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Abstract: The production of “Nocciola Romana” hazelnuts in the province of Viterbo, Italy, has
evolved into a highly efficient and profitable agro-industrial system. Our approach is based on a
hierarchical framework utilizing aggregated data from multiple temporal data and sources, offering
valuable insights into the spatial, temporal, and phenological distributions of hazelnut crops To
achieve our goal, we harnessed the power of Google Earth Engine and utilized collections of satellite
images from Sentinel-2 and Sentinel-1. By creating a dense stack of multi-temporal images, we
precisely mapped hazelnut groves in the area. During the testing phase of our model pipeline, we
achieved an F1-score of 99% by employing a Hierarchical Random Forest algorithm and conducting
intensive sampling using high-resolution satellite imagery. Additionally, we employed a clustering
process to further characterize the identified areas. Through this clustering process, we unveiled dis-
tinct regions exhibiting diverse spatial, spectral, and temporal responses. We successfully delineated
the actual extent of hazelnut cultivation, totaling 22,780 hectares, in close accordance with national
statistics, which reported 23,900 hectares in total and 21,700 hectares in production for the year
2022. In particular, we identified three distinct geographic distribution patterns of hazelnut orchards
in the province of Viterbo, confined within the PDO (Protected Designation of Origin)-designated
region. The methodology pursued, using three years of aggregate data and one for SAR with a
spectral separation clustering hierarchical approach, has effectively allowed the identification of the
specific perennial crop, enabling a deeper characterization of various aspects influenced by diverse
environmental configurations and agronomic practices.The accurate mapping and characterization
of hazelnut crops open opportunities for implementing precision agriculture strategies, thereby
promoting sustainability and maximizing yields in this thriving agro-industrial system.

Keywords: crop detection; hazelnut; random forest; data fusion

1. Introduction

Hazelnut (Corylus avellana) is a Betulaceae plant widely appreciated for the production
of hazelnuts. The main global producer is Turkey, followed by Italy, whose production
represented approximately 13% of global production in 2020 [1]. Besides kernel production,
this arboreal species proves to be highly suitable for reforestation endeavors, biomass
exploitation, and truffle cultivation, rendering it a plant of considerable interest from a
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productive standpoint within the framework of a circular economy [2]. In Italy, due to
pedoclimatic and territorial development dynamics, cultivation is concentrated in a few
districts [3]. According to statistics, the province of Viterbo (1.2% of the Italian territory)
alone holds approximately 26% of the total hazelnut surface area in Italy [4], with a continu-
ously increasing trend due to growing demand in the market. According to the Association
of Direct Cultivators (“Coldiretti”), hazelnut cultivation involves 30 municipalities, sup-
porting around 8000 families. This territorial concentration has facilitated the expansion
of the market for industry businesses and the development of technical and commercial
services.

In this area, there is a historical tradition of hazelnut production, particularly in the
district of the Cimini Mountains, where hazelnuts represent a profitable form of local
development and income [5]. The promotion of this local product as a Protected Designa-
tion of Origin (PDO) further emphasizes their exceptional quality and authentic regional
identity [6].

The rapid expansion of hazelnuts as a local monoculture has raised valid concerns
regarding the sustainability of the system [7,8].

In this context, obtaining information on the spatial distribution of the hazelnut
groves is crucial for various reasons, ranging from the development and optimization
of the supply chain to the detection of anomalies associated with local or widespread
phenomena [9], as well as enabling the implementation of a consortium-based precision
agriculture practice [10]. This integrated approach will facilitate targeted interventions and
resource allocation [11], ensuring the long-term viability and environmental stewardship
of hazelnut production in the region.

Identifying and classifying agricultural land cover is a fundamental topic in satellite
remote sensing, especially in the case of studies concerning their spatial and temporal
change. Satellite images are the main source of a wide range of environmental information
about the landscape and its changes [12], which is essential for effective sustainable land
planning and management [13].

