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Abstract: The Soil Moisture Active–Passive (SMAP) mission has greatly contributed to the use of remote
sensing technologies for monitoring the Earth’s land surface and estimating geophysical parameters that
influence the climate system. Since the SMAP mission switched its radar receiver to allow the reception
of Global Positioning System (GPS) signals, Global Navigation Satellite System Reflectometry (GNSS-R)
configuration has been enabled, providing full polarimetric forward scattering measurements of the
Earth’s surface, also known as SMAP Reflectometry or SMAP-R. Polarimetric GNSS-R is beneficial for
sensing land surface properties, especially for more accurate estimations of soil moisture (SM) in densely
vegetated areas. In this study, we explore the opportunity to enhance SMAP mission soil moisture
estimates using reflected GNSS signals. We achieve this by interpolating the sparse reflectivity data with
terrain information to disaggregate radiometer brightness temperatures. Our main objective is to present
a novel algorithm based on Graph Signal Processing (GSP) that uses reflectometry data to enhance
SMAP radiometer observations and ultimately improve SM retrievals. By implementing methods
from the GSP field, we formulate the reflectivity interpolation problem as a signal reconstruction on
a graph, where the weights of the edges between the nodes are chosen as a function of geophysical
information. Subsequently, using the retrieved reflectivity maps, we increase the resolution of the
brightness temperature data, leading to an improvement in the SM estimates. Initial findings indicate
that our GSP method presents a promising alternative for analyzing sparse remote sensing observations,
leveraging Earth’s surface geophysical information. This approach results in a notable improvement,
with a reduced Root Mean Square Error (RMSE) of 11.8% compared to SMAP data and a reduction in
unbiased RMSE (uRMSE) by 14.7% over vegetated areas.

Keywords: soil moisture active–passive (SMAP); global navigation satellite system reflectometry
(GNSS-R); SMAP reflectometry (SMAP-R); graph signal processing (GSP); terrain information

1. Introduction

The advancement of remote sensing technologies has been instrumental in enriching
our comprehension of Earth’s processes, particularly in analyzing Earth’s hydrological
and climatic phenomena. These technologies, including radiometers, synthetic aperture
radars (SAR), and optical sensors, supply diverse and valuable data that open new research
avenues. These advancements enrich remote sensing applications that enhance crop yield
prediction, facilitate the detection of vegetation changes, improve weather forecasting,
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and contribute to the analysis of the global carbon cycle. To accurately model hydrologic
processes, it is vital to consider Essential Climate Variables (ECVs) such as soil moisture
(SM), precipitation, and evapotranspiration [1]. ECVs are physical, chemical, or biological
variables that play a critical role in characterizing Earth’s climate and serve as key indica-
tors of environmental changes, making their effective monitoring essential for ecosystem
analysis. In particular, SM, a biological and geophysical indicator, plays a key role in the
Earth’s system, influencing vital processes like vegetation growth, climate predictions, and
hydrological models [2]. It directly affects plant health, growth, and water availability
for vegetation. Acting as a crucial land geophysical metric, SM mediates the exchange of
energy and water between the land’s surface and the atmosphere. Therefore, the precision
and comprehension of SM metrics are indispensable for climate prediction, water resource
management, and the refinement of hydrological models. As a necessary gauge of terres-
trial moisture conditions, SM aids in drought monitoring [3], vegetation development [4],
and water conservation [5]. Instruments such as radars, radiometers, and reflectometers
are typically used for SM measurements, given that microwave frequencies resonate with
variations in soil dielectric properties due to moisture content [6]. Among the options,
L-band frequencies are preferred due to their providing resilience against atmospheric
losses and vegetation cover interferences. Integrating data from various instruments aimed
at enhancing L-band measurements offers significant improvements in Soil Moisture (SM)
accuracy and, alternatively, enhances spatial and temporal resolutions. An example of this
approach is demonstrated in the SMAP (Soil Moisture Active–Passive) mission, designed
to combine passive and active remote sensing technologies, an L-band radiometer, and an
L-band radar.

The primary objective of merging data in this context is to enhance the spatial reso-
lution of SM estimates. The SMAP radiometer, while offering accurate SM estimations,
is limited by a spatial resolution of 36 km. In contrast, the radar component of SMAP
provided a much finer spatial resolution, capable of reaching up to 3 km. By combining
these datasets, it was possible to produce a downscaled SM product with an improved
resolution of 9 km. This approach leveraged the strengths of both the radiometer and the
radar, leading to a substantial enhancement in the overall quality of the data [7]. However,
shortly after its launch, the SMAP radar transmitter experienced an anomaly and stopped
collecting data [8]. As a result, the official SMAP product relied primarily on the brightness
temperatures (Tb) measured by the L-band microwave radiometer to compute SM maps [7]
and freeze/thaw (F/T) state maps on a fixed 36 km EASE-Grid 2.0. As a novel effort,
after the radar transmitter malfunctioned, SMAP Reflectometry (SMAP-R) emerged as an
opportunistic polarimetric GNSS-R instrument. SMAP radar receiver bandpass frequency
filter was modified to be centered at 1227.42 MHz to receive in bistatic configuration the
Global Positioning System (GPS) L2C signals. SMAP-R has specific advantages compared
to traditional GNSS-R missions due to its high-gain antenna, which provides high SNR
for low integration times, and the linear polarimetric antenna, which enables the hybrid
compact polarimetric (HCP) capability [9]. On the other hand, the main drawback of
SMAP-R comes from the highly directive scanning antenna as well, which significantly
reduces the number of measurements per day that the instrument provides. A polarimetric
GNSS-R instrument in HCP configuration allows computation of the full Stokes parameters
describing a polarimetric portrait of the surface under observation [10].

