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Abstract: As a crucial component of the ecological security pattern, ecological source (ES) plays
a vital role in providing ecosystem service value (ESV) and conserving biodiversity. Previous
studies have mostly considered ES only from either landscape change pattern or ecological function
perspectives, and have ignored their integration and spatio-temporal evolutionary modeling. In this
study, we proposed a multi-perspective framework for the spatio-temporal characteristics of ES by
ESV incorporating landscape aesthetics, carbon sink characteristics, ecological quality, and kernel
NDVI (kNDVI). By integrating the revised ESV and the kernel normalized difference vegetation
index as a foundation, we employed the spatial priority model to identify ES. This improvement
aims to yield a more practical and specific ESV result. Applying this framework to the Three-River
Headwaters Region (TRHR), a significant spatio-temporal change in ecological sources has been
observed from 2000 to 2020. This performance provided a reference for ecological conservation
in the TRHR. The results indicate that this ecological source identification framework has reliable
accuracy and efficiency compared with the existing NRs in the TRHR. This method could reveal more
precise spatio-temporal distributions of ES, enhancing ecosystem integrity and providing technical
modeling support for developing cross-scale spatial planning and management strategies for nature
reserve boundaries. The framework proposed in our research could serve as a reference for building
ecological networks in other ecologically fragile areas.

Keywords: ecological sources; ecosystem services value; vegetation productivity; Three-River Head-
waters Region

1. Introduction

Constructed by ecological networks, ecological patterns play a crucial role in envi-
ronmental restoration and regional sustainable development. Ecological source (ES) areas,
defined as ecological patches in good ecological condition and providing high ecosystem
service value (ESV) [1], are the first step and essential foundation in the construction
of ecological networks [2,3]. Thanks to high-precision multi-source data products and
well-developed analysis methods, “Source identification—Resistance surface construction—
Ecological network generation” has become a globally classic paradigm for constructing
ecological networks [4—6]. More researchers have focused on constructing resistance sur-
faces and exploring methods for ecological corridor identification [7-9]. The methods of
ecological source identification have been limited to considering natural reserves, morpho-
logical spatial patterns [10-12], ecological importance, and sensitivity characteristics [13].
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The most accessible and straightforward approach is the nature reserve method. Early
studies have designated nature reserves as ecological sources [2,14,15]. However, con-
strained by their random distribution and subjective delineation, this method impedes
objective differentiation based on diverse land use and landscape types. To compensate
for the shortcomings of the nature reserves approach, some scholars have also employed
the Remote Sensing Ecological Index (RSEI) to comprehensively identify ecological source
areas [16]. However, it may not directly capture ecosystem functional patterns and char-
acteristics of ecosystem services. Along with the developments of landscape morphology
theory, Morphological Spatial Pattern Analysis (MSPA) is widely employed in ecological
source extraction [10,11]. However, the theory concentrates on landscape connectivity
while ignoring the community organization of the ecological space [17]. Under the back-
ground of ecological conservation [18], scholars are incorporating ecological importance
and sensitivity features into the identification framework, considering ecological pressure
and ecological quality [13], and using machine learning [19] to construct an ES identification
framework. Although multiple processes in ecosystems are considered in this complex
method, ESV, a crucial aspect of the ecosystem, has not received sufficient attention. Iden-
tifying ES based on ESV is another significant method. Diverging from the previously
discussed methods, ESV offers a clear understanding of the coupling mechanism between
humans and nature within an ecosystem, effectively illustrating the ecological function of
the designated source areas [20,21]. Simultaneously, the incorporation of ESV enhances the
visualization of the spatio-temporal evolution of ecosystems [22,23].

In summary, current ES extraction methods still face big challenges, and more in-
depth and comprehensive identification methods are not yet available. First, most current
research adopted a single perspective to identify ES. For instance, some studies focus on
landscape change patterns or ecological functions in one aspect [20,24] but still need to fill
the gap in different aspects. Second, connectivity and integrity are of great importance to
the ecosystem [25], but it is challenging to consider the spatio-temporal continuous ES in
recent identification methods. Hence, integrating various perspectives, including ecological
functions and landscape patterns, and extending spatio-temporal evolutionary modeling
approaches for ES identification present significant challenges and significance.

ESV assessments are a critical step in ES research that affect the accuracy of ES identifi-
cation. The equivalent factor method has been frequently used in ESV assessments because
it requires fewer elements and is applicable on a regional scale [26]. More improvements
in the equivalent factor method are required for integrating perspectives of ecosystem
service into the ES identification framework. Although most studies have used diverse
components (e.g., NPP, precipitation) to correct the equivalent factor method [27,28], fewer
studies have fully integrated ecological quality, carbon, and landscape aesthetic charac-
teristics into the ESV revision. The inclusion of ecological quality elements into ESV can
provide relevant insights for identifying ES spatio-temporal dynamic changes [29]. Car-
bon sequestration maintains healthy ecosystems and serves many benefits for human
beings [30,31]. Meanwhile, ES also may provide nonmaterial contributions through recre-
ation and aesthetic experiences but faces exceptional challenges to be integrated concretely
and comprehensively into ES identification [32]. To thoroughly consider the multiple
ecosystem characteristics, ecological quality, carbon sinks, and landscape aesthetics are
urgently needed in an integrated adjustment of ESV to identify ES.