In this context, remote-sensing tools offer valuable resources [14–17], with satellite
sensor constellations cyclically collecting ground information at various spatial, radiometric,
spectral, and temporal resolutions [18]. Numerous studies in the literature focus on regional
crop recognition through the analysis of remotely sensed images [19,20]. A growing body of
literature leverages multitemporal data fusion from multiple platforms to identify various
crops [21,22], including sugarcane [23,24], rice [25], maize, soybeans, and wheat [26,27].
Additionally, research extends to mapping different horticultural crops in heterogeneous
contexts [28] and perennial crops, such as olive, grapes, and fruit trees [29–32].

Moreover, the application of remotely sensed data extends beyond spatial identifi-
cation, encompassing diverse domains such as crop type characterization [33,34], yield
prediction [35,36], estimation of biophysical parameters [37,38], nutritional requirements [39],
and disease detection [40].

As pointed by [41], the task of crop classification through remote sensing encompasses
a plethora of approaches that span several objectives, crops, data sources, and features
selection. Notably, there is a wide array of Machine Learning and Deep Learning [42–46]
algorithms available. This rich variety of methods is made possible by the extensive
utilization of big data, which is now readily available, thanks to the advancements in Earth
Observation (EO) technologies.

Among these technologies, the Google Earth Engine (GEE) cloud platform [47]
facilitates efficient work on diverse data catalogs, enabling simultaneous tasks on dif-
ferent collections and unlocking new possibilities for crop recognition and analysis in
geospatial data [48].

Regarding hazelnut crop detection, several studies have been conducted in Turkey,
while the literature in Italy is limited and outdated [49]. Mapping hazelnut groves using
satellite imagery can be challenging due to their arboreal nature, resulting in spectral
signatures similar to other arboreal crops or spontaneous vegetation; this is a common issue
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for orchards detection [50]. Furthermore, hazelnut occurs spontaneously as a wild plant in
the woods; based on only the spectral signature, this could lead to numerous false–false
positives, which are hardly verifiable in a mixed forest context. These factors may lead to
the misclassification of hazelnuts in wooded areas [51,52]. Another significant challenge
is the heterogeneity of hazelnut plantations. Variations in age and planting distances can
influence the spectral content of pixels, impacting classification accuracy [51]. In line with
these challenges, [31] found the lowest precision specifically in the “hazelnut” class during
a multi-crop classification study conducted in Australia.

Further investigations into hazelnut crop detection emphasize the importance of
incorporating texture using Gabor filters in conjunction with vegetation indices [52]. This
approach has shown good results in limited areas and high-resolution images [51], with
notably superior performance during the summer season [52], compared to winter, leading
to improved accuracy metrics.

This study presents an innovative approach for accurately classifying a specific tree
crop within a complex vegetated landscape.

We exploited Sentinel data, which have provided during the last years a unique
opportunity to investigate the territory and apply remote-sensing techniques at different
territorial scales [53].

The innovative aggregation of multi-temporal optical data, spanning three years, with
radar data from a single year, utilizing all bands as individual variables, represents a novel
approach to data effectively exploited in tree crop detection. A significant aspect of the
present work also involves a thorough analysis of the importance of variables in this context.
This analysis contributes to defining physiological and phenological characteristics specific
to crops, enabling a better understanding of the dynamics that characterize them. Moreover,
it is crucial to underscore that, as case studies, there are no such detailed and accurate
analyses for the specific areas considered in the present work.

The objectives of this study are as follows: (1) to accurately map hazelnut grove
extension within the designated area of interest (AOI) in 2022, utilizing freely available
satellite imagery; (2) to assess the effectiveness of a GEE-based approach for extracting
spectral–temporal signatures from multiple platforms in the temporal dimension, enabling
the accurate discrimination of a specific arboreal species; (3) to characterize the identified
hazelnut cultivation areas using unsupervised algorithms based on the acquired spectral–
temporal signatures, aiming to gain valuable insights into the patterns and distribution
of hazelnut cultivation; and (4) to propose a reproducible workflow applicable to other
perennial crops in different contexts, enabling their mapping and characterization on
the territory.

