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Abstract: Following European directives, asbestos–cement corrugated roofing tiles must be elimi-
nated by 2025. Therefore, identifying asbestos–cement rooftops is the first necessary step to proceed
with their removal. Unfortunately, asbestos detection is a challenging task. Current procedures for
identifying asbestos require human exploration, which is costly and slow. This has motivated the
interest of governments and companies in developing automatic tools that can help to detect and
classify these types of materials that are dangerous to the population. This paper explores multiple
computer vision techniques based on Deep Learning to advance the automatic detection of asbestos
in aerial images. On the one hand, we trained and tested two classification architectures, obtaining
high accuracy levels. On the other, we implemented an explainable AI method to discern what
information in an RGB image is relevant for a successful classification, ensuring that our classifiers’
learning process is guided by the right variables—color, surface patterns, texture, etc.—observable on
asbestos rooftops.

Keywords: asbestos; aerial imagery; deep learning; explainable AI; public health

1. Introduction

Europe’s building stock is aged and heterogeneous. Many of the existing buildings do
not provide a healthy environment, and one of the main reasons is because they contain
harmful substances, such as asbestos-containing materials. Although the use of asbestos
was banned in the European Union (EU) approximately 25 years ago, asbestos can still be
found in buildings, as it was widely used in the construction sector from 1970 onward. The
safe removal of asbestos from the European building stock is a long-term strategic target,
and it is addressed in several EU policy initiatives such as Council Directive 83/477/EEC
(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31983L0477, Council
Directive 83/477/EEC on the protection of workers from the risks related to exposure to as-
bestos at work (19 September 1983)) (1983), 2009/148/EC (https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex%3A32009L0148, Directive 2009/148/EC of the European Par-
liament and of the Council on the protection of workers from the risks related to exposure to
asbestos at work (Codified version, 30 November 2009)) (2009) on the protection of workers
from the risks related to exposure to asbestos at work, and 2018/844 (https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG, Di-
rective (EU) 2018/844 of the European Parliament and of the Council on the energy per-
formance of buildings (30 May 2018)) (2018) on building energy efficiency, which includes
healthy environment regulation.

With the identification of severe health issues such as lung and respiratory diseases
resulting from exposure to asbestos [1], the necessity for research is obvious, especially
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considering potential disparities in exposure to asbestos and its health risks, i.e., envi-
ronmental inequalities arising from factors such as socioeconomic status, geographical
location, or the availability of safe housing. Precisely, the importance of identifying and ad-
dressing environmental inequalities has been recognized for many years by governmental
and international bodies such as the U.S. Environmental Protection Agency, the European
Environmental Agency, and the World Health Organization.

Prior to safe removal, however, the first necessary step is to locate contaminated
buildings. Unfortunately, asbestos detection is a challenging task: field inventories via
human exploration are labor- and time-intensive. On the other hand, the automatic de-
tection of asbestos-containing rooftops has been carried out in different ways, and often
with remarkable success (see Section 2). In all cases, high-resolution, multi-band remote
sensing images were used in combination with machine learning algorithms [2]. In this
situation, if the quality and resolution of imagery is satisfactory, the accuracy of asbestos
rooftop identification should be assured by using modern technology. Unfortunately, access
to multi-band imagery is not always possible—or, at least, at an affordable cost. Thus,
computer vision methods with multi- and hyperspectral images can only be performed
on relatively small areas due to the rapidly increasing costs to obtain such imagery. This
explains why, in general, most of the literature is devoted to very specific areas; which
leaves open the question for scalable and accessible methods and data that may overcome
the mentioned limitations.

In this regard, one of the most economical ways to monitor vast geographical areas is
by using remote sensing techniques and satellite/aerial imagery processing. In this work,
we leverage Deep Learning (DL) techniques—more advanced than traditional machine
learning approaches—with the aim of detecting the presence of asbestos on rooftops,
exploiting solely orthorectified aerial imagery, which is often publicly available at high-
resolution levels (≈0.2 m/px), enabling the task to be extended to virtually any area in
the world.

However, the downside to DL approaches is the lack of explainability. In general, DL
models can achieve a high accuracy, but at the expense of high abstraction—eventually
hindering the interpretability of their black-box representations [3]. This is particularly
relevant in the case of asbestos identification, as the risk of shortcut learning [4] may arise.
In machine learning, a shortcut solution occurs when the model relies on a simple charac-
teristic of a dataset to make a decision, rather than learning the underlying relationships
between the inputs and outputs. This can lead to models that are able to achieve high
accuracy on the training data but perform poorly on new data that do not contain the same
simple patterns. In our case of interest, a model might learn to identify images with asbestos
rooftops by focusing on the surrounding area, rather than the more complex texture, color,
or patterns of the asbestos itself.

While there are several methods to address the problem of explainable artificial intelli-
gence [5], we focus here on the most successful one in the context of computer vision: Class
Activation Mapping (CAM) [6]. The idea behind CAM is simple: to visually highlight which
areas in an image are more informative for the prediction outcome of a given task given by
a Convolutional Neural Network (CNN). CAM methods have been shown to be successful
for interpretability tasks in several fields [7–11], including land cover mapping [12]—but
not in the context of asbestos remote sensing, to the best of our knowledge.

In this work, we propose a DL pipeline with the aim to detect asbestos in RGB im-
ages; see Figure 1. We used aerial imagery information extracted in Catalonia (Spain),
pre-processed them, and created a dataset with images manually labeled with asbestos and
non-asbestos rooftops. For the learning process, we evaluated the performance of two CNNs,
EfficientNetB0 [13] and ResNet50 [14], to automatically classify asbestos from building
rooftop images. To address the interpretability challenges associated with neural network
models, we employed CAM using the trained models to understand the classification out-
puts. We specifically used Gradient-weighted Class Activation Mapping (Grad-CAM) [15].
Finally, we conducted a quantitative analysis of Grad-CAM outputs generated by both
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models to assess the localization of the highest heatmap values and determine their cor-
respondence to areas containing asbestos. Our experimental findings indicate that the
CNN models exhibit strong performance in the task of asbestos classification, with our
best model yielding an accuracy of 92%. Moreover, the analysis of model explainability
gives reliability to the learning patterns employed by the models. These results suggest the
feasibility of applying this solution to various environments, as long as the aerial imagery
is accessible.