In vegetated areas, the phenomenon of dispersive reflection, which affects the signals
received by radiometric sensors, leads to a signal polarization signature. This polarization
signature allows SMAP-R to discriminate details about the physical properties of vegetation,
the texture, roughness, and SM levels [11]. In general, over soil surfaces, the characteristics
of the GNSS-R reflection mostly depend on SM and are additionally affected by surface
roughness and vegetation. The methodology for formulating the Stokes parameters and
their calibration is detailed in [12,13]. The surface effects on the GNSS-R signals have been
assessed using the Stokes parameters for the SMAP-R dataset [14]. The analysis of SMAP-R
data combined with SMAP radiometer data has shown efficacy in the estimation of SM
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maps by improving the spatial resolution while maintaining and checking the unbiased
SM estimation error [14]. The results of this data merging strategy suggest the potential for
combining sparse datasets from GNSS-R with coarser radiometric data to achieve more
accurate and detailed SM assessments.

Developing a data processing methodology that not only accounts for the nonlinear
relationships among land geophysical parameters and measurements but also addresses
the fact that the datasets have differing spatial resolutions would be highly advantageous
for SM retrievals. In this context, there has been a growing focus on the development of SM
retrieval algorithms that effectively incorporate terrain data. For example, in [15,16], the au-
thors introduced the trilinear regression-based reflectivity–vegetation–roughness algorithm.
This algorithm derives SM estimations at a 36 km resolution by considering Cyclone Global
Navigation Satellite System (CYGNSS) [15] reflectivity, along with the SMAP vegetation
opacity and roughness coefficient. However, this algorithm has limitations in terms of the
number of geophysical variables it considers. In [17], the authors developed a time-series
approach for SM retrieval, using maximum and minimum SM values from SMAP to estab-
lish the system’s limits. As a key point, the changes in vegetation and surface roughness
evolve significantly more slowly than changes in SM. In [2], the authors presented a fully
connected Artificial Neural Network (ANN) to account for the effects of vegetation and
ground dynamics on SM estimation. Although they used in situ SM measurements from
International SM Network (ISMN) sites as reference labels, most of these sites were located
on relatively non-mountainous surfaces with low-to-moderate vegetation cover, such as
croplands, grasslands, and savannas. This limits the analysis’s ability to capture scattering
effects, considering the significant temporal and spatial variation and non-uniformity of
vegetation parameters.

Addressing the challenge of integrating diverse datasets for SM estimation, this
manuscript introduces an innovative graph-based data integration technique for SM en-
hancement using the SMAP-R dataset and terrain characteristics. Our approach is based
on Graph Signal Processing (GSP), which is well-suited for processing signals that are in
irregular domains and result from physical processes influenced by multiple variables.
Graph models efficiently capture the structural information of images, and their application
in image processing has been proven effective in numerous applications [18]. Recently,
graph-based methods have been explored in remote sensing applications. For example,
Change Detection (CD) algorithms have used the Nystrom extension to represent images as
graphs, minimizing similarities among them to detect changes [19]. Path-wise graphs [20]
and super pixel-wise graphs [21], based on the self-similarity property, have been con-
structed to capture image structures and calculate the Difference Image (DI) through graph
projection. In [22], images were treated as a signal on graphs, highlighting changes between
heterogeneous images in terms of structure and signal differences. Graph filters have also
been studied to explore high-order neighborhood information. While these methods are
innovative, they face challenges in incorporating terrain information and may be sensitive
to outlier deviations. Our signal processing technique builds upon a graph-based method
introduced in [23]. Given the sparsity of GNSS-R reflections and their sensitivity to terrain
characteristics, we propose a GSP approach that incorporates terrain information for sparse
signal interpolation and SM estimation tasks. The land surface variables considered in our
analysis include vegetation optical depth, roughness coefficient, land surface temperature,
and clay and sand composition. Our goal is to develop a physics-aware GSP technique
that captures the nonlinear dependencies between SMAP-R observables and SM values
while considering vegetation and terrain effects. The aim is to augment radiometer data
with reflectivity signals, thereby enhancing the overall quality and reliability of the SM
estimations. It is important to note that the SMAP-R observation is a Delay–Doppler Map
(DDM). The in-phase and quadrature (IQ) samples collected by the SMAP radar receiver
are cross-correlated with the pseudo-random noise (PRN) code of each GPS satellite that
operates in the L2C band. The basic DDMs are used then to compute Stokes parameters
(also in the form of DDMs).
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The remaining sections of the paper are organized as follows: Section 2 provides the theoreti-
cal background of the GSP and graph construction. Section 3 delves into graph as data merging
tools for remote sensing,. Moving on to Section 4, we explain the SM retrieval methodology and
describe the details of the ANN model. In Section 5, we present the SM estimation results and
performance metrics achieved. Finally, in Section 6, we conclude this study.

2. Graph Signal Processing Methodology

Recent technological advancements in depth sensing, laser scanning, and image pro-
cessing have changed the way we acquire and extract geometric and multimodal data
from real-world scenes. These data, which can be digitized and formatted in various ways,
are crucial for applications ranging from augmented and virtual reality to autonomous
driving and monitoring systems. The challenge lies in efficiently representing, process-
ing, and analyzing these multimodal data, especially given their diversity in format and
complexity. Traditional techniques for image and video processing, which typically rely
on regular sampling patterns, fall short when faced with geometric data that often exhibit
irregular sampling patterns. To address these challenges, Graph Signal Processing (GSP)
has emerged as a powerful solution. GSP allows for the processing of signals on graphs,
effectively handling data that reside on the nodes of connected graphs. This approach has
shown great promise in surmounting the limitations inherent in conventional processing
techniques, offering a more flexible and robust method for dealing with the intricacies
of multimodal data. The proposed GSP approach offers a significant advantage in its
versatility in handling heterogeneous types of data. Unlike standard signal processing tech-
niques that assume data are located on a regular spatial grid, our GSP approach provides
a general methodology for graph construction and interpolation schemes [24]. This en-
ables the analysis of diverse datasets, including measurements from multiple space-borne
instruments, terrain attributes, overlapping imagery, and irregular in situ measurements.
All these different data sources can be combined and effectively analyzed on a single graph,
expanding the applicability and flexibility of our approach [23].