2. Materials and Methods

The approach pursued aimed at the accurate classification of a specific tree crop within
a complex vegetated landscape. The fundamental idea is to interpret landscape elements
to understand which spectral signatures might lead to misclassifications. To enhance
classification precision, we adopted a hierarchical framework designed to isolate distinct
land cover components through carefully optimized steps. Leveraging data from two
different satellite platforms and utilizing all available spectral bands, we implemented a
comprehensive approach. To effectively capture the variability of the crop, we employ a
3-year median-based approach for optical bands and solely the latest year’s averages for
radar variables. This methodology enables a reliable classification of the specific perennial
crop on a regional scale, effectively mitigating random variability across different fields
and years while preventing overestimation of the crop area in zones where the crop has
recently been removed.

Sentinel data have been exploited. In particular, the Sentinel-1 Level-1 Ground Range
Detected (GRD) data can allow to assess land use, monitor seasonal changes, and identify
soil degradation [54]. Sentinel-2 provides image data with 13 different spectral bands, rang-
ing from the Visible (VNIR) and Near Infra-Red (NIR) to the Short-Wave Infra-Red (SWIR).
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Overall, the availability of such a kind of data is very important nowadays for diachronic
change detection studies, such as those aiming at generating maps for agricultural areas
and other key landscape features [55,56].

2.1. Study Area (AOI)

The study area corresponds to the administrative boundaries of the Viterbo province
in Italy (Figure 1), covering approximately 3615 square kilometers. Geologically, the area
can be divided into a coastal sector with gentle slopes renowned for horticultural and olive
oil production, and an inland hilly sector of volcanic origin, characterized by the remnants
of extinct volcanic structures. Within this region, there are three distinct lakes occupying
the volcanic crater. The elevations in this area reach a maximum of 1000 m and are covered
by extensive forest systems of diverse mix, including vast expanses of chestnut trees, oaks,
beeches and wild hazelnuts [57].

Figure 1. Area of Interest (AOI), encompassing the provincial boundaries of Viterbo in Italy, with a
specific focus on the geographical positioning of the PDO (Protected Designation of Origin) within
this AOI.

The two hilly complexes are known as Monti Sabatini and Monti Cimini, with the
latter being the focal area for Protected Designation of Origin (PDO) hazelnuts of Viterbo,
named “Nocciola Romana”. The hazelnut cultivar typically grown in these zones is “Tonda
Gentile Romana,” with small quantities of the “Nocchione” variety. Hazelnut cultivation
in this region is typically carried out using a multi-stemmed bush system, with a density
of approximately 500 (5 × 5 m inter and intra-row) trees per hectare; however, there has
been a recent trend of establishing higher-density plantations [58]. In some areas, hazelnut
groves 30 years of age with large plants are present. Periodically, hazelnut groves undergo
pruning [59], which reduces canopy volume and can cause variation in reflectance due
to the spectral mixing of soil and wood pixel signatures. The hazelnut is a deciduous
plant, with an active vegetative growth phase during summer months, where irrigation
intervention is often required, while pruning occurs during the vegetative rest period.
These phenological parameters may vary based on the cultivar, environmental conditions,
and diverse management practices.
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2.2. Ground Truth

For ground truth data, Google Earth was exploited via WMS (Web Map Service ) within
the QGIS desktop free/open-source platform. Using high-resolution images (April 2022),
supplemented by historical imagery from Google Earth Pro and extensive knowledge of the
territory, 14,611 sampling points were selected within the AOI across various altitude bands
and geographical arrangements to reduce spatial autocorrelation [60]. For the purpose of
the study, five different land use categories were identified (Figure 2):

1. Non-Photosynthetic Surfaces (NPSs), including urban areas, bare soils, rocks, and
water bodies (1168 points).

2. Arable Lands (AL), extensive areas devoted to arable farming or annual crop cultiva-
tion, characterized by the absence of arboreal vegetation (3016 points).