Figure 1. Data pre-processing and inference process overview. The left panel shows the two main
data collection steps, while the central panel illustrates how buildings are isolated and centered owing
to cadastral data. The right panel exemplifies, first, the classification task, which delivers a number in
the range of [0, 1] expressing the likelihood of the presence of asbestos in the image. The classification
task undergoes a Grad-CAM analysis, delivering an interpretable heatmap to understand which part
of the image is most responsible for the classification score.

The paper is organized as follows: Section 2 reviews the related work in asbestos
automated classification, as well as some explainability works involving airborne imagery.
Section 3 describes the aerial image dataset acquisition, the asbestos labeling process, the
pre-processing of the images, the CNNs employed, and the explainability methodology and
analysis. In Section 4, we present our experimental findings: the model’s performance in
the image classification task and the analysis of the explainability. In Section 5, we discuss
the scope and limitations of our proposed pipeline. Finally, we draw our conclusions in
Section 6.

2. Related Work
2.1. Remote Sensing in Urbanized Areas

The scholarly literature provides ample evidence that the utilization of computer
vision and DL methodologies can facilitate the identification of objects using remote sensing
images, both within and outside intricate urban environments. Applications encompass
image scene classification [16–18], semantic segmentation [19], and change detection [20].

Many of these works are devoted to the retrieval of natural elements in the urban
fabric, from the identification of green spaces, street trees, and other vegetation [21–23], to
attempts to detect leaf nitrogen and biomass using red-edge band information [24].

Closer to the interests in this work, the identification of non-natural urban elements,
has also been addressed [25,26]. For example, there is extensive work on classification
and segmentation tasks to identify street elements, such as roads, sidewalks, or cross-
walks [27,28], generally exploiting a computer vision approach from aerial imagery. Even
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more specifically, off-street elements—mostly rooftops—have been the object of analysis
in several occasions as well, e.g., to estimate photovoltaic (PV) capacity using geographic
information data [29–31].

Focusing on the presence of asbestos, optical remote sensing systems have proven to be
an efficient input for detecting and mapping asbestos-contaminated roofs. Szabó et al. [32],
for example, identified various types of rooftops and assessed the presence of asbestos with
the use of high-resolution airborne HyperSpectral Imagery (HSI), with a spatial resolution
of 1 m and 126 spectral bands. To assess different types of roofs, the study used several
machine learning classification algorithms from the ENVI+IDL 4.8 software to analyze
images. The researchers conducted their study in Debrecen, East Hungary, using airborne
imagery that covered a 7 km2 area. The results of the analysis yielded precise maps of the
roof types, with asbestos–cement roofs accurately identified at an accuracy rate of over 85%.

Similarly, Cilia et al. [33] employed HSI data with 92 channels between the visible
to the shortwave infrared spectrum, as well as 10 bands in the thermal infrared region,
with a spatial resolution of 3 m, to map asbestos–cement roofs and their weathering
status, which refers to the condition of the roof surface due to long-term exposure to the
environment. Such mapping was achieved with an image-based supervised classification
method, using the Spectral Angle Mapper (SAM) algorithm [34], which was trained on a
set of pixels selected from roofs made of different materials. The research was conducted in
five municipalities in Northern Italy, with a combined area of 117.63 km2. For this area, the
task yielded an accuracy of 86%.

Krówczyńska et al. [35] conducted a study where aerial images with a spatial resolution
of 25 cm in both natural color (RGB) and color infrared (CIR) compositions were employed.
They devised and evaluated a CNN model specifically tailored to mapping asbestos–
cement rooftops. The results demonstrated an overall accuracy ranging from 87% to
89%, depending on the used image composition. Furthermore, relying on RGB and CIR
compositions, Raczko et al. [36] introduced an innovative CNN architecture for recognizing
asbestos roofing, using a feature extraction block based on InceptionNet [37]. Remarkably,
the study achieved an overall accuracy of the classification of different scenarios tested
ranging from 88.0% to 93.0%.

These and similar studies have shown promising results indeed. However, they suffer
from limitations in large-scale rooftop asbestos (or other materials, for that matter) identifi-
cation due to the high costs and limited availability of HSI, infrared, or thermal bands [38].
As a result, even if those models are highly accurate, they may not be transferable or
applicable to large areas [39]. On the other hand, even when free-access satellite images
like Sentinel-2 MSI and Landsat series are available [40], their use in varied contexts is
limited by spatial resolution constraints. For example, the analysis of compact urban areas,
where buildings are typically smaller than 250 m2, is not possible with publicly accessible
imagery, unless high-resolution RGB imagery is used. As described in-depth later on, our
work relies exclusively on RGB bands. This choice ensures our methodology’s versatility
and wide applicability. Furthermore, our pipeline places a strong emphasis on the imagery
pre-processing, isolating rooftops prior to the classification stage, enabling us to pinpoint
and classify different roofing materials with precision.

2.2. Explainability

Although DL has achieved remarkable success in real-world applications in various
engineering fields as well as in remote sensing [36,41–43], it has been proven that the
black-box nature of DL algorithms has limited the practical application of the results
generated by these models [44]. This compels scholars to delve into understanding the
logical reasons behind the DL models producing specific outputs. The visual interpretation
of Class Activation Mapping (CAM) [6] and its derived methods, such as Grad-CAM [15],
have been used as a supporting result to prove the effectiveness of several neural network
proposals in several domains (e.g., [45]), including remote sensing. For example, in the
task of understanding remote sensing scene classification, Shi et al. [46] introduced a dual-
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branch, multi-level feature, and lightweight CNN. The authors applied their model to four
open datasets and employed Grad-CAM to visually display extracted features, highlighting
their significance through visual heat maps. In a similar manner, Chen et al. [47] proposed
a multi-branch neural network architecture with local attention for remote sensing scene
image classification. Utilizing Grad-CAM visualization, they compared the results of
their network with baseline models like ResNet. Li et al. [48] presented an end-to-end
architecture employing self-supervised contrastive learning for few-shot remote sensing
scene classification. They also incorporated Grad-CAM to capture class-discriminative
features, with the highest values on the heatmap pinpointing the exact location of the
object’s most crucial feature for scene classification.