2.1. GSP Background

Let G = {V , E} be an undirected graph, where the collection of nodes V = 1, 2, . . . , N
are connected by the edges E =

(
i, j, wij

)
, i, j ∈ V , and wij denotes the weight between

nodes i and j. The N × N weighted adjencency matrix is W(i, j) = wij, and the signal on
the graph G is f = [x1, x2, . . . , xN ]

T . The degree di for each node i is calculated as the sum
of the edges connected to the node, resulting in the degree matrix D = diag(d1, d2, . . . , dN).
The graph shift operator S is defined as a local operation and replaces a signal value at each
node with the linear combination of the signal values at the neighboring nodes [25]. In our
experiments, the graph shift operator is the Laplacian defined by

L = D − W, (1)

A key metric for understanding graph connectivity is the graph Laplacian matrix, denoted as
L, which is formed by incorporating both the weight and degree matrices. The diagonal elements
of this Laplacian matrix consist of non-negative real numbers, while the off-diagonal elements
are nonpositive real numbers. In the case of an undirected graph, the Laplacian matrix exhibits
symmetry (L = LT) and offers insights into the number of connected components within the
graph G = {V, E}. It is worth noting that the Laplacian does not introduce any new information
not already encapsulated by the degree matrix D, which can be derived once the adjacency
matrix W is known. The construction of W, i.e., graph construction, is crucial to characterize the
underlying topology of the multimodal data.

2.2. Spectral-Domain GSP

Spectral-domain methods leverage the graph transform domain to represent geometric
data, applying filtering to the coefficients obtained from this transformation. The key to this
approach is the Laplacian matrix L, which is real and symmetric, allowing for eigen decomposi-
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tion. This decomposition produces an orthonormal matrix U, consisting of eigenvectors ui, and
a diagonal matrix Λ = diag(λ1, . . . , λN) filled with eigenvalues. These eigenvalues λi are inter-
preted as graph frequencies or spectra, where a smaller eigenvalue indicates a lower frequency.
For a graph signal x existing on the vertices of a graph G, its graph Fourier transform (GFT),
denoted as x̂, transforms x into the frequency domain. Graph filtering involves transforming
the data X into the GFT domain (UTX), filtering based on the graph’s spectrum, and then using
the inverse GFT. This process enhances or attenuates certain frequencies, analogous to filtering
in traditional digital image processing. In the case of Low-Pass Graph Spectral Filtering, the
method is akin to smoothing digital images, aiming to preserve the general shape of geometric
data while reducing noise. This is based on the premise that signals are inherently smooth over
the graph’s structure, with high-frequency components often representing fine details or noise.
By applying a low-pass filter, we smooth the geometric data, thus refining its representation on
the underlying manifold.

2.3. Graph Locality

We have defined graph signals as the data linked to a graph’s nodes, while the
edges serve as a quantifiable measure of the similarity or connection between these nodes.
The concept of signal smoothness in this context is closely tied to the graph’s connectivity
structure. Drawing parallels to traditional signal processing, when two adjacent nodes
share a high degree of similarity, strong connecting edges help to maintain their local
characteristics. Therefore, an insight is that the smoothness of the signal is inherently
related to the local connectivity of the graph. The quadratic form of a graph signal,
illustrated in [26], serves as a useful metric for defining signal smoothness. Specifically,
smaller values of squared local deviation among neighboring nodes indicate a signal that
varies slowly and is therefore smooth.

3. Graphs as Data Merging Tools

Graphs offer a promising framework for integrating datasets that vary in resolution
and structure. As illustrated in Figure 1, a dataset with coarse resolution can be mapped
onto the nodes, while additional, related information can be embedded within the edges
that connect these nodes. This strategy effectively addresses the challenge of preserving
spatial relationships in datasets that, although highly correlated, differ in structure or
granularity. Furthermore, graphs enable resolution enhancement: the basic interpolation
of coarse signals at the nodes can be substantially improved by utilizing high-resolution
data to define the connections between nodes. This, in turn, facilitates more accurate
high-resolution estimates of originally low-resolution signals.
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be achieved through high-resolution edge definitions. Adopting this method allows us to interpret a
satellite image as a grid graph. In this framework, f = {xi, xj . . .. xN} represents the coarsely sensed
variable and graph signal, while the connections (edges = Wi,j) between the nodes (pixels: xi, xj)
reflect similarities in the terrain, such as altitude variations.

Graphs for Remote Sensing

The first step in working with graph data is to identify the graph’s properties as a
new domain for a signal or information. While the application usually provides clear
definitions for the vertices, which represent data sensing points, this clarity often does
not extend to their interconnections, represented by the graph edges. For remote sensing,
we can represent images as graph signals on a graph with

√
N ×

√
N vertices. Each

node in the graph corresponds to a sensed measurement, and horizontal and vertical
edges connect neighboring nodes with non-negative weights determined by the similarity
of terrain characteristics at their respective location. The weights, represented by wij,
range from wij = 0 for nodes lacking an edge to wij = 1 for nodes with the highest
similarity. The terrain characteristic used to determine the edge weights is called the profile.
To ensure the local smoothness property on the graph, we incorporate signal variation,
which quantifies the differences between a sample xi at node i is and the values in its
neighborhood. The variation is measured using the Laplacian quadratic form [23]:

∆L(x) = xTLx = ∑i∼j wij(x(i)− x(j))2, (2)

In Equation (2), x represents the graph signal, and the edge weights w are determined
by the profile similarity among neighboring nodes. From Figure 1, in the context of
using graphs for remote sensing, the signals at the nodes correspond to pixels captured
by the imaging instrument. Meanwhile, the edges are defined by factors such as terrain
characteristics or supplementary information. The fundamental objective of using GSP for
interpolating SMAP-R data lies in creating a grid graph that represents the characteristics
of pixels in an image. In this structure, each pixel of the image is analogous to a node on
a graph, with interconnections between nodes determined by either ancillary data or by
the similarity of terrain features. The advantage of the graph structure is the ability to
interpolate any missing data effectively by utilizing the values from adjacent nodes that
share similar terrain attributes. The GSP method not only improves data completeness but
also ensures consistency in terrain-related characteristics across the interpolated image.

