].

Therefore, the integrated retrieval of radiation measurements based on multiple chan-
nels is widely expected to become a mainstream in the remote sensing industry [20]. In
addition, there are still potential ways of improving the spatiotemporal resolution and
accuracy of CRF measurements. Machine learning methods represent the latest frontier
in remote sensing retrieval, and are greatly suited to the handling of complex linear and
nonlinear relationships [25]. They can extract continuous and accurate spatiotemporal
radiation measurements and have been increasingly adopted in radiation estimation in
recent years [26]. In particular, the new generation of geostationary satellites, including
the FY-4, Himawari-8, GOES-R, and Meteosat-8, can capture long-term, wide-range, and
continuous data about the state of the atmosphere [14]. These datasets are extremely useful
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for monitoring weather phenomena and recording extreme events for scientific analysis
and simulation and will help to improve research on large-scale weather phenomena and
disastrous weather conditions [27].

The objective of this study is to build a model capable of generating the estimated top-
of-atmosphere outgoing longwave radiation products under clear-sky conditions (OLRclear)
with the goal of constructing a LCRFTOA dataset based on a sensitivity analysis of the influ-
ence of atmospheric parameters on OLRclear using the Santa Barbara DISORT Atmospheric
Radiation Transfer (SBDART) RTM. Here, a highly efficient machine learning method is
applied to estimate OLRclear to further improve the spatiotemporal resolution of LCRFTOA
using the FY-4A satellite. The final dataset can be used for energy budget studies, as well as
an analysis of the spatiotemporal changes of LCRFTOA. This paper is organized as follows:
Section 2 presents the RTM and satellite data used in this study, as well as the method
used to estimate OLRclear and, subsequently, LCRFTOA. Section 3 introduces the sensitivity
analysis based on the SBDART results and the verification of radiation measurements
before the study is discussed in Section 4. The conclusion is shown in Section 5.

2. Materials and Methods
2.1. Materials
2.1.1. The SBDART Model

The atmospheric RTM used in this study is the SBDART model, an advanced numeri-
cal atmospheric RTM used to calculate the planar parallel radiation transfer in the Earth’s
atmosphere and at the surface under both clear-sky and cloud conditions [28]. This RTM
model is based on the DISORT (Discrete Sequence Radiation Transfer) algorithm and can
accurately simulate the interaction of solar and longwave radiation with the atmosphere,
considering gases, aerosols, clouds, and surface reflections. Its applications span climate
research, the interpretation of remote sensing data, atmospheric composition monitoring,
and environmental assessment. The SBDART model has been highly praised for its flexibil-
ity and accuracy in scientific research, and it is an important tool in atmospheric and earth
science research.

SBDART’s ability to model the atmospheric radiation balance and understand climate
change and atmospheric chemistry has made it a valued tool in atmospheric and earth
science research. It requires inputs like atmospheric structure, temperature, humidity, and
cloud cover, usually sourced from observations or meteorological models, to simulate
radiative processes and contribute to remote sensing and climate change studies [29].

2.1.2. ERA5 Reanalysis Data

The ERA5 dataset is a global climate and weather reanalysis dataset provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF). It provides data on
atmospheric, land surface, and oceanic variables at an hourly temporal resolution and a
spatial resolution of approximately 25 km, with data available from as early as 1979 [30].
The ERA5 dataset utilizes observations from hundreds of satellites and ground observation
datasets, generated through advanced numerical weather forecasting models and data
assimilation systems, and aims to provide high-quality, assimilated, and consistent global
data for climate research, weather forecasting, and environmental monitoring. Users
can access the Climate Data Store and obtain ERA5 data through their official website
(https://cds.climate.copernicus.eu/, accessed on 21 December 2023). The ERA5 skin
temperature and water vapor product used in this study is provided by the ECMWF as
part of its fifth-generation global climate reanalysis project, which provides hourly data
at a global scale. These data reflect real-time temperature and water vapor conditions on
the Earth’s surface and can be applied to studies involving energy balance, climate change,
weather patterns, environmental monitoring, and agriculture.

https://cds.climate.copernicus.eu/
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2.1.3. Satellite Data