In the task of geospatial object detection in remote sensing images, Li et al. [49] used
weakly supervised DL. Their training method involves two stages: learning discriminative
convolutional weights based on pairwise scene-level similarity and learning class-specific
activation weights using scene-level labels. Then, object detection is achieved by segment-
ing the result of the CAMs. Notably, the deep networks were trained on an unrelated
remote sensing image scene classification dataset, and testing was performed on a multi-
class geospatial object detection dataset.

In other uses of explainability, various studies on remote sensing images have aimed
to improve visual understanding, often extending the standard CAM formulation. For
example, Huang et al. [50] presented a CAM adaptation with a neural network architecture,
including encoder, classifier, reconstruction, and CAM modules, enhancing image classifica-
tion between diverse object categories found in remote sensing images like airplanes, cars,
bridges, beaches, residential areas, forests, etc. Their key contribution is the reconstruction
module, preserving crucial object location information for improved CAM visualization.
Guo et al. [51] proposed Prob-CAM, a CAM variant based on layer weights and a metric
that quantifies the probability of occlusion in saliency maps for each convolutional layer.
This enables the automatic selection of the optimal layer for visual explanations in the tasks
of land-use classification in scenes from aerial orthoimagery. Song et al. [52] presented
Bidirectional Gradient Verification (BiGradV) to refine visual explanations produced by
Grad-CAM, capitalizing on both positive and negative gradients for class discrimination
in remote sensing images. Dutta et al. [53] integrated Grad-CAM with a directed acyclic
graph (DAG) generated by a neural network to enhance comprehension, specifically for
the classification of remote sensing images of land-use. In the context of aircraft recognition
in remote sensing images, Fu et al. [54] proposed Multi-CAM, leveraging predictions from
all categories to mitigate errors from a single prediction category. A mask filter strategy
further aids in eliminating interference from background areas.

Lastly, other studies have incorporated CAMs as part of their neural network archi-
tecture proposal, like Li et al. [55], leveraging the visual information contained in CAM
beyond visual explanations through a weakly supervised approach to enhance building
extraction in semantic segmentation within the domain of remote sensing imagery.

As discussed, the utilization of CNN explainability techniques, including CAM, Grad-
CAM, or customized adaptations, has been prevalent in remote sensing imagery solutions
employing DL. This approach ensures confidence in the learned patterns by the neural
network or allows for the modification of CAM for enhanced and tailored comprehension.
Notably, there is a gap in the literature regarding the exploration of CNN explainabil-
ity within the specific context of visually analyzing asbestos or hazardous materials on
rooftops. Given the critical importance of explainability in our work, where asbestos can
be found in diverse environments, ranging from industrial to rural areas, it is crucial to
ascertain whether our models are learning intrinsic visual patterns or relying on spurious
relationships with objects or contextual factors surrounding the buildings.
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3. Materials and Methods
3.1. Aerial Imagery and Asbestos Localization

Our study was conducted in Catalonia, located in the North-East area of the Iberian
Peninsula; see Figure 2. Within Catalonia, we focused on the municipalities for which we
manually collected asbestos rooftop locations. These municipalities (“Bages” and “Vallès”
include more than one municipality, mostly small rural towns, which we aggregated under
a single label for convenience; “Zona Franca” is not a municipality but is actually the main
industrial cluster in the city of Barcelona) are highlighted in blue, and their names and some
features are specified in Table 1. Notably, the vast majority of asbestos rooftop locations
were collected in the Barcelona province (green shadow), except for a few asbestos locations
which were obtained outside that area.

Figure 2. Geographic positioning and ground truth data distribution: the study was centered
in the Catalan region, with particular attention to the Barcelona province owing to its landscape
diversity, including rural areas, dense urban centers, and important industrial zones, where asbestos
constructions are very frequent. Ground truth data were rigorously gathered from various sites
(municipalities highlighted in blue). The accompanying magnified images on the right side are
illustrative of the ground truth diversity, including urban, industrial, and rural areas.

Table 1. Aerial imagery details table. Municipalities, number of images corresponding to the studied
locations, and area specifications.

Area Name Number of Images Covered Area (km2)

Badalona 71 110.9375
Sant Adrià 4 6.25

Bages 285 445.3125
Zona Franca 19 29.6875

Vilanova i la Geltrú 20 31.25
Vallès 32 50

Castellbisbal 44 68.75
Cubelles 15 23.4375

Gavà-Viladecans 16 25
Ginestar 6 9.375
Hostalric 9 14.0625

La Verneda 6 9.375

Total 527 823.4375
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This amounts to an area of 823.4375 km2, which, in turn, corresponds to 527 aerial
photographs, each with dimensions of 5000 × 5000 pixels and a spatial resolution of
20 cm (resampled from 25 cm) in RGB composition, acquired from the Institut Cartogràfic i
Geològic de Catalunya (Catalan Cartographic and Geologic Institute; ICGC hereafter) (https:
//www.icgc.cat/, accessed on 1 February 2024). Each photograph represents 1.5625 km2.

Localization data for the asbestos–cement roofing were obtained from DetectA (https:
//en.detectamiant.com/, accessed on 1 February 2024), a local company working on
dismantling asbestos cement roofs. In particular, the annotated field inventory was collected
manually and in situ in the period between April and August, 2022. These data, gathered
from the 13 municipalities (Table 1), amount to 4386 buildings in total in areas that may be
classified as urban, rural, and industrial (see Figure 2; magnified images on the right side).
Indeed, the Barcelona province is highly heterogeneous in population distribution, with
highly dense urban and industrial areas on the coast, and a slow progression to smaller
peri-urban and rural areas as we move inland. The manual classification included two
categories, namely, the expected asbestos (2420 instances) and non-asbestos (1966 instances).
Worth noting, the negative class includes hard non-asbestos instances (525), i.e., negative
cases where certain colors and textures can be confused with the presence of asbestos
material on a rooftop.

3.1.1. Aerial Imagery GIS Pre-Processing

Aerial images must undergo some transformation for them to be later processed by
the DL architecture (Section 3.2.1). To start with, the classification task operates only on
rooftops. Accordingly, individual buildings need to be presented as isolated as possible
and centered in the image.