4. SMAP-R from GSP Perspective

Our fundamental objective is to use SMAP-R reflectivity signals to enhance SMAP
brightness temperatures (Tb), consequently improving SM estimations. While the SMAP
radiometer provides data at 36 km resolution, the spatial resolution of the SMAP-R mea-
surements is not a fixed number, as presented in [27]. However, on average, we can consider
the scattering area to be ~9 km for most of the landscapes, especially over agricultural
areas. For this purpose, the first step is to obtain complete reflectivity maps that can be
used in the Tb graph interpolation task. The SMAP-R retrieved second Stokes parameters
(S1) and total power reflectivity (Γ0) contain information about how the incident signals
have been affected by the scattering surface. SMAP-R offers a unique polarimetric forward
scattering dataset that can be used for land-related applications. For instance, high S1
values are found primarily in dry areas, such as deserts, and low S1 are usually found in
wet or vegetated areas, such as wetlands or rainforests [15]. Motivated by these relations
between S1 and Γ0 with terrain characteristics, we implement a nonlinear ML algorithm to
obtain complete maps of S1 and Γ0. Those variables are used to compute the reflectivity
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maps at each polarization, i.e., ΓHH and ΓVV . To obtain the reflectivity information, the
full Stokes parameters should be computed as shown in Equation (3)

Γ0 ∝ S0 =< |ERH |2 > + < |ERV |2 >,
S1 =< |ERH |2 > − < |ERV |2 >,
S2 = 2 < Re{ERHE∗

RV} >,
S3 = 2 < Im{ERHE∗

RV} > .

(3)

As derived by [10], the Stokes parameters vector (i.e., [S0, S1, S2, S3]) can be related to
the surface reflectivity by means of Equation (4).

→
S =


1
2 |Shh|

2
+ 1

2 |Svv|2 + |Shv|2 + Im
{

ShvS∗
vv − ShhS∗

hv
}

1
2 |Shh|2 − 1

2 |Svv|2 − Im
{

ShvS∗
vv + ShhS∗

hv
}

Re
{

ShvS∗
vv − ShhS∗

hv
}
− Im{ShhS∗

vv}
Re{ShhS∗

vv}+ |Shv|2 + Im
{

ShvS∗
vv − ShhS∗

hv
}

 (4)

where Spq is the Sinclair scattering matrix coefficient for transmitted polarization p and
received polarization q. For the sake of readability, we have omitted the definition of the
Sinclar scattering matrix. One should refer to [13] for additional information. Considering
negligible cross-polarization as shown in [14], most of the terms from (4) are eliminated,
and one can write the reflectivity at HH and VV as follows:

ΓHH ∼= |Shh|2 =
1 + S1/S0

2
· Γ0

ΓVV ∼= |Svv|2 =
1 − S1/S0

2
· Γ0

(5)

Note that Γ0 is the calibrated first Stokes parameters following a similar methodology
as in the CYGNSS mission, as detailed in [22]. Furthermore, for notation simplicity, we
will refer to S1 here in the document as the normalized second Stokes parameters, S1/S0.
Because S1 and Γ0 are sparse, we obtain initial complete maps by implementing a regression
tree that takes into consideration vegetation optical depth (VOD) and roughness coefficient
information. In the context of this GNSS-R processing using the SMAP radar instrument,
the specific characteristics of the instrument minimize the impact of the incidence angle
variations on measurements due to its limited range (37.5–42.5◦). Consequently, the inci-
dence angle was not included in the machine learning analysis. However, in contrast, for
other GNSS-R missions where the incidence angle has a larger variation range, its influence
becomes significantly more pronounced, substantially affecting data quality and accuracy.
Both ancillary data and validation sources for our algorithms are provided by the SMAP
mission. This methodical alignment of both our input and validation datasets is a critical
aspect of our study since they belong to the same mission and thus guarantee that the
performance metrics we use are not only appropriate but also accurately reflective of the
terrain and vegetation characteristics monitored by SMAP. In brief, our method consists of
the following steps:

1. A machine learning (ML) approach is employed to learn the complex nonlinear
relations between geophysical information (e.g., VOD, roughness, LST, and clay and
sand composition) with S1 and Γ0;

2. Complete maps of S1 and Γ0 are retrieved from the sparse data using the model
learned in step 1;

3. Implementing our GSP method, S1 and Γ0 maps are improved using VOD and rough-
ness as profiles to determine the graph’s edge weights;

4. Reflectivity maps are generated using S1 and Γ0 from step 3;
5. The calculated reflectivity maps (Γhh, Γvv) from step 4 are used as graph profiles to

disaggregate Tb at 9 km;
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6. Brightness temperatures obtained from step 5 are used to estimate SM values that are
then validated using CVS measurements.

Figure 2 depicts the strategy highlighted in the previous steps. The methodology to
obtain detailed brightness temperature maps vital for soil moisture evaluations will be
explained in the subsequent paragraphs.
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Step 1. Developing an ML Model: Sparse Radiometer Signals with Geophysical Data.