(1) FY-4A

The FY-4A satellite is an advanced geostationary satellite operated by the National
Meteorological Satellite Center of China (NSMC). It is the fourth-generation meteorological
satellite from the FengYun satellite series and was successfully launched on 11 December
2016 [31]. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main
payloads on the satellite, has multispectral imaging capabilities at a high temporal and
spatial resolution. AGRI is capable of global imaging every 15 min and regional imaging
every 5 min at a spatial resolution ranging from 0.5 km (in the visible spectrum) to 4 km
(in the infrared channels). The varying spatial resolutions at different wavelengths are an
attempt to balance the need for spatial coverage and highly detailed maps, allowing AGRI
to continuously monitor the Earth on a global scale while still capturing subtle changes in
key areas. This mission has been instrumental in improving the quality of meteorological
services and supporting scientific research. In general, the deployment of the FY-4A/AGRI
marks an important step in Chinese geostationary meteorological observation technology,
and provides strong technical support for global meteorological services, as well as disaster
prevention and environmental monitoring initiatives.

This paper used the infrared channels (6.25–13.5 µm) obtained from AGRI to estimate
OLRclear. These data have undergone basic processing such as signal correction and data
formatting. The outgoing longwave radiation and cloud top height products from FY-
4A were downloaded from the NSMC website (http://www.nsmc.org.cn/, accessed on
25 December 2023).

(2) CERES

The CERES sensor is a satellite instrument developed as part of NASA’s Earth Observ-
ing System (EOS) program. CERES has three main data products: Single Scanner Footprint
(SSF), Synaptic TOA and surface fluxes and clouds (SYN), and Energy Balanced and Filled
(EBAF). These data help scientists understand the Earth’s energy balance and how clouds,
aerosols, and greenhouse gases can affect this balance [32]. These data are available from
the official CERES website (https://ceres.larc.nasa.gov/data/, accessed on 5 January 2024).

This paper uses the SYN global radiation product with a temporal resolution of 1 h
and a spatial resolution of 100 km. Its radiation products are mainly based on cloud,
aerosol, and atmospheric gas data that are processed using an improved Fu Liu RTM [18].
At present, the accuracy of CERES-SYN’s radiation products has been fully validated by
surface measurement data and has been widely used for comparison against other radiation
products [16,17]. The CERES Level III SYN radiation product (version 4.1) was used to
comprehensively validate the final LCRFTOA results.

2.2. Methods
2.2.1. LCRFTOA Algorithm

The LCRFTOA quantifies the changes in net longwave energy at the top of the atmo-
sphere due to the presence of clouds, specifically, these changes are dependent on the
macro- and micro-physical properties of clouds [20]. Positive radiative forcing often warms
the Earth’s surface by capturing more heat, while negative radiative forcing results in
global cooling by allowing more energy to escape into space. The universal formula used
to calculate radiative forcing is as follows [33]:

CRF = F↓(all)− F↑(all)− F↓(clear) + F↑(clear) (1)

In Equation (1), “F(all)” and “F(clear)” refer to the radiative flux under all-sky and
clear-sky conditions, respectively. Since the downward longwave radiation at the top of

http://www.nsmc.org.cn/
https://ceres.larc.nasa.gov/data/
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the atmosphere is negligible, the formula for calculating the CLRFTOA can be simplified
as follows:

LCRFTOA = F↑TOA(LWclear)− F↑TOA(LWall)

LCRFTOA = OLRclear −OLRall

(2)

In Equation (2), OLRall refers to outgoing longwave radiation under all-sky conditions,
which can be obtained from publicly available FY-4A satellite products. This section
describes the algorithm used to generate OLRclear values.

OLRclear refers to radiation exchange under clear-sky conditions (i.e., without cloud
obstruction), such that the LCRFTOA of clear-sky pixels is 0. Radiation under clear-sky
conditions in pixels with clouds must be calculated as if the clouds in that pixel did not exist
(i.e., ignoring the influence of cloud parameters). Consequently, this requires simulating
the physical processes of radiation transfer in the atmosphere. To accomplish this, the
parameter settings for clouds are first turned off in the RTM, such that only non-relevant
cloud parameters, such as surface temperature, surface albedo, water vapor, and ozone
content, are considered. Based on the sensitivity analysis conducted using SBDART, the
input parameters in the algorithm include water vapor column, surface temperature, and
all infrared channels from AGRI; ERA5 OLRclear data was selected as the benchmark for
this algorithm.