To accurately isolate buildings from aerial images, we first obtained the shapefile
delineating the separation of buildings from the INSPIRE Services of Cadastral Cartog-
raphy (http://www.catastro.minhap.gob.es/webinspire/index_eng.html, accessed on 1
February 2024). This file classifies buildings based on their adjacency, even allowing for the
differentiation of attached structures.

The outcomes of this stage successfully isolated sizeable buildings and even small,
scattered ones (see Figure 3). With some further processing, it also allowed for the distinc-
tion of small and large buildings that are merged together in large blocks, as it is often
the case in cities (see Figure 3, second column). The resulting raster is a two-class layer
containing every building in the image, with class 0 representing the background and class
1 representing the footprint of the rooftops. This binary mask dataset is useful later on
during the explainability quantification process (see Section 3.2.3).

Figure 3. Rooftop isolation and centering. Catastral data enable a precise isolation and centering of
individual properties, even when these are embedded in blocks which appear to be single facilities.

https://www.icgc.cat/
https://www.icgc.cat/
https://en.detectamiant.com/
https://en.detectamiant.com/
http://www.catastro.minhap.gob.es/webinspire/index_eng.html
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3.1.2. Ground-Truth Training Dataset Construction

Taking a subset of the previous general collection (every building represented), we
generated a training dataset from the available binary masks of rooftops. To achieve
this objective, the ground truth data collected by DetectA were the main inputs. First,
the geometry features were analyzed to avoid any possible geographical misalignment
between vector layers and the aerial images. Subsequently, the data were converted into
a three-class raster, with an assigned code for asbestos, non-asbestos, and “background”
(referring to anything other than the building’s rooftop). That is, the dedicated masks, with
the same dimensions as each image frame (5000 × 5000 pixels), were generated in the form
of a four-valued matrix (Figure 4).

Figure 4. The pair of images and their corresponding masks as ground truth data during the training
phase. The variety of buildings and structures in both rustic and urban areas was considered during
the ground truth data collection. The figure includes examples of the sub-class hard non-asbestos for
the sake of illustration, although it was not used in the training stage.

Images were then adapted to satisfy the input requirements of the CNN, i.e., 224 × 224
image input with three channels. To do so, images were cropped into smaller tiles so as
to keep the buildings’ roofs in the center of the image. Worth remarking, the centering
method created image tiles of different sizes, so each building image was re-scaled to the
same 224 × 224 dimensions.

We split the data into train, validation, and test sets. In total, there were 2244 images
in the training set, with 1168 instances belonging to the positive class (asbestos class) and
1076 instances in the negative class, which also included hard negatives samples (hard
negatives are still non-asbestos samples, but they are very similar to the positive class). In
the validation set, there were 448 instances, which constituted 20% of the training set. The
testing set consisted of 559 instances. This test set included 291 instances from the positive
class and 268 instances from the non-asbestos class. Examples of the final input images
given to the CNN are offered later.

3.2. Classification with Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a subtype of Artificial Neural Networks.
Their ability to automatically learn discriminative features from raw pixel data makes them
a powerful image classification method. In this section, we detail the specific CNN we
propose to classify asbestos roofs.

3.2.1. CNN Architectures

In this work, we compared two popular DL architectures widely used in computer
vision: EfficientNetB0 [13] and ResNet50 [14,56].

EfficientNetB0 is a convolutional neural network that combines efficiency and perfor-
mance. Its core components include depth-wise separable convolutions, mobile inverted
bottleneck blocks inspired by MobileNetV2 [57], and squeeze-and-excitation blocks [13].
This network uses a scalable approach, adjusting the depth, width, and resolution simul-
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taneously to accommodate a wide range of resource constraints. Training techniques like
dropouts and batch normalization enhance its performance. The benefits of this architecture
include its ability to efficiently process images while maintaining competitive performance.

On the other hand, ResNet50 is a deep convolutional neural network architecture,
part of the ResNet (Residual Network) family. The network uses residual blocks with
skip connections, enabling very deep networks. It employs pre-activated residual blocks
and global average pooling, and it is composed of 50 layers, making it effective for image
classification tasks. Its state-of-the-art performance on various benchmarks, along with its
suitability for transfer learning, has established it as a prominent choice in computer vision.

We selected these CNN models instead of state-of-the-art architectures such as trans-
formers because of their high interpretability capability (through techniques such as Class
Activation Mapping [6]) without compromising performance. Additionally, these models
offer feature representations from pre-trained datasets that can be effectively fine-tuned for
classification tasks in various domains. In order to obtain a more comprehensive overview
of widely adopted DL architectures, various layer types, and loss functions within computer
vision, we direct the reader to [58].

We trained both the EfficientNetB0 and ResNet50 architectures for the binary task
of asbestos vs. non-asbestos classification. We added a dropout layer and fully connected
layer of two neurons to each model at the end (right after the global average pooling). We
used Softmax as the activation function at the end of both models, where the values of the
Softmax output represent the probabilities of the input belonging to each class. The loss
function used for this purpose was categorical cross-entropy:

L = −
C

∑
i=1

yi · log(ŷi) (1)

where C is the total number of classes, yi is the true class label, and ŷi is the predicted class
probability. This loss function is commonly used in multiclass classification tasks, and
it quantifies the dissimilarity between predicted class probabilities and true class labels.
While binary classification problems can be addressed through binary cross-entropy loss,
categorical cross-entropy can still be applied with a slight modification. During evaluation,
we interpreted the predicted probabilities as the probability of belonging to the asbestos
class by applying a threshold (0.5) to convert probabilities into binary predictions.

3.2.2. Training Details

In this section, we describe the training process in detail. The models were pre-trained
with ImageNet [59], which is one of the largest publicly available labeled image datasets.
ImageNet is a significant dataset in computer vision, known for its extensive collection
of labeled images covering a diverse range of categories. It has advanced the field by
facilitating the training of deep neural networks for tasks such as image classification.
Models trained on ImageNet have become the starting point for a wide range of computer
vision applications, making it a valuable resource. This pre-training allows the model
to learn an initial visual feature representation that can be transferred to other visual
classification tasks by fine-tuning the model.

Once the models were initialized with pre-trained weights, we used the collected
dataset to fine-tune the models for the asbestos classification task. We used the training set
for the learning process and the validation set for checking the model’ hyperparameters.