We conducted various correlation analyses and experimented with multiple regression
models to select geophysical variables that significantly influence the estimation of S1
and Γ0. Remote-sensed metrics, notably LST and VOD, showcased a strong correlation
with soil moisture and S1, as shown in Figure 3. When terrain variables like temperature
and vegetation optical depth (VOD) show consistency across adjacent nodes, they form a
solid foundation for soil moisture estimation. This reliability stems from the established,
statistically significant correlation these variables share with soil moisture levels and the
second Stokes parameter. It is noteworthy, however, that this relationship is not strictly
linear, indicating a more complex interaction between these terrain variables and SM.
Consequently, they became integral to our regression exploration. Recognizing the benefits
of regularization and the presence of both linear and nonlinear associations among our
variables, we adopted the regression tree ML framework for the estimation of detailed
maps of S1 and Γ0.

Unlike polynomial regression, regression trees inherently accommodate complex
variable interactions through their structure, which can be effectively managed to prevent
overfitting via tree pruning and setting depth constraints. These methods, specific to
regression trees, offered a significant advantage by allowing the model to be finely tuned to
the characteristics of the terrain variables. Within this regression tree (RT) framework, we
scrutinized how each variable, both individually and collectively, impacted the accuracy
of soil moisture predictions. Variables were primarily selected based on their statistical
significance, as evidenced by high correlation values from regression analysis. The final
selection of input features in Equation (6), which includes VOD, roughness coefficient,
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LST, clay, and sand, was grounded both on their performance and their alignment with
real-world physical factors.
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S1 = RT(VOD, roughness, LST, clay, sand),

Γ0 = RT(VOD, roughness, LST, clay, sand)
(6)

During the training phase, we utilized the known S1 and Γ0 data to optimize the RT
parameters by reducing the loss function. A significant advantage of our approach is RT’s
natural ability to eliminate the need for feature scaling, making data normalization or
standardization unnecessary. To implement the RT concept effectively, we utilized estab-
lished machine learning packages known for their comprehensive features in conducting
correlation analyses and optimizing regression trees to enhance the R2 performance metric.
Moreover, the inherent interpretability of RT models provided a clear insight into decision-
making based on feature values. Once the RT parameters were refined, we evaluated
their performance in the model’s validation phase using a k-fold validation technique to
guarantee a thorough assessment of its efficacy.

Step 2: Generating complete maps for S1 and Γ0 using the model learned from Step 1.

Following the strategy proposed in Figure 2, SMAP-R offers sparse measurements of
S1 and Γ0, which can be aligned with geophysical variables like VOD, roughness coefficient,
LST, clay, and sand. After training the RT, we employed global scale maps of terrain data,
VOD, and LST to generate comprehensive maps of S1 and Γ0. The non-parametric char-
acteristic of RTs ensures the model’s suitability to project S1 and σ values, irrespective of
the statistical attributes of the terrain variables. Furthermore, the RT method exhibits com-
mendable L2 regularization efficiency, especially with interrelated independent variables,
thereby providing a reliable initial estimation of complete S1 and Γ0 maps.

Step 3: Improving S1 and Γ0 baseline estimations with GSP methods.

In our experimental setup, the initial graph signals at the nodes represent the inter-
polated S1 and Γ0 derived from step 2, with the edges between the nodes reflecting the
terrain attributes. The aim is twofold: firstly, to integrate terrain features with the signals,
and secondly, to enhance the estimation of S1 and Γ0 by leveraging neighboring nodes with
analogous characteristics. This approach also aims to refine and smooth the signal at the
nodes, as elaborated below:

(A) Graph Construction

• Graph Signal: Our proposed GSP methodology uses S1 and Γ0 from step 2 as the
baseline graph signals and terrain data to compute the edges of the graph, as
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shown in Figure 4. During our analysis, the graph signals are represented by the
form S1 = [x1, x2, . . . , xN ]

T and Γ0 = [y1, y2, . . . , yN ]
T ;

• Edge Weights: Our graph construction method assigns edge weights based on
Euclidean distance and statistical correlations among the signal at the nodes and
terrain information [23]. From the correlation analysis, the graph construction
for S1 will incorporate edges influenced by VOD, while for Γ0, the edges will be
determined by the roughness coefficient. For S1 graph construction, the edge
weights are computed using the Gaussian kernel:
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between adjacent signal observations of (S1) and Γ0.

wi,j = e
(− (dv(i,j))2

αv2 )
, (7)

where dv(i, j) represents the difference among VOD values for neighboring nodes xi, xj,
and αv is a measure of correlation between S1 and VOD. This type of information has
the potential to incorporate observed data behavior (correlation) and physical system
characteristics (distance).

Analogously, for σ graph construction, the graph edges are obtained from

wi,j = e
(− (dr(i,j))2

αr2 )
, (8)

In Equation (8), dr(i, j) represents the difference among roughness coefficient values for
neighboring nodes yi, yj, and αr is the measure of the correlation between σ and roughness
values at the node locations.

Note that when the distance d(i, j) becomes much larger than α, the corresponding
edge weight approaches zero. Therefore, when the terrain information for consecutive
nodes is similar, their connection in the graph is strong.

(B) Graph Optimization

To ensure that our GSP interpolation produces smooth signals on the graph, we follow
the optimization problem:

xopt = min
x

xTLx + λ∥x̂ − x∥2
2, (9)

where λ serves as the penalty parameter for the baseline interpolated estimation of x̂.
We aim to optimize x such that it remains closely aligned with baseline observations while
also ensuring that spatially co-located measurements are like each other, considering terrain
characteristics. To enhance the smoothness of the graph, we implemented optimizations on
the graph Laplacian L as shown in Equation (9) for both the S1 and Γ0 graphs. This op-
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timization approach takes into consideration the local proximity observed in the S1 and
Γ0 measurements, indicating a likelihood of signal similarity between neighboring ob-
servations. By leveraging this similarity, we aim to improve the quality and accuracy of
the signal reconstruction process. Ensuring a smoother graph structure, we enable more
effective contributions from these signals towards the reconstruction of each other.