Vegetation productivity also plays an important role in ES identification [33]. As an
essential ecosystem element, vegetation productivity stands out as highly responsive to
climate change and human activities, offering a visible representation of shifts in ecologi-
cal quality across a region [34,35]. Despite vegetation productivity being important and
widely used in different ecosystem processes [36,37], integrating it into the ES extraction
method has yet to be addressed. The normalized difference vegetation index (NDVI) offers
extensive, multi-scale ecosystem monitoring and long-term vegetation trend information,
being employed as a proxy for vegetation productivity [38]. However, it is also troubled by
saturation effects for higher vegetation cover areas [39]. It is vital and urgent to consider
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a more suitable vegetation productivity proxy factor comprehensively. In contrast to the
seasonal oversaturation effect of NDVI, the kernel normalized difference vegetation index
(kNDVI), proposed by Camps-Valls [40], is more suitable for modeling across multiple
spatio-temporal scales. Moreover, it exhibits a certain level of correlation with the produc-
tivity parameters of plants [41,42]. Given that, it is worth considering incorporating kNDVI
into the ecological source identification research framework.

Existing studies have discussed the importance of ESV and vegetation productivity in
the ES identification framework, respectively, and the relationship between the vegetation
condition and ecosystem service has been widely established [43]. However, the interaction
and combination between ESV and vegetation productivity were often overlooked, which
would be detrimental to understanding the overall ecological process interactions. There-
fore, it is important to explore whether the combination of ESV and vegetation productivity
can lead to more valuable outcomes of ES identification.

To solve the problems mentioned above, the primary objectives of this study were
as follows: (1) Consider ESV as a pivotal factor in ES identification and revise it from
multiple perspectives (landscape aesthetics, carbon sink characteristics, and ecological
quality). (2) Integrate the multi spatio-temporal kNDVI into the process of identifying
ecological sources. This inclusion allows for the quantitative identification of ES by consid-
ering spatio-temporal evolution, providing a comprehensive perspective for carbon sinks.
(3) Identify ES using spatial priority models based on the normalized ESV and normalized
kNDVI. (4) Demonstrate the spatio-temporal changes in ES by applying the established
framework in the Three-River Headwaters Region (TRHR). The results could provide
technical modeling support for developing cross-scale spatial planning and management
strategies for nature reserve boundaries.

2. Study Area and Datasets
2.1. Study Area

Renowned as the birthplace of the Yellow River, Yangtze River, and Lancang River
(Figure 1), the TRHR is dominated by grassland, forest, bare land, and water bodies.
Meanwhile, the vegetation is mainly Alpine grasslands, which cover more than 60% of the
region [44]. As the hinterland of the Qinghai-Tibetan Plateau, it boasts a diverse range
of ecological species and extensive coverage of alpine meadows and alpine steppes [45].
The TRHR is unique and representative in the global natural ecosystem conservation and
serves as a significant area to maintain global biodiversity at the levels of gene, species,
and ecosystem [46]. It is also a crucial ecological barrier and Asia’s biggest carbon sink
zone [47].

The TRHR has low air temperatures and typical plateau climate characteristics [48].
The TRHR ecological environments are sensitive and fragmental, endangering its ecological
security. Conducting an ES identification framework of the TRHR and delineating the
ES pattern can address the existing research gaps and offer scientific insights for regional
ecosystem conservation and sustainable development [49]. In turn, it promotes harmonious
coexistence between human activities and the natural environment on the Qinghai-Tibet
Plateau. So, we try to provide strategies for ecological restoration in this region.
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Figure 1. Land use types and the location of the study area.

2.2. Data Source and Processing

The ES identifications were based on quantitative remote sensing data, together with
additional land-use data, productivity data, observations of the wildlife spatial distribution,
and multiple socioeconomic components. To represent these factors and make sure that
the analysis covers TRHR, we used different resolution data (Table 1). Considering data
availability and the size of the study area, all spatial datasets are represented in a uniform
coordinate system. To match all types of data, we resampled all raster data to a resolution
of 1 km. The GlobeLand30 dataset [50] was recombined into six classes for subsequent
ESV assessments. Based on the Google Earth Engine (GEE) platform, remote sensing
data were processed annually for calculating the RSEI Based on the Google Earth Engine
(GEE) platform, remote sensing data were processed annually for calculating the RSEIL
Specifically, low-clouded images from March to July were selected and retained all pixels
that are categorized as “good” (QA = 0) or “marginal” (QA = 1) quality in the QA layer.
Principal component analysis, water body masking, and declouding were among the
other processes applied to the images [2]. The Yearly Net Primary Productivity data have
been preprocessed with atmospheric correction, and the MODIS Reprojection Tool (MRT)
software provided by NASA was used for data conversion, image stitching, and batch
cropping using Python. The NPP data for the study area at five-year intervals from 2000
to 2020 were finally obtained. Precipitation data [51] and vegetation fraction coverage
data [52] were processed on the timescale from monthly to annually and transferred from
.NC format to .tiff format.
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Table 1. Data used in this study and their sources.