To prevent overfitting, the dropout rate was set to 0.5, which means that during each
training iteration, 50% of the units in the previous layer (after the global average pooling
and batch normalization) will be randomly set to zero. We used a batch size of 32 samples,
and we used Adam Optimizer as a gradient optimization algorithm with a learning rate of
10−3. During training, we monitored the model’s performance on the validation set based
on the categorical cross entropy loss function (defined in Equation (1)) and used it as an
early stop criterion. Additionally, we implemented a learning rate schedule that gradually
reduced the learning rate to a fraction of 10−1 when the loss function fell into a plateau.
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Finally, for model evaluation, we used Accuracy and F1 score metrics, defined as
follows:

Acc =
TP + TN

TP + TN + FP + FN
(2)

F1 =
2TP

2TP + FP + FN
(3)

where TP is the amount of True Positives, TN the amount of True Negatives, FP the amount
of False Positives, and FN the amount of False Negatives.

3.2.3. Explainability of CNNs with Class Activation Maps

We used a post hoc explainability technique to gain information on how the CNNs
make their prediction. The technique is called Class Activation Maps (CAM) [6]. Concretely,
given an input image and a specific output class (e.g., asbestos), CAM computes a heatmap
highlighting the image regions that played the most significant role in determining the
classification score for the specific output class.

In this work, we specifically used Grad-CAM [15], which is an extension of the original
CAM technique that can be applied to CNNs that contain fully-connected layers before the
output layer (notice that the CNNs we experimented with in this work—EfficientNetB0 and
ResNet50—have both fully-connected layers before the output layer). Specifically, Grad-
CAM computes importance scores per pixel of the input image by utilizing the gradients of
the class score, denoted as yc, with respect to the feature maps At

ij of the final convolutional
layer. These scores are calculated as follows:

αc
t =

1
Z ∑

i
∑

j

∂yc

∂At
ij

(4)

In this equation, Z represents the total number of elements in a feature map. This
setup leverages the feature maps derived from the gradient values of the class score with
respect to the feature maps, leading to the following equation:

Lc
Grad-CAM = ReLU(∑

t
αc

t At) (5)

Grad-CAM integrates the feature maps At with their corresponding importance
weights αc

t , spotlighting the input image areas most pertinent for predicting the target
class c. Specifically, it computes the gradients of the class score relative to the activations
from the last convolutional layer, multiplies these by the activations, and applies a Rectified
Linear Unit (ReLU) function. This process generates a heatmap, emphasizing the critical
regions impacting the class prediction. The final map of Grad-CAM is then generated by
summing up these target class weights and then re-sizing the heatmap to the input image
size.

The goal of the explainability study presented in Section 4.3 is to assess if the crucial
information to recognize a true asbestos rooftop actually comes from the rooftop area
withing the image, as expected. Alternatively, there might exist spurious correlations
between the asbestos rooftops and the surroundings of the building. For example, it might
happen that there are more asbestos rooftops in industrial areas, where the streets follow a
certain prototypical layout. In the presence of this specific spurious correlation, the model
could be learning discriminant features about the surroundings of the rooftop rather than
the rooftop itself. If the CNNs are actually relying on the rooftop characteristics to recognize
the presence of asbestos, the CNNs should be making the decision based on the region of
the image containing the rooftop, leading the CAM to highlight the rooftop region as the
most informative. In contrast, if there are spurious correlations with the surrounding of
the buildings, then the CNNs might focus on these surrounding areas, and CAM would
indicate that the most discriminant information is outside the rooftop area.
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In Section 4.3, we first present a qualitative assessment with CAM, and then a quantita-
tive evaluation. For the quantitative evaluation, we calculated the ratio of the overlapping
of the highest Grad-CAM values with the rooftop area within the image. First, we generated
the Grad-CAM heatmaps for each building image belonging to the test set. The Grad-CAM
heatmaps underwent a min-max normalization process between 0 and 1. Second, we took
the binary mask for each building, which indicates, within the image, pixels corresponding
to the building’s rooftop and pixels that do not. These two data allowed us to combine the
Grad-CAM heatmaps with rooftop masks and compare them pixel-wise.

More formally, we use Gk to denote the number of pixels belonging to the top
k = {5, 10, . . . , 100} highest values of the Grad-CAM output; Gk

rt the is number of pix-
els belonging to the top k highest values of the Grad-CAM output that lie within the rooftop
area; and gk is the percentage of the k highest values that lie over the rooftop area. Then,
we compute the following ratio:

gk =
Gk

rt
Gk × 100 (6)

This ratio, which ranges from 0 to 100, quantifies the fraction of rooftop pixels that
overlap with the mask in the positive asbestos class: high values of gk indicate that the
model is actually relying on the rooftop area.

4. Results

In this section, we initially assess the performance of both models with two well-
known techniques—random test set and k-folds cross validation. In both cases, we report
the results using Accuracy, F1-score, and confusion matrix as metrics. Furthermore, we
provide qualitative examples of the asbestos prediction map in different context areas.
Finally, we analyze the explainability behind the decision-making of both models using
Grad-CAM. We present insights from the qualitative visualizations of the Grad-CAM
heatmaps and a quantitative analysis of the image regions the models are fixating on.

4.1. Random Test Set

Our first assessment was based on randomly separating the test data, a straightforward
and computationally less intensive method. We left 20% of the dataset images for testing,
and the remaining 80% were used for training and validation. Specifically, for the test set,
we obtained 291 instances for the asbestos class and 268 instances for the non-asbestos class.
For a fair comparison, the learning process was performed with the same training and
testing sets for both networks. Table 2 presents the accuracy (Equation (2)) and F1-score
(Equation (3)) of the predicted outputs given by each model’s inference on the test set.

Table 2. Results of both CNN models’ inference on the random test set.

Models Accuracy F1-Score Asbestos Samples Non-Asbestos Samples

EfficientNetB0 0.92 0.92 291 268
ResNet50 0.81 0.80 291 268

Tables 3 and 4 are the confusion matrix for EfficientNetB0 and ResNet50, respectively.
As it can be observed, the EfficientNetB0 model has better performance than ResNet50,
presenting a lower number of false positives and false negatives. Figure 5 shows three
examples of the asbestos prediction map using the predictions given by EfficientNetB0 for
each rooftop building in different context areas. The maps represent the model’s prediction
(after Softmax) for the asbestos class, using a color gradient to visualize the output. In this
representation, rooftops with a lower Softmax likelihood are shaded in blue, while those
with a higher likelihood are colored in bright red.
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Table 3. Confusion matrix for the prediction outputs of the model EffiecientNetB0. “GT” stands for
Ground Truth and “Pred” for Prediction.