In this study, Extreme Random Trees (ERT) was selected as the optimal machine
learning technique to enhance computational efficiency. ERT, a refined variant of the Ran-
dom Forest algorithm, injects an additional layer of randomness into the decision-making
process, thereby augmenting the model’s diversity. The primary objective of employing
ERT is to bolster the model’s generalizability, achieved by enhancing its diversity and
simultaneously curbing its variance. This method proves particularly adept at navigating
the complexities of high-dimensional datasets and intricate feature interactions, a critical
advantage underscored in our study [34].

To underpin our analysis, we curated a comprehensive training dataset, amassing
over 3 million observations collected on the 5th and 15th of each month throughout 2019
from the ERA5 database. Notably, this dataset was carefully vetted to ensure no quality
anomalies were present. Prior to training, we conducted meticulous pre-processing of the
data, which included normalization to ensure uniformity in scale and a strategic division
into training, validation, and testing subsets. Importantly, we allocated 10% of the dataset as
an independent validation set, a measure that guarantees the validation process’s integrity
by preventing the model from being trained on these data. This model intricately maps
the relationship between various input parameters and their corresponding predicted
outcomes, enabling the accurate calculation of the target variables. This approach not only
showcases the efficacy of ERT in handling complex predictive tasks but also illuminates the
potential for machine learning techniques to significantly contribute to the advancement of
scientific inquiry in our field. Finally, a non-linear regression relationship between input
parameters and predicted values (OLRclear) was constructed to calculate the LCRFTOA.

2.2.2. Evaluation Metrics

The following metrics were used to assess the performance of the model developed
in this study: Correlation coefficient (R), evaluation bias (MBE), and root mean squared
error (RMSE).

(1) The correlation coefficient is used to represent the linear correlation between the
predicted values and the actual data and is calculated as follows:

R =
∑n

i=1

(
x .

i
− x
)
(yi − y)√

∑n
i=1 (xi − x)2∑n

i=1(yi − y)2
(3)
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(2) The RMSE represents the error between the retrieved parameter values and the actual
data: the smaller the RMSE, the smaller the error between the two values. The RMSE
is calculated as follows:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(4)

(3) The MBE represents the degree to which the parameter values approximate the real
data as well as the direction of the deviation between predicted and true values. The
MBE is calculated as follows:

MBE =
1
n

n

∑
i=1

(x i − yi) (5)

In the formula above, n is the number of samples; xi represents the reference value
(i.e., the true value of the parameter retrieved result); and yi represents the predicted result.

While RMSE reflects the overall error between predicted and true values, MBE reflects
the direction in which the predicted values differ from the true values: When MBE is
positive, the predicted values overestimate the target variable, and when MBE is negative,
the predicted values underestimate the retrieved result. The value of R ranges between 0
and 1, where higher values indicate a strong correlation between the predicted and true
values. Figure 1 illustrates the process of model construction.
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Figure 1. Flowchart of OLRclear modeling process and LCRFTOA calculation.

3. Results
3.1. Sensitivity Analysis Using SBDART
3.1.1. Total Water Vapor Column

Atmospheric parameters are essential physical quantities that characterize atmospheric
conditions. They play a pivotal role in understanding meteorological and climatic phenom-
ena, making weather predictions, and advancing atmospheric science research. The most
important atmospheric parameter in the context of longwave radiation is the total water
vapor column (TWVC), which refers to the total amount of water vapor in the atmosphere,
usually expressed in specific regions or vertical columns. This parameter includes the entire
height and all types of water vapor in the atmosphere, including water vapor, liquid water
droplets, and ice crystals. The sensitivity of longwave radiation to changes in water vapor
levels is crucial for understanding how changes in atmospheric water vapor affect climate
change and its feedback mechanisms.
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An increase in TWVC enhances the absorption of longwave radiation. Water vapor
molecules are particularly effective in absorbing infrared radiation, especially at wave-
lengths associated with thermal radiation. Figure 2 shows the changes in longwave ra-
diation irradiance (W/m2/µm) corresponding to different TWVC between 0–100 g/cm2