3. Mixed Agricultural Areas (MAAs), encompassing tree vegetation associated with
olive groves, vineyards, and various types of fruit orchards with diverse management
practices (3060 points).

4. Vegetation (VEG), represent areas covered by varying degrees of woodland vegetation.
Spontaneous vegetation, woodland, coppices, chestnut groves, riparian areas, and
scattered vegetation were included. This class encompasses a wide range of habitats,
from Mediterranean scrub to garigue, evergreen and deciduous oak forests, pine
groves, and beech woods (4374 points).

5. Hazelnuts (HZs), comprising mature hazelnut plantations (>5 years) (2993 points).

Figure 2. Representation of classes based on high-resolution satellite images gathered from Google
Earth-Maxar WMS services.

2.3. Satellite Data

For satellite data, we opted to use Sentinel-2, Sentinel-1, and a DEM (Digital Elevation
Model) layer. The data were acquired through GEE, and all subsequent analyses were
processed using the GeeMap package [61]. The choice of these satellites is primarily driven
by the optimal compromise between spatial, spectral, and temporal resolutions, making
them ideal for crop-monitoring applications. Additionally, their availability in GEE further
contributes to their suitability and accessibility.

Sentinel-2 is a constellation comprising two passive optical satellites that operate in
a sun-synchronous orbit, capturing data every 3–5 days at medium latitudes. It offers a
spatial resolution of 10 m/pixel for RGB and Near Infrared (NIR) bands [62]. This satellite
excels in discriminating surface spectral responses, utilizing specific bands targeted at
vegetation, such as Red-Edge, NIR, and Short Wave Infrared (SWIR), with a great potential
for estimation of the biophysical variables of canopies [63].
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In the present study, the following bands were exploited:

• 4 × 10 m Bands: the three classical RGB bands (B2, B3, B4) and a Near Infra-Red
(B8∼833 nm) band.

• 6 × 20 m Bands: 4 narrow bands in the VNIR vegetation Red-Edge spectral domain
(B5∼704 nm, B6∼740 nm, B7∼783 nm and B8a∼865 nm) and 2 wider SWIR bands
(B11∼1610 nm and B12∼2190 nm) for applications such as vegetation moisture stress
assessment.

Sentinel-1 is a C-band synthetic-aperture radar (SAR) satellite system that comprises
two active satellites, Sentinel-1A and Sentinel-1B. These satellites acquire data in all weather
conditions, both during the day and night, with a revisital time of 6–12 days. They employ
various modes and polarizations [64], enabling sensitivity to the dielectric constants of ma-
terials, including the water content and phenological stage of vegetation [65]. Additionally,
the cross-polarization capability allows for the characterization of volumetric scattering,
providing insights into the volume of biomass present in the observed area. These features
make it highly suitable for crop identification and characterization [66–68].

The supplementary selection of the Digital Elevation Model (DEM) is employed to
justify the temporal shift that can occur between bands at different altitudes, especially
when observing the same type of vegetation cover. This is attributed to the variations in
phenological phases that may affect the spectral–temporal response of the vegetation over
different elevations [69].

2.3.1. Sentinel 2 Pre-Processing

To acquire optical data (Figure 3), Sentinel-2 surface reflectance data in Google Earth
Engine (GEE) were employed. The S2_SR collection comprises geometrically and atmo-
spherically corrected (Level-2A) satellite images from Sentinels A and B, processed with
the Sen2Cor model [70]. The data selection focused solely on the Area of Interest (AOI),
including images from 2019 to 2022, with a maximum 30% cloud cover threshold. The
resulting image collection comprised 1182 images, either partially or entirely covering
the AOI. The image collection was subdivided into monthly subsets, and median values
were computed for RGB bands (B2, B3, B4), Red-Edge/NIR bands (B5, B6, B7, B8, B8A),
and SWIR bands (B11, B12), all at a 10 m/pixel resolution. Nearest-neighbor interpolation
was applied to bands B5, B6, B7, B8A, B11, and B12 for resampling to a 10 m resolution.
Due to the coarse resolution of bands B1, B9, and B10, these bands were excluded from
the analysis.