Dataset Resolution Dataset Name Sources
Global 30 m land-cover products with a fine https:/ /data.casearth.cn/
Land Use [50] 30m classification system from 2000 to 2020 (accessed on 24 March 2023)
Yearly Net Primar USGS EROS center
Pro d};c tivity Da tay 500 m MOD17A3HGF https:/ /www.usgs.gov/
y (accessed on 15 January 2023)
o 1 km monthly precipitation dataset for China https:/ /poles.tpdc.ac.cn/
Precipitation Data [51] 1km (1901-2021) (accessed on 15 January 2023)
. . Aboveground biomass and vegetation cover )
Fraction Vg;;?}gc;r; Coverage 500 m data for the Qinghai-Tibet Plateau (ac}cfsz:c{ gialt 2::%?5;0?0/23)
(1990-2020) y
Remote Sensing Data 30m MOD13A1V6, MOD11A2V6, MODO09A1 Based on the GEE platform
«Qinghai Statistical Yearbook» http://tj.qinghai.gov.cn/
Socioeconomic Data _ «National Compﬂatlon. of Agricultural http:
Product Prices»

/ /www.stats.gov.cn/sj/ndsj/
(accessed on 15 January 2023)
- Gaode Open Platform

«China Agricultural Yearbook»

Point of Interest Data -

3. Methodology

ESs were regarded as vital zones that provide multiple ecosystem services and veg-
etation productivity. An ES identification framework was conducted in this study and
divided into three aspects: (1) assessing preliminary ESV by the equivalent factor method
and calculating RSEI, Carbon Sink Index (CSI), and Landscape Aesthetics Index (LAI) to
refine the ESV assessments; (2) estimating kNDVI (2000-2020) based on the GEE platform
to describe spatio-temporal evolution; and (3) using different spatial priority rules, identify
ES based on ESV and kNDVI. The concrete research framework is shown in Figure 2.

Identification of Ecological Sources Using Ecosystem Service Value and Vegetation Productivity
Indicators: A Case Study of the Three-River Headwaters Region, Qinghai-Tibetan Plateau, China
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Figure 2. The workflow of ecological sources (ES) identification includes four phases: measuring ESV,

calculating KNDVI, identifying different levels of ecological sources using the zonation model, and

suggesting conservation policies.
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3.1. Ecosystem Service Value Assessments
3.1.1. Quantification of the Ecosystem Services

ESV provides valuable insights into the mechanisms of ecosystem functioning and
serves as one of the foundational datasets for identifying ES [53]. The equivalent factor
method is one of the mainstream ESV assessment approaches and has been widely used [54].
ESV was categorized into supporting, regulating, provisioning, and cultural services based
on the Millennium Ecosystem Assessment [55]. Combined with the equivalent factors
table for terrestrial ecosystem services proposed by Xie [56], this study obtained the table
of equivalent values for ecosystem services in the TRHR. Since the ESV provided by
construction land is less challenging to measure accurately, this study does not assess
construction land [57]. The total value of ESV was calculated according to the land use
structure and different service types in the study area (Equation (1)):

ESVs = i i S]E1] (1)

i=1j=1

where ESV denotes the total value of ecosystem services in the study area (yuan), and S;
means the land use area (hm?) of the j ecosystem service type. Ejj represents the value of
ecosystem services for the jy, ecosystem service type of the iy, land use type (Yuan/hm?).

3.1.2. Revision of the ESV

Considering that an equivalent table is established for the whole China terrestrial
ecosystem and only statically reflects the average ESV [27,58], targeted spatio-temporal
revisions are needed when using it.

By synthesizing comparisons from earlier representative research and considering the
TRHR’s characteristics, we created the revised indicators of three dimensions—ecological
quality, carbon emission and natural landscape aesthetics. Firstly, RSEI is used to reflect the
spatial heterogeneity of ecosystems and characterize the influence of ecological quality in
TRHR. It can capture the ecological quality rather than primal ESV. Secondly, the CSI is
constructed to be relevant to ecosystems’ capacities to cope with climate change and carry
out carbon modification, which can complement the shortcomings of the primitive ESV.
Lastly, most of the previous studies only considered the TRHR'’s ecological characteristics,
ignoring its intangible cultural values. Thus, considering the scientific and cultural charac-
teristics of the TRHR, the LAl is constructed to highlight the value of the TRHR's cultural
services. In summary, these criteria represent the manifestation of three major components
of the ESV (ecology, carbon emissions, and cultural characteristics).

(1) Remote Sensing Ecological Index.

Ecosystem quality is more accurately measured [2] based on the RSEI proposed
by Xu [59]. Meanwhile, the relevant literature shows that RSEI demonstrates superior
performance in the TRHR [60]. It is calculated as follows:

RSEI = f(Greeness, Wetness, Heat, Dryness) (2)

where the Greenness, Wetness, Heat, Dryness are represented by different components
assessed using remote sensing data. The RSEI was obtained by fusing the four major
components and extracting the first principal component using Principal Component
Analysis [61].

(2) Carbon Sink Revised Index.

As a crucial carbon-sensitive area of China’s ecosystem, the TRHR has a vital carbon
sink function. We qualified the CSI using Net Ecosystem Productivity (NEP) and Vegetation
Fraction Coverage (VFC) indicators, which measure the level of carbon balance and can
more reasonably highlight the value of carbon sinks provided by the TRHR.

NEP; . VFG )
NEPmean VPCTHCLU’I

CSI; = % x ( 3)
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CSI is the carbon sink revised index; NEP; is the NEP of study unit i [44]; NEPeqay is the
average NEP of the study area; VFC; is the vegetation cover of study unit i; and VFCyean is
the average vegetation cover of the study area. The explicit illustration of the expression
of NEP can be found in [62], and specific descriptions of VFC are based on [52]. The
calculation result for NEP is similar to the previous studies.

(3) Landscape Aesthetics Index.