Figure 5 illustrates the comprehensive graph signal procedure described to generate
S1 maps leveraging the use of ancillary data. The methodology is articulated based on the
steps 1 through 3 outlined previously. Each stage is tailored to streamline the extraction,
processing, and eventual rendering of a comprehensive SM map. Figure 5 provides a visual
representation of each phase, highlighting the journey from initial regression tree estimates
of S1 to the ensuing graph interpolation, which is augmented by VOD. This structured
visualization sheds light on the intricate data processing and analytical procedures vital for
generating detailed maps from dispersed signals.
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A qualitative validation for the graph signal interpolation using ancillary data is
performed by subtracting the final S1 estimates obtained via GSP from those derived from
the regression tree methodology (Figure 6). This procedure helps elucidate the regions
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where VOD information has been utilized to enhance S1 values. In zones where VOD
exhibited uniformity, we denote a smoothing effect on S1 values. This smoothing is an out-
come of the GSP algorithm, which uses the similarity in vegetation optical depth between
neighboring areas to enhance the spatial continuity of the S1 estimates. In contrast, over
regions presenting diverse vegetation values, the graph becomes disconnected, leading to
an absence of spatial smoothing in S1 values. This occurs because the GSP algorithm iden-
tifies these diverse vegetation characteristics as boundaries and thus does not propagate
information across these boundaries. This analysis provides an illustrative and quantifiable
demonstration of the efficacy of integrating ancillary information, like VOD, into our GSP
methodology. The ability to enhance or moderate the smoothing of S1 values based on
terrain characteristics affirms the strength of the GSP approach. The initial interpolation
from the regression tree is key in the described methodology, as it forms the baseline graph
signal. The subsequent application of GSP significantly enhances soil moisture estimation
accuracy since SM estimates derived from GSP methods surpass those from ML approaches.
This is due to the fact that GSP allows for effective regularization by considering observa-
tions with similar characteristics. Furthermore, our approach incorporates a multimodal
analysis, where multiple physical variables influence or help estimate a measurement.
A distinct advantage of using GSP over ML models is that it does not rely heavily on
extensive training and validation data. This is particularly beneficial for estimating models
of interconnected variables where data availability might be limited.
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Figure 6. (a) Comparison of final S1 estimates derived from GSP and the RT methodology. In regions
exhibiting diverse vegetation values, the graph representation becomes disconnected, leading to a
noticeable absence of spatial smoothing in S1 values. Thus, the difference between estimates from
GSP and RT becomes more noticeable. (b) VOD map influencing the graph interpolation.

Step 4: Estimating reflectivity maps (Γhh, Γvv) as functions of S1 and Γ0.

The Stokes parameters can be translated into reflectivity measurement using Equation (4).
This translation of the first Stokes parameters into reflectivity provides a significant advantage,
as it contains crucial information about seasonal variations.

Step 5: Disaggregating brightness temperature (Tbs) using (Γhh, Γvv).

To achieve an accurate downscaling of SM to a 9 km resolution, we first augment the
spatial resolution of the Tb from 36 km to 9 km, capitalizing on our derived reflectivity
signals at the 9 km scale. To facilitate this enhancement, we adopt the signal processing
methodology delineated earlier. The GSP method utilizes precomputed reflectivity maps to
heighten the resolution of brightness temperatures. Central to this approach is the premise
of using reflectivity maps as auxiliary datasets to infer brightness temperatures across
distinct spatial coordinates. Within this framework, the signal at each node represents
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brightness temperatures, and the edge weights interlinking these nodes are modulated by
the amplitude of reflectivity. Consequently, the resolution refinement of Tb is significantly
augmented with the inclusion of reflectivity maps, representing a distinct advancement
over traditional re-gridding techniques or geospatial procedures such as kriging.

5. Soil Moisture Retrieval Results

To derive our SM estimates, our primary aim was to construct the most reliable reflec-
tivity maps, which, when combined with terrain information, would refine the predictions
of Tb. Leveraging the graph-based methodology, we were able to interpolate reflectivi-
ties, effectively accounting for both the similarities in terrain and the unique attributes
of vegetation. This precise interpolation of reflectivities allowed the enhancement of Tb
resolution, laying a robust groundwork for our subsequent machine learning endeavors
in SM estimation. Our choice of the Neural Network (NN) model was deliberate and
strategic. This model is calibrated to deduce SM levels, drawing from a combination of
Tbs, land surface temperatures, and VOD representation vectors—essential elements in our
estimation process. The NN model deciphers the inherent patterns within these vectors,
promising precise SM-level predictions. Since the estimated Tb obtained from GSP is the
input to the NN for the SM estimation, the ML model is not just reliant on Tb but also as-
similates the intricate dynamics of terrain and other environmental influencers, reinforcing
a comprehensive approach to our SM estimations.

5.1. Soil Moisture from Artificial Neural Network

Our methodology for SM estimation incorporates an NN approach, with the selected
input parameters comprising brightness temperatures derived from SMAP observations
for both V and H polarizations. Additionally, ancillary data, including land surface tem-
perature and VOD, are incorporated. Our NN model shares operational similarities with
the dual-channel algorithm (DCA) described in [28]. By paralleling this methodology, our
model leverages the strengths of DCA while providing the additional benefits offered by an
NN approach, effectively accounting for multiple environmental variables and increasing
the accuracy of the derived SM estimates. In terms of validating our NN-based estimates,
they are contrasted against measurements taken from calibration and validation sites (CVS).
These sites offer an empirical benchmark to assess the accuracy of our SM estimates and to
refine the model as necessary. The subsequent section will provide a detailed analysis of
these findings, elucidating the performance of our model and outlining potential avenues
for future improvement.