at wavelengths between 3–30 µm, and the values in parentheses in the legend represent
the integrated radiation flux values for all bands (equal to OLRclear). It can be seen that
lower TWVC results in higher values of OLRclear. The difference in the maximum and
minimum radiation values is 82 W/m2 (from a minimum of 160 W/m2 to a maximum
of 242 W/m2). The impact of TWVC on OLRclear is significant and must be included in
the input parameters of the OLRclear algorithm. Higher levels of TWVC also increase the
strength of greenhouse effects by capturing more heat in the atmosphere. In contrast, lower
water vapor concentrations can lead to the reduced absorption of longwave radiation, al-
lowing more infrared radiation to escape into space, and resulting in enhanced atmospheric
radiative cooling. Thus, the impact of water vapor on longwave radiation is a key factor in
climate modeling.
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Figure 2. Longwave radiation irradiance (W/m2/µm) at different atmospheric TWVC (g/cm2) at
wavelengths between 3–30 µm. The different colors represent different TWVC, and the values in
parentheses in the legend represent the integrated radiation flux values for all bands.

3.1.2. Atmospheric Profiles

In the context of RTMs, the atmospheric profile refers to the variation of several
physical atmospheric characteristics with altitude, including temperature, humidity, and
pressure. Because these physical atmospheric parameters directly affect the absorption,
emission, and scattering of radiation, measuring and analyzing atmospheric profiles can
help researchers understand the vertical structure of the atmosphere and reveal differences
in meteorological and climatic processes at different altitudes. This information is crucial for
simulating and understanding the mechanisms behind radiation transfer processes. Gener-
ally, RTMs use built-in atmospheric profile data. Figure 3 presents the impact of different
atmospheric profile models on longwave radiation irradiance (W/m2/µm) at wavelengths
between 3–30 µm, with each color representing one of six SBDART atmospheric profile
models. The figure shows that the tropical model has the highest OLRclear, followed by
the mid-latitude summer, mid-latitude winter, high-latitude summer, high-latitude winter,
and the US standard models in descending order. Tropical regions usually have a high
incidence of solar radiation, resulting in relatively high surface temperatures; consequently,
more longwave radiation is emitted from the surface. In addition, the atmosphere above
tropical regions is usually characterized by high water vapor contents and high cloud
coverage, which are factors that have a significant impact on OLRclear.
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Figure 3. The impact of six atmospheric profile models included in SBDART on longwave radiation
irradiance (W/m2/µm) at wavelengths between 3–30 µm. Each color represents a different atmo-
spheric profile model, and the values in parentheses in the legend represent the integrated radiation
flux values for all bands (OLRclear).

3.1.3. Surface Temperature

Another influential parameter on OLRclear is surface temperature. Surface temper-
ature has a strong influence on the radiation balance of the Earth’s system. Increases
in surface temperature lead to increases in the intensity of surface radiation and, conse-
quently, stronger OLRclear. Figure 4 presents the variation in longwave radiation irradiance
(W/m2/µm) with surface temperature (K) at wavelengths between 3–30 µm. Surface tem-
peratures between 210–330 K were used for this assessment, as this represents the general
range of surface temperatures that would be expected on Earth. The figure shows that
higher surface temperatures result in greater OLRclear. The impact of surface temperature
on atmospheric longwave radiation is evident and must be included in the input param-
eters. The changes in surface temperature can also alter the intensity and wavelength of
transmitted radiation, which affects the distribution and characteristics of atmospheric
longwave radiation.
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3.2. Validation
3.2.1. Quantitative Verification of OLRclear Results