A quantitative description of landscape patterns can effectively explore the inter-
nal mechanism of ecosystem action to reveal the ESV in the study area better. Accord-
ing to former research [63], Shannon’s diversity index (SHDI), the Euclidean distance to
places of interest, and naturalness were used to conduct the LAI indicator. The formula is

presented below:

LAI; = % x (NT; + NS; + SHDI,) (4)

where LAI; is the LAI value of grid cell i; NT; is the naturalness of grid cell i [64]; NS; is
each grid’s Euclidean distance to places of interest in TRHR; and SHD], is the normalized
SHDI of grid cell i. All three components were normalized to 1-100.

3.1.3. Revised ESV Calculation

After calculating the value of the preliminary ESV, the revised ESV in the study area
can be calculated as follows:

6 17 n

ESV yevise = Z Z Z Rjt X Eij X S]'t ®)
i=1j=1t=1

Rj; = Normalize(LAI; x CSIj X RSEI};) (6)

where i, j, and t represent the ecosystem category, service type category, and the number
of image elements, respectively. ESV s is the revised ecosystem service value; R;; is the
revision index after normalization; Ej; is the grid’s unrevised ecosystem service value; and
Sj is each grid’s area. LAl is the Landscape Aesthetic Index, CSIj is the Carbon Sink
revised Index, and RSEI}; is the Remote Sensing Ecological Index.

After the above modifications, the dynamic results of the ESV assessment in the TRHR
were obtained, which considered more comprehensively the ecological characteristics,
carbon sinks, and landscape aesthetics at the grid scale of the TRHR and could further
improve the accuracy and comparability of ES identification.

3.2. Kernel Normalized Difference Vegetation Index Calculation

KNDVI can offer substantial support in investigating regional carbon sinks. To incorpo-
rate the impacts of carbon sequestration in our ES identification methods, we take KNDVI
into our framework. In previous studies [65], it has been demonstrated that KNDVI can
effectively alleviate the saturation problem and showcase high robustness in performance
compared to NDVL. It is defined by adopting the RBF kernel function, recovers all higher
order differences between the NIR and red reflectance bands, and when an appropriate ker-
nel function is used, the index comes in a relatively simple and practical expression [40,66].
The simplified equation is as follows:

NIR — R

KNDVI = tanh(( e

) @)
where NIR and R are the reflectance in the NIR and the red bands, respectively, and ¢ is a
kernel length scale parameter that must be specified in each application. The application
of the kernel function and parameter allows kNDVI to deal with the seasonal saturation
effects and reflect complex vegetation phenology [40].

In this study, KNDVI was calculated on the GEE platform using the MODIS dataset.
Year-by-year KNDVI values from 2000 to 2020 at a location (x, y) were used to fit this series
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with the linear regression model, and the slope was used to reflect the trend of kKNDVI at
that location [67].

3.3. Ecological Source Identification

Balancing numerous considerations and ensuring the continuity of ESs is vital for ES
identification, and previous studies have achieved this goal using ZONATION models in
different aspects [5,53,68]. Thus, accounting for the interaction of ecosystem service and
vegetation productivity, we integrated normalized ESV and normalized kNDVI as input
data for spatial conservation prioritization in the decision support software ZONATION
(v.4.0). Zonation software (v.4.0) assumes that ecological priority values of all areas need
to be protected and range from 0 (cannot provide ecological value, e.g., urban areas) to
1 (provide multiple ecological value areas) [69]. The order of deletion reflects the relevance
of the units to conservation: regions deleted first have a lower priority, while those retained
longer have a greater priority [70]. Models iteratively eliminate the pixel with the most
minor contribution to the conservation objective [6] and generate priority rank maps as its
primary output.

Calculating the marginal removal loss, also known as the cell removal rule, is di-
rectly related to the order of raster removal during the model run [71]. The Core-area
zonation (CAZ) and Addictive-Benefit Function (ABF) rules are mainly used in previous
studies [72,73]. In the CAZ method, the removal of cells is based on a value called the
removal index J; [74]. The formula is as follows:

qgijw;
Ci

i = max; (8)
where §; represents the minimum marginal loss of the biological value of the cells; g;; is the
proportion of the remaining distribution of feature j located in cell i for a given set of sites
(the set of cells remaining); and w; represents the weight or priority assigned to species j,
while ¢; stands for the cost of incorporating cell i into the reserve network. The cell with
the lowest ¢; value is selected for removal.

In contrast to the CAZ rule, the ABF rule considers the proportions of all features in a
given cell, rather than only the greatest value. All species in this rule can compensate for
one another [74]: losing some representation for one species results in a loss of value for
that species, but the loss can be at least partially offset by higher representation for other
species elsewhere. The formula is as follows:

1 1 .
0= ) AV; = cwi) [Vi(g)) — Via; — )] ©)
] ]
where g; is the representation of feature; in the remaining set of sites, and (g;;) indicates the
set of remaining cells minus cell i. Here, w; is the weight of the feature j and ¢; is the cost
(or area) of planning unit i. As in CAZ, the cell with the smallest §; value will be removed.
To better protect integrated and single ecological elements, we integrated the conser-
vation priority areas under CAZ and ABF rules to identify ES. With the CAZ and ABF
methods, areas recognized as not in the top 30% are assigned as potential areas. Addition-
ally, the lower value will be selected with multiple superimposed spatial priority rules.
Considering that the zonation algorithm produces hierarchical priority maps and
considering previous studies [75], we extract the top 10%, 20%, and 30% of conservation
priority areas as ESs and other areas as potential ESs, respectively. The logic for the classifi-
cation is as follows: (1) the top 10% (the raster value of 0.9-1) priority area, distinguished
by its capacity to provide the highest ecological function value; (2) the top 20% area (the
raster value of 0.8-0.9), acting as a buffer for the top 10% priority zone; (3) the top 30%
(the raster value of 0.7-0.8) priority area, serving as a linkage between ecological sources
and the potential area; and (4) the remaining potential areas, capable of transforming into
ecosystem sources through environmental improvements.
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4. Results
4.1. ESV and KNDVI of the TRHR Present Significant Spatial Heterogeneity