Pred
Asbestos Non-asbestos

G
T Asbestos 275 16

Non-asbestos 31 237

Table 4. Confusion Matrix for the prediction outputs of the model ResNet50. “GT” stands for Ground
Truth and “Pred” for Prediction.

Pred
Asbestos Non-asbestos

G
T Asbestos 242 49

Non-asbestos 60 208

Figure 5. Asbestos prediction maps in various contexts including (A) dense urban center; (B) indus-
trial area; and (C) rural/peri-urban area. As expected, the predicted level of asbestos presence is
much lower in urban and rural areas, compared to industrial clusters.
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4.2. k-Fold Cross Validation

Widely adopted in machine learning, k-fold cross-validation is a technique for sta-
tistically evaluating a model’s accuracy and robustness. This approach ensures that the
robustness of the implemented CNN models remains independent of the specific samples
assigned to the training and test sets. In this experiment, we used k-fold cross validation
with k set to 5. We trained both CNN models several times using different training and test
sets. Specifically, we randomly partitioned our dataset into five groups, using one group
for testing and the remaining four groups collectively for training.

The results of the 5 folds, reported in Table 5, show consistency, ruling out the possibil-
ity of a spurious impact of the randomness in a single split.

Table 5. Results of k-folds.

Networks k1-Fold k2-Fold k3-Fold k4-Fold k5-Fold Avg Accuracy

EfficientNetB0 0.81 0.88 0.89 0.86 0.85 0.86
ResNet50 0.78 0.81 0.81 0.83 0.75 0.79

4.3. Explainability Results

We produced Grad-CAM heatmaps for each rooftop image in the test set, targeting
both classes in our classification problem. In order to generate the heatmaps, we specifically
used the trained models presented in Section 4.1. The Grad-CAM was generated based on
the image’s classification output; if the image was classified as asbestos, the corresponding
Grad-CAM for asbestos was generated, and likewise for the non-asbestos class.

4.3.1. Qualitative insights

Figure 6 shows some examples of the original building image, the binary mask indicat-
ing where the building is located, and the Grad-CAM heatmaps for the two models tested:
EfficientNetB0 and ResNet50. Rows (A) and (B) contain images belonging to the asbestos
class whilst rows (C) and (D) contain images from the non-asbestos class.

As it can be observed in Figure 6, the highest values in the Grad-CAM heatmaps are
notably localized within the building rooftop for both models. This observation suggests
that the models effectively capture intricate rooftop patterns, encompassing elements such
as texture, lines, and colors or the presence of those patterns together.

Upon comparing the heatmaps of both models, it becomes evident that the Effi-
cientNetB0 heatmaps exhibit a tendency to cover a more expansive area compared to
the ResNet50 maps. This discrepancy may be attributed to the architectural differences
between the models, where EfficientNetB0, with its 4 million parameters, contrasts with
ResNet50, which incorporates 23 million parameters. Consequently, ResNet50, due to its
greater parameter count, may exhibit a tendency to overfit and concentrate on specific
details within the building rooftop, while EfficientNetB0 demonstrates a broader focus on
the entirety of the rooftop.
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Original 
Image

Prediction
 Outcome

Grad-CAM 
EfficientNetB0

Grad-CAM 
ResNet50

(A)

(B)

(C)

(D)

(E)

Figure 6. Grad-CAM results for selected asbestos (A,B), non-asbestos (C,D), and hard non-asbestos
(E) images. The second column of the figure represents the EfficientNetB0 prediction outcome, while
third and fourth columns show the Grad-Cam results in both models: a heatmap suggesting which
parts of an image played a relevant role during the classification task.

4.3.2. Quantitative Analysis

After generating Grad-CAM heatmaps for all the images in the test set, we specifically
analyzed them for the class of interest: asbestos. The objective of this analysis was to
systematically check the locations with the highest Grad-CAM values within the original
input images. Essentially, we investigated whether these values were concentrated within
the building rooftop area or if they extended into areas outside the building structure,
following the methodology described in Section 3.2.3. In particular, if the highest Grad-
CAM values aligned with the rooftop area, we could conclude that our models successfully
learned the intricate nuances associated with asbestos-containing patterns in our dataset.

For every image classified as asbestos, we generated a bar plot to illustrate the outcomes
of gk (refer to Equation (6)), ranging from k = 5 to k = 100. In this graphical representation,
the x-axis corresponds to the top-k values, while the y-axis indicates the corresponding
values of gk. This visual presentation allows for a clear depiction of the relationship
between the varying values of k and the resulting gk values for each image. Figure 7
illustrates some examples of the original input image from the test set classified as asbestos
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(first column), its corresponding EfficientNetB0 Grad-CAM heatmap overlapped with
the building mask (second column), the gk vs. k histogram of EfficientNetB0 Grad-CAM
(third column), its corresponding ResNet50 Grad-CAM overlapped with the building
mask (fourth column), and the gk vs. k histogram of ResNet50 Grad-CAM (last column).
Furthermore, in Figure 7, rows (A) and (B) display images from an urban context, rows
(C) and (D) present images from industrial areas, and lastly, rows (E) and (F) display images
from rural/peri-urban areas.

Input
 Image

ResNet50
Grad-CAM

EfficientNetB0
Grad-CAM

(A)

(B)

(C)

(F)

g   vs.  kk g   vs.  kk

(E)

(D)

Figure 7. Grad-CAM values of rooftop overlapping gk for individual buildings. For a set of facilities
with a positive classification (first column), the Grad-CAM heatmap against the building mask is
shown for both EfficientNetB0 and ResNet50 (second and fourth columns). Further, the gk histograms
(third and fifth columns) represent how Grad-CAM values are distributed on the image, with respect
to the rooftop surface. (A,B) are samples from a dense urban context. (C,D) are samples from an
industrial context and (E,F) are from rural/peri-urban contexts.