This study used monthly data from 2018 to quantitatively evaluate the OLRclear ob-
tained from the AGRI instrument. Figure 5 compares the OLRclear values obtained from
our algorithm with the ERA5 and CERES data recorded in April, August, and December
2018. The results showed that the correlation coefficients of the relationship between the
OLRclear and ERA5 values were 0.92, 0.94, and 0.93 for April, August, and December 2018,
respectively. The corresponding MBE and RMSE for each month were 1.87 W/m2 and
5.64 W/m2 in April, 1.43 W/m2 and 4.66 W/m2 in August, 1.46 W/m2 and 4.84 W/m2

in December, respectively. The correlation coefficients of the relationship between the
OLRclear and CERES values were 0.89, 0.91, and 0.90 for April, August, and December 2018,
respectively. These results suggest that the OLRclear values obtained from the AGRI instru-
ment were very close to the values recorded by international mainstream products, and can
thus be effectively applied to AGRI data from other international and domestic satellites.
In addition, FY-4A has a better spatiotemporal resolution compared to ERA5, allowing
for improved capturing of subtle changes. The ERT-based OLRclear product developed
in this study has thus been shown to have high accuracy and has been validated against
ERA5 and CERES observations, which indirectly validates the accuracy of any calculated
LCRFTOA values.
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3.2.2. The Spatial Distribution of LCRFTOA Results

To validate the detailed spatial distribution of LCRFTOA estimates made by the algo-
rithm, the predicted values were compared with different products in smaller localized
areas. Figure 6 compares the ERA5, CERES, and the estimated values of LCRFTOA in
two selected sub-regions. The fact that the low value of OLR in these areas is due to the
absorption of longwave radiation from the surface by clouds and the lower temperatures
at the cloud top, resulting in lower OLR. Figure 6 shows that the LCRFTOA in all three
products has relatively similar spatial distributions. It should be noted that the spatial
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resolution of CERES products is 100 km, making it difficult to distinguish the LCRFTOA in
these local areas. While the spatial resolution of the ERA5 reanalysis data is better than the
CERES products (25-km resolution), its resolution is still relatively coarse. The inversion
results obtained by the algorithm developed in this study not only match well with the
spatial distribution of the LCRFTOA results obtained from CERES but also have a spatial
resolution of 4 km, which is significantly better than the ERA5 products. The results of
our quantitative evaluation also confirm that the inversion results obtained by our model
are closer to the CERES data compared to the ERA5 products and that the accuracy of
the product is relatively high. Figure 6 also shows that the resolution of the LCRFTOA
product obtained by the algorithm is significantly higher than the other two products, just
to detect changes in LCRFTOA in greater spatial detail. In general, the LCRFTOA products
from the algorithm developed in this study have a wide coverage, a high spatial resolution,
and a 24-h revisit time, providing insights into the study of top-of-atmosphere radiation
energy balance.
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Long-term trends in radiation levels can be identified by analyzing daily and monthly
averages, which can provide researchers with a deeper understanding of the Earth’s
energy balance, help monitor climate change processes, and validate meteorological and
weather models. Three months’ worth of OLR under all-sky and clear-sky conditions were
obtained from the ERA5 and CERES websites and used to calculate the LCRFTOA values
for these months. Figure 7 shows the spatial distribution of the daily mean LCRFTOA
values on 1 April, 1 August, and 1 December 2018 as calculated by our algorithm, as
well as the LCRFTOA values calculated from ERA5 and CERES data during the same
period. Once again, the spatial distribution of the LCRFTOA values calculated by our
algorithm has strong similarities with the results generated by the ERA5 and CERES
products. Figure 8 shows the spatial distribution of the monthly average LCRFTOA values
in April, August, and December 2018 as calculated by our algorithm, ERA5, and CERES
data. This figure highlights the stable and reliable results obtained by our model, with
LCRFTOA values ranging between 0–100 W/m2 over monthly timescales. Figure 8 also
shows that clouds have a positive feedback effect on warming, with LCRFTOA values
ranging from 0–100 W/m2. For example, Australia is located in the southern hemisphere
and belongs to a semi-arid and arid climate. Here, the air is relatively dry, and the relatively
low water vapor content leads to less cloud formation. Consequently, the Australian region
experiences low LCRFTOA values across all seasons.
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3.3. Analysis of LCRFTOA Changes
3.3.1. Analysis of LCRFTOA Changes Due to Varying Clouds Heights