The total ESV from 2000 to 2020 tends to increase and then decrease (Figure 3). Among
the four major types of service types, regulating value occupies a dominant position and
has the most apparent fluctuation; support services are the second most important, with a
slower degree of change; and cultural services and supply services have provided a more
stable ESV over the past two decades and account for a smaller proportion of the total.

1800

] , I Cuiltural services
16005 28 81.062 Regulation services
1 I support services
1400 Provision services
~~ p
g
a 1200
= | 1181.53
g 1000 — 1109.666 1076.783 1111.087 1108.27
< 800
> 1
nn
m 600
400
il 344405 329.619 337.506 358.357 340.455
200
0 ] 109.717 106.532 109.975 116.967 109.584
T T T T T T T T T
2000 2005 2010 2015 2020

Figure 3. Temporal changes in the four ecosystem services in the TRHR.

In general, the ESV of the TRHR demonstrates spatial heterogeneity, with a stable
spatial layout of low-value clustering and high-value dispersion (Figure 4). An overall
trend of decreasing from southeast to northwest was observed, which is closely related to
the characteristic of increasing temperature and humidity from northwest to southeast in
the TRHR [76]. As shown in Figure 4f, the ESV in the southeastern TRHR declined as a
result of human-caused ecological land degradation. An increasing trend is mainly shown
in the middle of the TRHR.

a) 2000 b) 2005 ¢) 2010

Sum of the Ecosystem Service Values 0 190 km
I 1owest area [0 low area [ | medium area [0 high area Il highest area [ I—

d) 2015 e) 2020 1) 2000-2020 change

-] lower I:lunchanged - higher

Figure 4. Spatial distribution (a—e) and spatio-temporal changes (f) in ESV from 2000 to 2020.
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Specifically, the highest-value areas are reflecting the continued clarification of ecosys-
tem boundaries. They are mainly distributed in the central part of the region, Zaling Lake,
Eling Lake, and the northwestern part of the Hoh Xili Lake, Xijinwulan Lake, Sun Lake,
and other alpine river and lake areas. As multifunctional ecosystems, these rivers and
lakes play essential roles in water conservation, soil conservation, carbon sequestration,
and oxygen release; so, the watershed areas dominate the ESV in different periods. The
areas with high and medium values are scattered in the eastern and southeastern parts
of the TRHR, and the trend of low values evolving to medium values in the eastern part
gradually increases as time passes. The eastern part is the Yellow River Basin, and the
southern part has a more favorable climate, where ecosystems such as alpine meadows
and alpine grasslands are widely distributed and can provide stable high-value functions
such as carbon sequestration and oxygen release, climate regulation, and environmental
purification. Therefore, these zones have higher ESVs relative to the northwest.

The low-value areas are mainly concentrated in the northwest and part of the central
areas of the region, of which the Yangtze River source area occupies a higher proportion,
including the core conservation area and the Qinghai Hoh Xil.

The kNDVI from 2000 to 2020 is shown in Figure 5. There was significant spatio-
temporal heterogeneity of the KNDVIin the TRHR. From 2000 to 2020, the kKNDVI increased
gradually from northwest to southeast (Figure 5a—e) with strong longitudinal zonality.
Regarding the spatial distribution features, the high values are primarily concentrated in
the southeastern region, where mountain forests and alpine meadows are widespread. In
the northwestern part, characterized by glaciers and desert bare land, vegetation cover is
low and discontinuous. The linear regression model was used to detect trends of changes
in the KNDVI. The pixels with an increasing trend comprised 34.5% of the entire research
area, which was much larger than those with a decreasing trend (3%) because of vegetation
restoration from barren or sparsely vegetated areas to grassland.

1) 2000 b) 2005 A

d) 2015

¢) 2020 f) Change trend from2000 to 2020

0 200 km Slope

not significant - significantly increased significantly decreased

Figure 5. Spatio-temporal dynamic changes in the kKNDVI from 2000 to 2020 in the TRHR.
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4.2. Ecological Source Identification Model Performance Analysis

As mentioned in the methodology, ESs within the TRHR from 2000 to 2020 were
determined by applying a zoning model built upon the CAZ and ABF selection criteria,
considering the overlapping results of both methodologies. As shown in Figure 6, ES iden-
tification results are diverse between different ecological priority rules. The CAZ method
extracted source sites that are ecologically preferred. However, the resulting patches were
smaller and exhibited a more random distribution. In contrast, the ABF method pro-
duced more continuous results but overlooked the significance of water bodies as crucial
ecological source providers. So, it is necessary to combine the two extraction methods.

a) ABF identification

More continuous sources

Key water body Madoi
identification N
Zhalin water body 0 210 km A
. identification
e e~y
N o he
;‘.‘ Legend
. TRBR boundary

[T Potential area

1 Top 30% priority area
1 Top 20% priority area
b) CAZ identification I Top 10% priority area

Figure 6. Ecological sources identified from the (a) ABF and (b) CAZ methods in the TRHR.