5.2. Results

To evaluate the efficacy of our graph interpolation algorithms and to explore the
potential of using them for combining SMAP radiometer and SMAP-R measurements
to obtain SM estimates, we conducted a study over the course of 2018. The objective of
this study was to compare the SM predictions derived from our methodology against in
situ measurements taken from 50 calibration sites used during the SMAP mission (SMAP
CalVal) throughout the year (Figure 7). The continuous blue and purple lines, while close,
do not match perfectly, indicating a subtle difference in trends. This distinction becomes
clearer through the individual data points (represented by crosses), with the blue crosses
(SMAP-R) aligning more consistently with calibration/validation (Cal/Val) values. Figure 7
aims to demonstrate the effectiveness of our interpolated estimates, which are not only
closer to Cal/Val values but also show a maintained correlation with in situ data, even after
the images have been processed for higher resolution. This point is essential, underscoring
that our interpolation methods do more than just improve the imagery’s spatial resolution;
they also safeguard the data’s accuracy and dependability regarding soil moisture.

Figure 7a presents the outcome of this comparison, juxtaposing the radiometer SM
estimates obtained at a resolution of 36 km with the SM estimates derived from the SMAP-R
methodology. It is noteworthy that when these estimates are set against the corresponding
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in situ measurements, the mean values predicted by the SMAP-R approach demonstrate
a closer alignment with the validation values. Further, to provide a clear illustration,
we selected a validation site to contrast the average soil moisture values derived from
in situ measurements with those from SMAP at 9 km resolution, using both the Backus–
Gilbert method and our SMAP-R data. Figure 7b highlights that the SMAP-R estimates,
generated via the GSP method, align more closely with a specific Tonzi Ranch validation
site’s value. This is evident as they approach the 5% confidence interval, depicted by the
shaded grey region.
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of 36 km and SMAP-R, set against in situ data collected over the course of 2018. The blue line,
representing SMAP-R, has a slope closer to one, indicating a better alignment with the validation
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methodologies in relation to actual on-ground measurements.

Incorporating VOD in the graph construction process for SM estimation offers multiple
enhancements to the quality of the estimates. VOD is a crucial factor in accounting for the
effects of vegetation on microwave signals, such as those measured by the SMAP radiometer.
Vegetation interacts with microwave radiation through absorption and scattering mecha-
nisms, altering the received signal’s characteristics. Thus, by considering VOD during graph
construction, these vegetation-induced effects can be better accounted for, leading to more
precise SM estimates, Figure 8. As observed in Figure 8a,b, a greater distinction in VOD
values corresponds to enhanced performance of SMAP-R when compared with SMAP36.
This underscores the significance of the graph method, which facilitates the interpolation of
values, incorporating terrain information inherent to the signal characteristics.

It becomes evident that there exists a discernible contrast in absolute error when con-
trasting SMAP-R estimations against SMAP36 used as ground truth, as shown in Figure 8.
Notably, the performance demonstrates improvement when the average vegetation optical
depth (VOD) of the observations is higher. This trend strongly suggests that the inclusion of
VOD information contributes significantly to enhancing the accuracy of soil moisture (SM)
value estimations. VOD serves as a proxy for vegetation water content, offering indirect
insights into the vegetation layer’s influence on soil moisture dynamics. This includes how
vegetation can retain moisture and affect the local microclimate, thereby influencing soil
moisture levels. In Figure 9, a comprehensive soil moisture measurement map for May
2018 is shown (Figure 9a). Within a selected region showcasing variable VOD (Figure 9a),
differences are evident in interpolation estimates between SMAP-R (9b) and SMAP derived
from the Backus–Gilbert (SM_BG) interpolation technique (9c). While there are similarities,
it is evident that the value distribution in SM_BG exhibits a tendency for over-smoothing.
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Conversely, SMAP-R presents a broader spectrum of values, which are more congruent
with the characteristics of the VOD.
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Figure 8. (a) Comparative SMAP-R performance with variations on VOD. (b) Comprehensive error
analysis for SM estimates across 50 distinct locations over a year, highlighting the improvements in
accuracy when VOD is intensively incorporated into the interpolation process.
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Figure 9. (a) Comprehensive soil moisture map for May 2018. Within a highlighted region with vari-
able VOD. (b) Statistical distribution of interpolation estimates for SMAP-R. (c) Statistical distribution
for SMAP using the Backus–Gilbert technique. A discernible spatial smoothing is evident in (c), while
(b) showcases values that align more closely with VOD characteristics.

From the highlighted region in Figure 9, an in situ sensor at the core validation site was
selected to compare the fidelity of our SMAP-R estimates with that of SM_BG. The correla-
tion coefficient, as depicted in Figure 10, served as a pertinent metric to substantiate that,
over the course of 2018, SMAP-R estimates exhibited closer alignment with the readings
from the validation site. The choice of correlation as a metric is justified by its ability to
quantify linear relationships, ensuring that both the magnitude and directionality of devia-
tions across measurements are considered. The decision to focus on vegetation stems from
the understanding that variations in vegetation optical depth (VOD) reveal environmental
dynamics, which are key to achieving precise soil moisture estimations. It is important
to highlight that SMAP-R measurements shed light on the conditions of the underlying
soil, as the bistatic radar measurements, or reflectometry, predominantly capture a strong
single bounce signal originating from the soil’s surface. By incorporating VOD information
into our graph model, we are leveraging the natural physical characteristics of the terrain.
This approach enables the isolation of the soil’s single bounce signal, which is influenced by
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its roughness and soil moisture (SM), from the volumetric scattering effects of vegetation.
This synthesis of data not only enhances the richness of our dataset but also ensures that our
interpolation efforts are deeply rooted in the physical reality of the targeted area, providing
a more accurate representation of soil moisture levels.
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Figure 10. Scatter plot comparing in situ CalVal soil moisture readings with estimates from SMAP-R,
SMAP, and SM_BG. The x-axis displays soil moisture estimates obtained through interpolation, while
the y-axis shows corresponding CalVal readings. Linear regression lines for each method illustrate
the degree of correlation, with correlation coefficients (R) indicating the strongest correlation for
SMAP-R (R = 0.71), followed by SM_BG (R = 0.63) and SMAP (R = 0.57).