The choice of a 4-year timeframe was driven by the dynamic nature of agricultural
systems, where annual anomalies may arise due to localized or widespread environmen-
tal factors, attributed to natural causes or specific management practices (e.g., intensive
pruning and drought).

Figure 3. Sentinel-2 pre-processing and optical dataset in Google Earth Engine (GEE). (*) The images
can fully or partially cover the AOI.

The use of median values for the monthly aggregation is particularly advantageous in
mitigating the potential impact of outliers that might be present in the data. In the case of
passive sensors such as Sentinel-2, these variations are often attributed to cloud cover [71],
which can lead to anomalous pixel reflectance values. This approach can enhance the
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reliability of the land-use classification process, providing a more accurate representation
of the AOI temporal dynamics. However, it is worth noting that this approach may not
capture young hazelnut orchards (<4 years old), which would be particularly challenging,
given the spatial resolution limitations. The optical dataset thus consists of 12 monthly
median images, each containing 10 bands, for a total of 120 features.

2.3.2. Sentinel 1 Pre-Processing

For SAR data (Figure 4), the GEE Copernicus/S1_GRD (Ground Range Detected)
dataset in IW (Interferometric Wide-swath) mode was utilized. Data were pre-processed
with the Sentinel 1-Toolbox [72], including orthorectification, radiometric and thermal
correction, expressed in decibels, and projected onto a regular 10 m grid. The acquired
images over the Area of interest (AOI) for 12 months (from January 2022 to December 2022)
were filtered by selecting the VV and VH polarization. Due to the considerably different
viewing orientations between the ascending and descending satellite overpasses, only the
ascending orbit was selected for this study to maintain data consistency. The resulting
dataset consists of 73 images, preprocessed using the methodology of [66] with some
adaptations. The data acquired from the different orbits were treated as distinct datasets,
with a focus on selecting only the acquisitions with ascending orbits. To reduce speckle
noise while preserving important image details, we applied the Lee Filter using a 3 × 3
pixel configuration. To address the effects of incidence angle variations on the backscatter,
we implemented the Square Cosine Correction based on the Lambert law. This correction is
based on the mean incidence angle of each image cropped on the Area of Interest (AOI) and
serves as a reference angle. The subsequent steps involve value conversion into the linear
unit, followed by monthly averaging, and finally converting the data back to decibels.

Figure 4. Sentinel-1 pre-processing and SAR dataset in GEE. (*) The images can fully or partially
cover the AOI.

The choice to use data from the latest year (2022) aims to identify significant backscat-
tering variations linked to recent events like extensive eradication activities. These changes
might not be apparent when looking at median or average data over a four-year period. This
process resulted in 12 average images, each with two frequency bands, totaling 24 features
representing the SAR dataset.

2.3.3. Digital Elevation Model (DEM)

The Shuttle Radar Topography Mission (SRTM) Global 1 arc-second digital elevation
model (DEM) is an extensive global elevation dataset providing a resolution of approx-
imately 30 m [73]. It was derived through single-pass interferometry during the space
shuttle Endeavour mission in February 2000. The SRTM dataset was processed using the
Google Earth Engine (GEE) platform, where it was cropped within the Area of Interest
(AOI).

2.4. Reference and Training Datasets

After pre-processing the SAR and OPTICAL dataset, they were stacked into a spectral–
temporal cube, incorporating the DEM band, and then cropped to cover AOI. The resulting
reference dataset for classification consists in a dense cube of 145 bands. Out of these,
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120 bands represent the median of 10 Sentinel-2 bands for each of the 12 months, 24 bands
represent the average VV and VH bands of Sentinel-1 for 12 months, and one additional
band represents the DEM layer. The summary of the data used for the reference dataset
can be found in (Table 1).