In Figure 7, row (A) shows an instance where 100% of the top five (k = 5) highest Grad-
CAM values are concentrated within the rooftop area for both models Grad-CAMs, both for
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EfficientNetB0 and ResNet50. This observation suggests that the models are predominantly
focusing on the rooftop region. As the value of k increases, corresponding to less relevant
Grad-CAM values, gk exhibits a decreasing trend. This reduction in gk continues until it
reaches the ratio percentage of the building area concerning the total image size at k = 100.

Row (B) illustrates an instance where the highest activation values from the Grad-
CAM, generated by EfficientNetB0, are mostly situated outside the building’s perimeter.
This deviation could be attributed to the building’s atypical shape. On the other hand,
the Grad-CAM heatmap produced by ResNet50 tends to be more concentrated; hence,
approximately 80% of the top five (k = 5) activations are accurately located within the
rooftop area of the building.

In rows (C), (D), and (E), we observe instances where approximately 80% of the top five
highest activations in the Grad-CAM heatmaps, for both models, are predominantly located
within the rooftop. While there are subtle differences in the distribution of gk between the
models, the heatmaps from EfficientNetB0 are generally wider but remain mostly within
the building’s structure. Conversely, despite ResNet50’s good performance in terms of
accuracy, its gk distribution tends to be marginally less focused compared to EfficientNetB0.
This variance in focus and spread is mirrored in the respective Grad-CAMs generated
by each model, highlighting the nuanced differences in how each model perceives and
processes the features for classification. In rows (C) and (D), where neighboring buildings
are present alongside the main building, we note that certain Grad-CAM values extend
beyond the boundaries of the primary building. Notably, the adjacent buildings are also
labeled and classified as asbestos. This observation suggests that the model’s attention
is not solely fixated on the specific rooftop of interest but is influenced by the presence
of additional rooftop structures within the image, contributing to the distribution of the
Grad-CAM values.

Finally, row (F) presents a diverging example with respect to the previous. Instead, the
concentration occurs in the borders or shadows of the building. In the case of EfficientNetB0,
the highest values are distributed outside the rooftop’s upper area, and along its borders
to some extent. In the case of ResNet50, while some top values are within the rooftop, a
considerable number are positioned outside the rooftop’s lower boundaries. Examples like
this one demand a more in-depth analysis. One plausible hypothesis for the misalignment
between the Grad-CAM’s focus and the actual rooftop could be attributed to the output
of the model, specifically from the Softmax likelihood. It is conceivable that the Softmax
likelihood values for these examples are not as high compared to other instances presented
in Figure 7. This discrepancy in model confidence might cause the Grad-CAM attention
to be more influenced by subtle features such as borders or shadows rather than the main
rooftop area.

Figure 8A shows the average of the Grad-CAM quantification for all the images in
the test set classified as asbestos. A comparative analysis is provided for the Grad-CAM
values generated by EfficientNetB0 and ResNet50. Notably, for EfficientNetB0, on average,
approximately 80% of the top five highest values are situated within the building’s rooftop
area, whereas for ResNet50, this percentage is slightly lower at 75%. This observation
indicates that, on average, EfficientNetB0’s Grad-CAMs exhibit a more precise localization
within the rooftop area compared to ResNet50, persisting even up to k = 95 (note that
for k = 100, the proportion is trivially equal to the percentage of areas occupied by the
building under scrutiny; that is, when k = 100, gk is the same no matter which classification
model is used). This alignment with the accuracy results reported in Section 4.1 further
supports the notion that EfficientNetB0 demonstrates a slightly superior performance in
the classification task, reflected not only in accuracy but also in the spatial localization
accuracy as indicated by the Grad-CAM analysis.
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EfficientNetB0 ResNet50

(A)

(B) (C)

Figure 8. (A) Average Grad-CAM gk for all the images classified as asbestos in the training set with
EfficientnetB0 (blue) and ResNet50 (orange). (B,C) Average Grad-CAM gk for all the images classified
as asbestos divided by area context for each model: EfficientNetB0 (B) and ResNet-50 (C).

On the other hand, panels (B) and (C) of Figure 8 illustrate the average of the Grad-
CAM quantification for each context area—rural, industrial, and urban—in our dataset,
as analyzed for EfficientNetB0 and ResNet50, respectively. Images of rooftops from rural
environments exhibit the weakest performance compared to the other two contexts. Our
hypothesis is that it is common to see lichen-covered asbestos rooftops, which deviate
significantly from the usual and expected grayish color. Additionally, we observe that the
Grad-CAM outputs from EfficientNetB0 demonstrate superior performance in industrial
settings, where, on average, almost 90% of the top five highest activations are correctly
localized within the rooftop area. Conversely, ResNet50 exhibits better performance with
urban images. These plots provide a comprehensive overview of how each model generally
responds to different environmental settings, facilitating a deeper understanding of their
contextual differences.

Despite EfficientNetB0’s superiority, both models exhibit a similar trend, revealing
a notable concentration of the highest Grad-CAM values within the rooftop area. This
trend reaches its peak at k = 15, suggesting a strong fixation of the models on the visual
patterns inherent in the building rooftops. The clarity of this pattern provides confidence
in asserting that the models are specifically focusing on the visual features within the
buildings’ rooftops, rather than being influenced by objects or regions surrounding the
buildings.

Figure 9 shows a collage that highlights the specific regions within randomly selected
original RGB images from the test set, where the highest activation values from the Ef-
ficientNetB0 Grad-CAM are concentrated: (A) the areas of the highest activation for the
Grad-CAM corresponding to the asbestos class and, conversely, (B) for the non-asbestos class.
These collages effectively illustrate the areas within the rooftop that the EfficientNetB0
model identifies as most critical in determining the presence or absence of asbestos. Quali-
tatively, we can observe distinct patterns in the classification process. For images classified
as asbestos, the model identifies rooftops with a grayish hue and a sort of scratched texture.
On the other hand, for images classified as non-asbestos, the model frequently highlights
rooftops that exhibit a reddish or lighter color palette and smoother textures. This differ-
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entiation in color and texture underscores the model’s learned criteria for distinguishing
between asbestos and non-asbestos rooftops.