Based on Table 2, the temporal changes reveal a sustained presence of potential areas
for 20 years. The conversion of areas into ES sites shows an increasing trend over time,
with 20% of the total TRHR being recognized as ecological source areas. These identified
ESs provide a high ESV and carbon sinks. From 2000 to 2015, the ecological patches
fluctuated insignificantly and primarily had an interconversion of the top 20% and 30% of
areas. Notably, the top 30% of priority areas exhibit a gradual decrease, with about 70%
of the areas transforming into the top 20% of ecological source sites from 2015 to 2020.
Meanwhile, the top 10% of total source areas remain relatively stable, showing minimal
and non-significant changes.

Table 2. Ecological sources in the TRHR from 2000 to 2020.

Year Potential Area Top 30% Area Top 20% Area Top 10% Area

(km?) (km?) (km?) (km?)
2000 319,917 32,061 29,836 29,775
2005 318,850 33,349 30,081 29,288
2010 312,863 35,624 32,622 30,480
2015 315,171 35,437 30,018 30,963
2020 309,338 6627 65,781 29,749

Regarding spatial distribution depicted in Figures 7 and 8, ES exhibits distinct char-
acteristics. In the northwest, there is a discrete and sparse arrangement, while a more
consolidated, block- and surface-like distribution is evident in the southeast. From 2000 to
2010, the spatial distribution of ES was stable. The top 10% of areas are mainly distributed
in Henan Mongol Autonomous Prefecture and Jigzhi County, which are sporadically dis-



Remote Sens. 2024, 16, 1258 12 of 22

tributed in the central regions. The top 20% of ESs are spread in a ring around the top 10%
of ES areas.

1) 2000 b) 2005

Zhidoi Qumarieb Zhidoi Qumarleb -

Golmud

¢) 2010

Zhidoi Qumarleb
. Qumarleh

Golmud g
*Saprs R
Zadoi. 3

€) 2020

TRHR boundary N
o 1 General area A
Golmud [ Top 30% priority area
[ Top 20% priority area 250 km

| Top 10% priority area L1

2020 | T
2015 - I
2010 R —
2005 - [
2000 _ I
0% ZOI% 40I% 60I% SOI% IO(I)%

potential area Top 30% ®=Top20% ®=Top10%

Figure 8. ES composition and the temporal changes in the TRHR.

Since 2010, Zhalin lakes and others in the northwest have transitioned gradually from
potential areas to the top 30% of areas, while the top 10% of ES patches have decreased in
the central region. The establishment of the Sanjiangyuan National Park in 2012 has played
a positive role in maintaining and cultivating ecological sources. A discernible trend in
some southeastern areas indicates an initial increase followed by a subsequent decrease
from 2000 to 2020. Notably, in 2020, certain areas classified initially as the top 10% have
been downgraded to the top 20%, but other areas are still showing an improving trend.

As depicted by Xu et al. [77], the grassland coverage and productivity increased while
grassland degradation was controlled and desertification was prevented after the first
phase of the Ecological Project (2005-2012) in the TRHR. It is also reflected in our results.
Although the potential area still cover huge areas in the TRHR, the top 30% of areas, which
mainly consist of grassland, were transferred into the top 20% of areas gradually. According
Ning et al. [78], the restoration area far increased during the implementation of the second
phase of the Ecological Project. Thus, it is not hard to understand that the top 30% of ESs
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will change into the top 20% of ESs. However, the degraded top 10% of Ess are distributed in
eastern part of the TRHR. These degraded areas are mainly dominated by human activities,
which will offset the temporary ecological restoration, causing ES degradation.

5. Discussion
5.1. Implications of the Ecological Source Identification Framework

Selecting critical patches with ecological advantages is the basis for enhancing the con-
nectivity and integrity of ecosystems [53]. However, the current identification mechanism
fails to model and quantify the continuity of ecosystems. Moreover, inadequate recognition
of complex ecosystem spatio-temporal evolution and large-scale zoning management limits
the effect of planning implementation [79]. Specifically, previous studies have only con-
sidered it from a single spatial or temporal perspective and ignored the carbon sinks and
ecological service characteristics. Compared with the related ES identification work, our
study combines multiple ecosystem characteristics and carbon sinks into ES identification
workflows, which effectively complements current ES research. To enhance the original
ESV assessment method for the TRHR, we incorporate landscape aesthetics, carbon sink
characteristics, and ecological quality considerations. This refinement aims to yield a more
practical and site-specific ESV result. Additionally, we calculate the unified vegetation
index, kNDVI, to enhance the representation of spatio-temporal scale carbon sink character-
istics within the research zones. Moreover, we employ spatial priority configuration tools
and integrate different cell removal rules to extract ecological sources, categorizing them
into three distinct classes. Therefore, the multiple ecosystem service values and ecological
integrity have been fully considered when assessing ecological sources.

5.2. Comparison of the Proposed Method and Previous Methods

Compared with the ESV assessments in previous studies [44,80], our revised results
were consistent with the results: “ESV decreasing from southeast to northwest in the TRHR” .
To validate the simulated ES results, we compared the ES with Li et al. [75]. Our results
are similar to the previous results in the southeast and middle zones, indicating that the
identification results are reliable. However, it is noteworthy that some differences were
observed in parts of the northwest. We believe these differences may be attributed to
variations in ESV assessment methods and data resolution, and our identification results
reveal more intricate patterns.