Table 1. Summary of the data used.

Data Source Sentinel-2 Sentinel-1 DEM

EE-Collection S2_SR S1_GRD SRTMGL1_003
Bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 VV, VH elevation
Filters Max 10% Tile Cloud Cover Orbit: ASCENDING -

01/Jan/2020 - 31/Dec/2022 01/Jan/2022 - 31/Dec/2022 -
N. Images 1182 73 1
Reducer Median, Monthly Average, Monthly -

The training points were exported from the QGIS environment to Google Earth Engine
(GEE), where a sampling on the reference dataset was performed at 10 m pixel resolution.
Consequently, the training dataset comprises 145 features and 14,611 observations, each
containing a specific label and the corresponding spectral–temporal signature (Figure 5).
In this dataset, a stratified random sampling technique was employed to extract 20% of
the observations for each land cover class. These extracted samples were intentionally not
used during the model training process. Instead, they were reserved exclusively for the
subsequent testing phase to ensure an unbiased evaluation of model performance [74].

Figure 5. Creation of the Reference Dataset through Stacking and Training Dataset at 10 m/pixel
Sampling.

To assess the contribution of individual bands in the classification process, vegetation
indices were excluded from the analysis. While these indices have the potential to reduce
dataset dimensionality while preserving crucial information, they were intentionally omit-
ted to identify a specific group of spectral bands during a particular phase of the year,
facilitating the differentiation between hazelnut groves and other land cover types.

2.5. Spectral Separability Analysis

After creating the training dataset, a spectral separability analysis was conducted on
the normalized median signatures of each land cover class. For each specific land cover
class, the median spectral–temporal signatures were computed; subsequently, the values
for each individual feature were subjected to normalization through the employment of
a Min-Max scaler, thereby constraining them within the range of 0 to 1. This analysis
identified clusters used as the foundation for training a series of Hierarchical Random
Forest algorithms.

To achieve this, the data for each class were compared using a hierarchical cluster
analysis [75] approach based on Euclidean distance, identifying all nodes that effectively
separated hazelnut (HZ) from other land cover types. The primary objective was to achieve
the spectral and temporal separation of hazelnut (HZ) from the land cover class that
exhibited the most similarity.
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2.6. Models Training and Test

Due to the high number of correlated variables in the training dataset, the potential
challenges of the curse of dimensionality and multicollinearity arise, impacting the inter-
pretability and stability of traditional models. The selection of the RF algorithm [76] is
well founded, as it is widely supported by a substantial body of literature. Numerous
studies have demonstrated its efficacy in satellite data analysis and crop classification
tasks [77–79] especially with a fused dataset [80]. Random Forest is particularly well suited
for this study due to its robustness in handling high-dimensional datasets and addressing
multicollinearity challenges. The ensemble nature of RF, which combines multiple deci-
sion trees through bagging, allows it to effectively manage a large number of variables.
By employing different subsets of training data and features in each tree, RF mitigates
the risk of overfitting, ensuring both high accuracy and good model generalization [81].
Moreover, RF excels at handling large volumes of data with linear and nonlinear structures
as frequently encountered in satellite data [48], providing interpretable models and the
explainability of variables through specific metrics [82,83]. The RF algorithm’s capability
to handle high-dimensional datasets and correlated features makes it an optimal choice
for our analysis, striking a balance between accuracy and computational efficiency. The
methodology employed (Figure 6) involves using multiple RF classifiers, each trained at a
specific hierarchical layer, to achieve accurate separation of hazelnut areas. For training
the classifiers, optimal hyperparameters were searched using grid search and 10-fold cross-
validation to maximize model performance at each step. At each step of the classification
process, accuracy metrics such as overall accuracy, precision, recall, and F1-score were
assessed to evaluate the model’s performance. These metrics were calculated both in cross-
validation and on the separate 20% test dataset, to provide a comprehensive evaluation of
the models’ performance using different sets of unseen data.