Figure 11 presents a compelling comparison of error performance between two
methodologies for SM estimation—the traditional SMAP at a resolution of 36 km and
the novel SMAP-R. This comparison is achieved by directly contrasting the SM estimates
from these methodologies against the same set of in situ measurements. A noteworthy
observation from this comparison is that the SMAP-R methodology provides superior esti-
mates, as evidenced by its lower error rates. The improved performance of SMAP-R can be
attributed to its innovative approach that leverages SMAP GNSS-R data for disaggregating
brightness temperature and GSP, a technique that introduces a novel dimension to SM
estimation by integrating terrain information into the interpolation and signal processing
tasks. In terms of error calculations, we observed an 11.8% reduction in the Root Mean
Square Error (RMSE) compared to the SMAP36 data. Additionally, there was a significant
14.7% reduction in uncentered RMSE (uRMSE) across the entire year of 2018, covering all
50 SMAP validation sites.

In Figure 12, we present a comparative analysis of RMSE errors between SM36 and
SMAPR across the CalVal sites throughout the year 2018, alongside the corresponding VOD
standard deviation. Notably, the plot reveals a compelling relationship: when the VOD
standard deviation is elevated, signifying greater variation in vegetation, the performance
of SMAPR notably improves. This improvement can be attributed to the graph-based
method’s ability to effectively consider and accommodate temporal variations in terrain
characteristics during signal interpolation.

These results emphasize the effectiveness of our approach in enhancing the accuracy of
geophysical parameter estimation, especially in highly vegetated areas. The use of terrain
information in GSP enables the model to consider spatial continuity and context, which
can significantly enhance the accuracy of SM estimates. This innovative combination of
disaggregating brightness temperature using GNSS-R data and the application of GSP
proves to be a powerful tool for refining SM estimations. Moving away from conventional
approaches, our GSP-based method enables more effective integration and interpolation of
ancillary data across different spatio-temporal scales, representing a major step forward in
remote sensing applications. In our research using SMAP-R data, we have discovered new
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strategies for addressing the challenges presented by datasets characterized by significant
gaps in both time and space, leveraging terrain features as effective proxies for interpolation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 20 
 

 

14.7% reduction in uncentered RMSE (uRMSE) across the entire year of 2018, covering all 
50 SMAP validation sites. 

 
Figure 11. A direct comparison of soil moisture estimates against CalVal values for selected sites. (a) 
Illustrates the difference of soil moisture estimates derived from SMAP at a resolution of 36 km 
compared to CalVal values. (b) Contrasts the accuracy of soil moisture estimates from the innovative 
SMAP-R methodology against the same CalVal measurements. (c) Vegetation optical depth for se-
lected sites. 

In Figure 12, we present a comparative analysis of RMSE errors between SM36 and 
SMAPR across the CalVal sites throughout the year 2018, alongside the corresponding 
VOD standard deviation. Notably, the plot reveals a compelling relationship: when the 
VOD standard deviation is elevated, signifying greater variation in vegetation, the perfor-
mance of SMAPR notably improves. This improvement can be attributed to the graph-
based method’s ability to effectively consider and accommodate temporal variations in 
terrain characteristics during signal interpolation. 

Figure 11. A direct comparison of soil moisture estimates against CalVal values for selected sites. (a) Il-
lustrates the difference of soil moisture estimates derived from SMAP at a resolution of 36 km compared
to CalVal values. (b) Contrasts the accuracy of soil moisture estimates from the innovative SMAP-R
methodology against the same CalVal measurements. (c) Vegetation optical depth for selected sites.
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6. Conclusions

GSP emerges as an innovative approach for the integration of multi-resolution data
within the field of remote sensing applications. This methodology leverages ancillary
data to perform efficient interpolation of observations from coarser resolutions and sparse
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signals. Furthermore, GSP presents a viable alternative for simultaneous analysis of data
originating from diverse spatio-temporal resolutions, thus offering a novel approach to
signal estimation on graphs.

The work undertaken using the SMAP-R data has offered the opportunity to delve
into the utilization of the GSP approach on an intricately challenging dataset, which is
characterized by significant temporal and spatial sparsity. Through this endeavor, we have
successfully demonstrated the incremental value offered by the incorporation of multi-
instrument data for improved estimation of geophysical parameters. This is substantiated
by our findings that enhancing SMAP radiometer data with SMAP-R data results in superior
SM estimations, particularly over vegetated areas characterized by elevated VOD.

Our results emphasize the potential advantages of the SMAP-R methodology in the
context of Soil Moisture (SM) estimation, with notable reductions in the Root Mean Square
Error (RMSE) of 11.8% and unbiased RMSE (uRMSE) of 14.7% compared to traditional
radiometer estimates. The improved precision of SMAP-R estimates, compared to tradi-
tional radiometer estimates, opens up new opportunities for ongoing research and potential
advancements in SM measurement methodologies. Continual comparative analyses with
in situ measurements play a crucial role, serving as essential benchmarks for refining
these methodologies and algorithms further. As a result, we achieve more accurate and
reliable SM estimations, which have the potential to significantly enhance various domains,
including environmental science, agriculture, and climate studies.
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