Clouds at different heights can affect the absorption, reflection, and emission of
longwave radiation, and their ability to regulate atmospheric radiation varies greatly;
consequently, clouds at different heights have a strong impact on LCRFTOA values. A
deeper understanding of the changes in LCRFTOA caused by different cloud heights will
help researchers achieve a greater understanding of the dynamic processes of the climate
system, supporting research in meteorology and climate modeling, and helping to address
climate change. The cloud top height data employed in this section is derived from
the official cloud top height product of the FY-4 satellite. According to the standard of
classification of the International Satellite Cloud Climatology Project (ISCCP), clouds are
classified into three categories based on their altitude: high, middle, and low clouds. This
classification helps in understanding cloud dynamics, energy balance, and their impact
on the Earth’s climate. Here are the altitude ranges for each category: High clouds are
typically selected above 6500 m and usually found in the middle latitudes. High clouds are
composed mainly of ice crystals due to the cold temperatures at these altitudes. Middle
clouds generally form between 2000 m and 6500 m. They can be composed of water
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droplets, ice crystals, or a combination of both, depending on the temperatures present at
their altitude. Low clouds are found up to 2000 m above the Earth’s surface. Low clouds
are primarily made up of water droplets, although they can also contain ice particles when
the temperature is low enough. Figure 9 presents the diurnal variation and frequency
distribution of LCRFTOA during periods of high-, medium-, and low-height clouds in
different months in 2019. High-height clouds are mainly composed of ice crystals with high
albedo, while low-height clouds are usually composed of water droplets with relatively low
albedo. Therefore, the LCRFTOA values are highest during periods of high-cloud conditions,
followed by medium- and low-height clouds (Figure 9). This suggests that high-height
clouds have the greatest impact on positive radiative forcing. Figure 9 also shows that the
range of radiation forcing for clouds of each height is relatively small even over monthly
timescales. The second column of Figure 9 shows the frequency distribution of LCRFTOA
values under different cloud conditions, with the peak density distribution of high-height
clouds found at the higher range of LCRFTOA values. In contrast, the density distribution
curve of the middle-height clouds has a broader peak that falls between the middle range
of LCRFTOA values, while low clouds have a sharper peak at the lower range of LCRFTOA
values. These results suggest that high-height clouds exert a greater degree of radiative
forcing more frequently, while low-height clouds are more frequently found in the lower
forcing range.
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3.3.2. Extreme Event Analysis

The high spatiotemporal resolution radiation of the LCRFTOA products presents sig-
nificant advantages for extreme event analysis. These advantages help researchers better
understand, monitor, and respond to extreme weather and climate events, which include ty-
phoons, rainstorms, high temperatures, droughts, and floods. These events can significantly
change the dynamics and thermodynamic processes of the atmospheric system and have
direct and indirect effects on the LCRFTOA. For example, rainstorms may lead to a sharp
increase in water vapor content in the atmosphere, while also resulting in a wider range
of cloud cover. Extreme high-temperature events and extreme low-temperature events
can both affect the temperature distribution of the atmosphere, which could potentially
lead to increases in surface temperature, changes in the vertical distribution of atmospheric
temperature, or the formation of an inversion layer. Due to the close relationship between
radiation and temperature, these temperature changes have a direct impact on LCRFTOA.

Typhoons are an example of how high spatial resolution radiation data can be helpful
for extreme event analysis. Typhoon systems are often accompanied by large-scale cloud
clusters and precipitation, which have a strong impact on LCRFTOA. In the path of a ty-
phoon, increases in cloud cover lead to a decrease in top-of-atmosphere longwave radiation.
Figure 10 shows the distribution of LCRFTOA values at different spatial resolutions in
typhoon areas at 00:00, 04:00, 08:00, 12:00, 16:00, and 20:00 UTC on 1 October 2018. The
figure clearly shows that the LCRFTOA changes several times throughout the day due to
changes in cloud cover and other atmospheric conditions. The results from this study, as
shown in the first panel, have a spatial resolution of 4 km, whereas the corresponding
data from CERES, illustrated in the second panel, offer a spatial resolution of only 100 km.
When comparing these two sets of images, it becomes evident that the distribution of the
typhoon eyes is clearly discernible in the high-resolution images produced by the proposed
algorithm. In contrast, such clarity is lacking in the low-resolution images provided by the
CERES product.
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04:00, 08:00, 12:00, 16:00, and 20:00 UTC on 1 October 2018.