Specifically, to understand the difference across conservation objectives, we identified
and mapped ESs that would be missed if conservation efforts were to focus solely on
the ESV or kKNDVI. We have considered three scenarios: (D) only considered the kNDVI,
@ only considered the ESV, and (3) combined the ESV and kNDVI into identification.
We used the same spatial priority methods and analyzed the spatial distribution and
temporal differences in three scenarios. From a spatial perspective, there are also some
benefits and drawbacks to ES identification using the KNDVI or ESV, respectively (Figure 9).
Identifying ESs through the kNDVI can reveal the ecological contribution of the Yangtze
River Headwaters Basin in the southeast of the TRHR. However, the kNDVI is unable
to identify the lakes in ESs, due to the theory of vegetation index (the red solid box in
Figure 9). Meanwhile, ES identification emphasized the northwest ecological function but
neglected the middle areas (the black dotted box in Figure 9). To detect ES, it is crucial to
integrate the kNDVI and ESV. Thus, we decided to combine the ES identification results
from both the kNDVI and ESV to exact more comprehensive ESs.

Given the difficulty in obtaining identification results from other authors, we quan-
titatively present a comparison of source site results using only the ESV (the traditional
method employed by previous studies) and incorporating the kKNDVI (the method used in
our study). According to previous studies [53], we used landscape metrics calculated by
Fragstats4.0 to compare the ESs identified using different approaches.

The Split Index represents the total degree of landscape dispersion, whereas the Di-
vision Index represents the degree of landscape separation. The high Split and Division
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Indices indicate terrain fragmentation in research areas, which does not facilitate energy
flow between ESs. As depicted in Figure 10, the Split Index and Division Index of ESs identi-
fied by the proposed method were significantly lower than those of the traditional method.

a) b)

|__; _____ 0 230 km

Legend
[ Potential area
[ Top 30% area
[T Top 20% area
I Top 10% area
[ blank

Figure 9. Ecological source identification differences between (a) ESV and kKNDVTI indicators, (b) only
the kNDVI indicator, and (c) only the ESV indicator.
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Figure 10. Landscape metrics of ecological sources identified by different approaches.
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The Largest Patch Index (LPI) characterizes the strength of landscape fragmentation,
heterogeneity, and human disturbance [81]. A high LPI can reflect the stability of the total
region. The Patch Cohesion Index (COHESION) and the Contagion index (CONTAG)
further indicate natural connectivity and a concentrated distribution of ESs. Stronger ES
identification efficiency and accuracy were demonstrated by the high LPI, COHENSION,
and CONTAG. ESs identified by our method were slightly higher than the traditional way,
which indicates that the degree of ES aggregation improved following identification by the

proposed method, as well as the existence of dominant patch types with high connectivity
in the landscape [82].

5.3. Management Implications Based on the Identified Ecological Sources

We can easily find that most areas in the northwest have a stable low ESV. Learning
from land use in the TRHR (Figure 11b,c), the region has complex land use types with
typical alpine plateau characteristics ranging from alpine desert steppe to cold desert steppe
and alpine meadows with many high lakes, marshes, and snow-capped glaciers. The world
heritage site Qinghai Hoh Xil Natural Protection area is located here, which is called the
‘core center Conservation Area’ in the Sanjiangyuan National Park planning policy. So,

it is our goal to improve the environment and preserve the authenticity of ecosystems in
the future.

\\
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Figure 11. Identified ESs (a), the land-use transition from 2000 to 2020 (b), and the land-use spatial

distribution in 2020 (c) in the TRHR. (Notably, construction was not considered in Figure 11b due to
its small proportion.)

Nature reserves (NRs) are regarded as pillars of biodiversity conservation [34], con-
tributing to the enhancement of suitable wildlife habitat quality. Considering the relevant
policies and conservation programs, we compare ESs extracted in our study with the NRs
proposed by the policies and the main wildlife spatial distribution points of the TRHR [83].



Remote Sens. 2024, 16, 1258

16 of 22

As illustrated in Figure 12, it is evident that specific ESs align with the designated protected
areas, with over 50% of wildlife distributed within these areas. Furthermore, some wild
animals exhibit activity near these ecological sources. The findings closely reflect the relia-
bility of the ES results, underscoring their suitability for delineating priority conservation
areas in the TRHR.

Legend
* Wildlife distribution point in TRHR
3 Policy protected areas
[ Potential source area
I Ecological source area

without the protected area 1

Figure 12. Comparison between extracted ecological source areas and policy-designated protected
areas, with the wildlife spatial distribution in 2017 (a) and different areas between nature reserves
and ecological source sites extracted in this study (b).

We found that 48,102.145 km? of ecological sources are located out of the NRs. This
is mainly because of the difference in the definition approach between NRs and ESs. The
setup of NRs considers mainly the distribution of species diversity [46], which may neglect
the ESV to a certain extent. The existing NRs are not entirely sufficient to support species
activities in the TRHR. Due to the long migration paths of wildlife and the wide home
range, local ungulate species, i.e., Equus kiang and Canis lupus, are distributed in the edge
or even out of NRs, and so the existing NRs are not entirely sufficient to support species
activities [84,85]. Hence, the results of our study can provide different insights for refining
the delineation of NRs.