(A) (B)

Figure 9. Collage of regions within randomly selected original RGB images from the test set, where
the highest activation values from the EfficientNetB0 Grad-CAM are concentrated: (A) corresponds
to images classified as asbestos. (B) corresponds to images classified as non-asbestos.

5. Discussion

The Deep Learning pipeline described in this work was conceived for identifying
building rooftops with asbestos presence. The classification was performed through the
processing of publicly available aerial images obtained from the ICGC. Such images were
pre-processed, combining them with catastral data, so as to guarantee their suitability
for subsequent classification. Remarkably, and unlike many previous studies on asbestos
classification reported in the literature, the dataset in this study only contained RGB images,
without data such as infrared, hyperspectral, or LiDAR.

A thoroughly curated dataset ensuring that the models take full advantage of the
information present in high-resolution imagery was key to achieving high levels of accuracy,
irrespective of the architecture used for classification (EfficientNetB0 and ResNet50). The
outcomes from both classification processes underwent a double validation process, which
consisted of a random test and a k-fold test. Both validations showed high levels of accuracy,
with low numbers of false positives and false negatives, as seen in the corresponding
confusion matrix.

Given the public health and even legal implications of the presence of asbestos in
buildings, it is important to move beyond the deployment of black-box solutions—as it
frequently occurs in AI applications. Seeking an interpretable outcome, we applied Grad-
CAM as a visual means to interpret the output of the classification methods. In doing so,
we obtained qualitative and quantitative evidence to ensure that successful classifications
were not relying on spurious information. On the contrary, our results clearly point at the
fact that the classification tasks learned the relevant variables to decide on the presence or
absence of asbestos—those of the visual features of the material, as seen on aerial images:
rugosity, color, texture, and so on.

Admittedly, this work leaves room for improvement and future research directions.
To start with, the training dataset was not as general as one would wish. In the area
under study (mostly the Barcelona province), asbestos was used for construction for at
least three decades before it was banned, and in very diverse environments. The material
has, thus, undergone different aging processes, which have resulted in notable differences,
mostly in coloring and texture. In rural environments, it is common to see lichen-covered
asbestos rooftops, which deviate significantly from the usual and expected grayish color.
This explains why the classification task was extremely successful in industrial and urban
contexts, but the performance decreased in rural areas. Such problems, which are hard to
estimate quantitatively but are easily identified through visual inspection, call for a larger
effort in the manual sampling of asbestos, with particular care for underrepresented areas.
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Furthermore, we only considered EfficientNetB0 and ResNet50 architectures. Other
choices (e.g., VGG [60]) could have been researched as well. However, the choice of these
architectures is grounded in the efficiency and performance attributes inherent in the ResNet
and EfficientNet family of model architectures. EfficientNet models, known for achieving
comparable performance with fewer parameters in classification benchmarks, emerged as
a fitting choice. Meanwhile, ResNet models, with their skip connections architecture, have
demonstrated robust performance and serve as a foundational model in various computer
vision tasks. We prioritized simplicity in terms of model parameters, mainly because of our
dataset’s limited size, leading us to select ResNet50 and EfficientNetB0 as they represent
the simplest models within their respective groups in terms of parameters.

Another possible research direction might be moving from mere detection to asbestos
area quantification. Such enhancement would imply the use of image segmentation instead
of classification. We opted for image classification provided that our target was focused on
the elaboration of a census of presence/absence of asbestos. On top of that, the usage of
segmentation increased the complexity of the task. Classification tasks employ simpler loss
functions such as cross-entropy, which compares the predicted label against the true label
for each image. This is straightforward when dealing with binary outcomes per rooftop.
In contrast, segmentation requires a more complex computation, typically involving loss
functions that assess accuracy in the aggregation of pixel-wise predictions for each image.
This means that the loss calculation would involve N × M (image size) comparisons,
where each predicted pixel label is compared against the corresponding true pixel label
across each entire image. Although segmentation may offer detailed insights into asbestos
distribution in rooftops, the increased complexity and potential for higher error rates made
classification the more viable option for our scope. So, we acknowledge segmentation’s
value for future exploration.

Finally, the efforts towards explainability could be enhanced in different ways. One
possibility would be the addition of an image segmentation task to the pipeline. As it is
now, we have a binary mask (rooftop, off-rooftop) directly from cadastral data. Expanding
these categories via automatic segmentation, the explainability analysis would go beyond
the binary quantification of Grad-CAM values to a collection of labels as identified in the
image. In doing so, secondary elements enhancing or damaging the prediction quality
could be identified.

The pipeline proposed in this study can guide the process of an automatic census of
asbestos presence. This is of particular importance both in large cities and smaller towns,
given the human and economic cost of manual monitoring to meet the legal mandates
that emanate from European and national directives. In Spain, for example, municipal-
ities should have created a census of facilities and locations with asbestos, along with a
scheduled plan for their removal, by April 2023. In many cases, such mandate is still to
be fulfilled. Along this line, an asbestos-detection pipeline should integrate the temporal
dimension in future research endeavors. As the census of facilities with asbestos is already
challenging, tracking the compliance of asbestos rooftop removal over time emerges as a
critical consideration.

6. Conclusions

In this work, we proposed a competitive Deep Learning pipeline for the identification
of asbestos materials on rooftops. The term “competitive” has two implications in our
work: on the one hand, the task was performed at a low cost, relying exclusively on RGB
high-resolution aerial images, which are publicly available in most European and world-
wide countries from national and regional geographic institutes. As opposed to methods
dependent on infrared or hyperspectral imagery, our choice ensures our methodology’s
versatility and applicability. On the other hand, the classification task was performed on
two state-of-the-art models, with very high accuracies in both cases—although showing
that EfficientNetB0 is superior to ResNet50 in this particular task. Such good results in two
different architectures highlight the importance of the data curation process, including its
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representativeness in industrial, urban, and peri-urban/rural contexts, and the use of the
cadastre–most often available as open data—to ensure that the model’s learning process is
centered and taking full advantage of the images resolution.

Beyond the classification performance itself, the application of Grad-CAM to support
the models’ explainability reveals that, indeed, both EfficientNetB0 and ResNet50 classifiers
extract the most useful information from rooftops themselves, i.e., their color, texture, shape,
etc., and not any other spurious surrounding elements which could deceptively increase or
decrease the accuracy of the proposed methods.
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