4. Discussion

This paper focuses on assessing LCRFTOA, leveraging data from the geostationary
FY-4A satellite. A crucial preliminary step involves estimating the OLRclear. The study
achieved this by using SBDART, a highly validated and widely used radiative transfer
tool, which incorporates DISORT for its multiple scattering radiative transfer calculations.
The validity of the methodology is confirmed through comparisons with ERA5 reanalysis
data and CERES measurements. The correlation coefficient between the instantaneous
OLRclear values obtained by the proposed algorithm and the corresponding ERA5 product



Remote Sens. 2024, 16, 1415 15 of 17

was 0.93 with an RMSE of 5.04 W/m2 and MBE of 1.58 W/m2. In addition, the calculated
LCRFTOA results were compared to the instantaneous, daily average, and monthly average
LCRFTOA values obtained from ERA5 and CERES observations. The results show that
the LCRFTOA product generated from the proposed OLRclear algorithm had similar spatial
distributions to the mainstream products, and had a reasonable degree of agreement
with the internationally recognized high-precision CERES radiation results. These results
highlight the effectiveness and generalizability of the algorithm to both international and
domestic satellites.

The study further presents the diurnal variation and frequency distribution of the
LCRFTOA during periods of high-, medium-, and low-height clouds in different months in
2019. High-height clouds are mainly composed of ice crystals with high albedo, while low-
height clouds are usually composed of water droplets with relatively low albedo. Therefore,
the LCRFTOA values are highest during periods of high-cloud conditions, followed by
medium- and low-height clouds.

The products’ high spatiotemporal resolution radiation offers substantial benefits
for analyzing extreme events. These advantages equip researchers with enhanced capa-
bilities to comprehend, monitor, and react to extreme weather and climate phenomena,
encompassing typhoons, rainstorms, heatwaves, droughts, and floods. Such events can
profoundly alter the dynamics and thermodynamic processes within the atmospheric sys-
tem, exerting both direct and indirect impacts on the LCRFTOA. Typhoons are an example
of how high spatial resolution radiation data can be helpful for extreme event analysis.
Typhoon systems are often accompanied by large-scale cloud clusters and precipitation,
which have a strong impact on LCRFTOA. With the results from this study, it becomes
evident that the distribution of the typhoon eyes is clearly discernible in the high-resolution
images produced by the proposed algorithm. In contrast, such clarity is lacking in the
low-resolution images provided by the CERES product.

5. Conclusions

This paper uses the SBDART model to simulate the entire process of how radiation
passes through the atmosphere based on the principle of atmospheric radiation transfer.
Sensitivity analyses were conducted on important factors such as the surface temperature
and total water vapor column, and the quantitative effects of these factors on OLRclear
were calculated. Based on the results of the sensitivity analyses, a highly efficient machine
learning method was used to estimate OLRclear using infrared channels from the AGRI
instrument onboard the FY-4A geostationary satellite and was validated against the ERA5
reanalysis data. The FY-4A-based OLRclear product was intended to provide highly accurate
LCRFTOA data at higher spatiotemporal resolutions. The correlation coefficient between the
instantaneous OLRclear values obtained by the proposed algorithm and the corresponding
ERA5 product was 0.93 with an RMSE of 5.04 W/m2 and MBE of 1.58 W/m2. In addition,
the calculated LCRFTOA results were compared to the instantaneous, daily average, and
monthly average LCRFTOA values obtained from ERA5 and CERES observations. The
results show that the LCRFTOA product generated from the proposed OLRclear algorithm
had similar spatial distributions to the mainstream products, and had a reasonable degree
of agreement with the internationally recognized high-precision CERES radiation results.
These results highlight the effectiveness and generalizability of the algorithm to both
international and domestic satellites.
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