Identification of ESs in the TRHR can help the government formulate policies (e.g.,
ecological restoration projects) and utilize the multiple benefits delivered by ESs. The
governments should realign the NRs to meet the distribution of ESs in addition to biodiver-
sity. For example, eastern ES patches could be included in the NRs in the future. Given
the peculiar ES spatial geographic position of the TRHR, policymakers must establish
hierarchical and zonal management for achieving multiple international agreements and
targets [86].
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5.4. Limitations and Future Work

Several limitations were noted in our ES identification framework. Due to the avail-
ability of datasets, we calculated the ESV using the equivalent factor method. However,
results could vary across different methods and cause differences in ES extraction results, as
described in the Discussion section. A more meaningful approach involves contrasting the
disparities in the ESV derived from diverse calculation methods that could be developed
for ES extraction in the future.

Additionally, although previous studies have achieved the ideal result using spatial
prioritization tools [87] on a different scale, ES extraction must be combined with the
trade-offs and synergies between ecosystem services and other aspects of in-depth research.
We hope that subsequent research can improve this research with trade-off models and
other methods in the future.

Furthermore, although the kKNDVI may represent primary productivity and further
help us understand carbon sinks to some extent [8], there are some discrepancies between
it and the other parameters of terrestrial ecosystems (e.g., GPP, NPP) due to the potential
spectral saturation effect. The kNDVI alone may not be sufficient to detect ecological source
changes driven by carbon conditions. Research to enrich the identification framework with
critical parameters for characterizing terrestrial ecological processes could be conducted.

Despite these limitations, our findings provide valuable insights into applying a
multi-perspective approach to ecological source identification.

6. Conclusions

In this study, we quantified the ESV and kNDVI and integrated them into the ES
identification framework. Modeling was completed using a Zonation model combined
with two spatial priority rules, extracting ESs at different levels based on various thresholds.
This framework was applied to the TRHR from 2000 to 2020. The results indicate that
this method could reveal more precise spatio-temporal distributions of ESs, enhancing
ecosystem integrity and providing technical modeling support for developing cross-scale
spatial planning and management strategies for nature reserve boundaries.

Firstly, the ESV was taken as an essential factor in ES identification, and multiple
perspectives were considered in the ESV calculation, which solved the problem of focusing
on a single perspective in the previous ES identification method. It could be concluded
that most of the ESV showed a spatio-temporal increasing trend, with the southeast part
gently decreasing.

Secondly, representing vegetation productivity, the KNDVI was incorporated into the
ES identification process, ensuring that the identification outcomes accurately capture the
spatio-temporal dynamics of vegetation and carbon sinks. We found that the kNDVI of the
TRHR showed longitudinal zonality and increased largely from 2000 to 2020.

Thirdly, the ES identification framework is applied to the TRHR, and the ES has a
certain degree of reliability. According to the proposed identification framework, differ-
ent threshold ecological sources were detected, and most areas were distributed in the
southeast. A significant spatio-temporal change in ecological sources has been observed
since 2000 in the TRHR. Compared with the existing NRs in the TRHR, the ecological
source identification framework had reliable accuracy and efficiency. The spatio-temporal
variations of ecological sources provide a reference for ecological conservation in the TRHR.
The framework proposed in our research could serve as a reference for building ecological
networks in other ecologically fragile areas, as well as a step towards ecological security
pattern construction. More thorough research should be concentrated on spatio-temporal
distribution drivers of ESs and mechanisms of transition in the future. Meanwhile, the
distinction between ESs and NRs should be examined to generate the highest benefits for
different protection purposes. Additionally, a global perspective of ES identification needs
to be expanded.

All acronyms in this paper are listed in Table 3.
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Table 3. The acronyms comparison table used in this paper.
Acronym Full Name Explanation References
Ecological source areas represent continuum patches that are
ES ecological source important for biodiversity, ecosystem services, and regional [1]
ecological security, or they have important radiative functions.
ESV ecosystem service The direct and indirect benefits to human welfare offered by 28]
value ecosystems.
. A composite ecological indicator that incorporates four key
Remote Sensing -
RSEI . parameters—greenness, humidity, dryness, and heat—to evaluate [88]
Ecological Index .
the ecosystem quality.
Morphological Spatial ~ An imaging method based on grid pixels of land use in the study
MSPA . S e . [10,89]
Pattern Analysis area for calculation, identification, and segmentation
kernel Normalized L .
KNDVI Difference Vegetation A vegetation index based on kernel methods expressed in terms of [40]
the spectral channels.
Index
Three-River The source of the Yangtze River, the Yellow River, and the Lantsang
TRHR . . [90]
Headwaters Region River.
GEE Google Earth Engine An image dataset processing cloud platform [91]
CSI Carbon Sink Index A carbon sink revision index -
Landscape Aesthetics A landscape aesthetics revision index that consists of naturalness,
LAI II; dex the Shannon-Wiener diversity index, and the Euclidean distance to [63]
places of interest.
NEP Net Ecosystem The difference between net primary productivity (NPP) and soil [92]
Productivity heterotrophic respiration (Ry,).
VEC Vegetation Fraction One of the most important indicators for measuring surface (93]
Coverage vegetation cover.
CAZ Core-area zonation A spatial priority rule that tries to retain core areas of all species. [69]
ABF AdchctweTBeneﬁt A spatial priority rule that tries to retain core areas of all species. [69]
Function
NRs Nature reserves Pillars of biodiversity conservation. [34]
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