The trained models were applied to classify the entire reference dataset hierarchically,
isolating a layer with only HZ instances. The resulting HZ classification layer underwent
sieving (maximum 10 pixels, 4-connectivity) to reduce salt-and-pepper effects. Once the
final raster classification was generated, the shape of the classified HZ area was vectorized
and analyzed.

2.7. Hazelnut Groves Characterization

After delineating the hazelnut groves within the AOI, the spectral–temporal signature
for each pixel falling within the HZ polygons was extracted from the 10 m/pixel reference
dataset. The hazelnut-specific data were then normalized, and to address dimensionality
and inter-band correlation, a Principal Component Analysis (PCA) was applied, selecting
the minimum number of principal components that collectively accounted for at least 90%
of the data variability. Once the principal components were obtained, the scores matrix
underwent unsupervised clustering using K-means, in a framework similar to [84]. The
appropriate number of clusters was identified using the elbow method [85] based on SSE
(Sum of Squared Errors or Inertia), which computes the sum of squared distances of data
points to their assigned cluster centroids. The method aims to identify the optimal number
of clusters by examining the rate of change of SSE; a sharp change in the slope of the SSE
curve indicates the elbow point, thus the optimal number of clusters. The resulting clusters
were then projected back onto the AOI in QGIS, where the cluster-based classification was
subjected to a 20-pixel sieve with 4-connectivity.

To provide interpretability to the clustering results (Figure 7), two approaches were
followed:

• Ground validation and historical imagery.
• Interpretation through indices: A total of 1700 random sampling points were placed

within the polygons of each cluster, resulting in a total of 5100 sampling points.
Spectral–temporal data were extracted from the reference dataset at these points, and
three specific indices were applied to analyze and interpret the data. These indices
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(VH/VV ratio, NDVI, NDMI) are widely used in the literature to define phenological
stages and biophysical parameters of vegetation [17,86,87].

Figure 6. Workflow for Hierarchical Random Forest training via Euclidean distance analysis of
spectral signatures.

The VH/VV ratio in decibels is given by:

VH/VV ratio (dB) = VH (dB) − VV (dB)

This index indicates the presence of structures capable of strengthening the VH signal
in the presence of high entropy surfaces, such as canopies. Moreover, VV is influenced by
leaf or soil water content, making this index indicative of biomass and water content [65].

The NDVI (Normalized Difference Vegetation Index), widely utilized for assessing veg-
etation health, is highly correlated with various biophysical parameters of vegetation [88].
It represents the normalized ratio between the NIR (Near-Infrared) and Red bands. In the
case of Sentinel-2, it is given by:

NDVI =
B8 − B4
B8 + B4

The third index is the NDMI (Normalized Difference Moisture Index), used to estimate
leaf water content. It utilizes the NIR and SWIR (Short-Wave Infrared) bands [89]. In the
case of Sentinel-2, it is given by:

NDMI =
B8 − B11
B8 + B11

Moreover, an additional analysis was conducted on the DEM data for each random
point within the different clusters. This analysis aimed to assess potential differences
arising from a temporal shift in phenological phases associated with varying altitude bands.
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Figure 7. Workflow for characterization of different hazelnut areas using unsupervised K-means
Clustering.

3. Results
3.1. Spectral Separability Analysis

The analysis of spectral separability based on normalized median spectral–temporal
signatures provided valuable insights into the similarity patterns among the land cover
classes. The resulting distance matrix (Table 2) illustrates the pairwise distances between
the classes, calculated using the Euclidean distance metric.

Table 2. Matrix of Euclidean distances on the normalized spectral–temporal signatures of different
land covers.

VEG HZ MAA AL NPS

VEG 0 3.4 5.7 9.5 8.9
HZ 0 5.7 8.0 8.5

MAA 0 6.4 7.6
AL 0 6.8

NPS 0

The analysis based on the Euclidean distance metric revealed clear relationships
among the land cover classes. Specifically, classes VEG and HZ demonstrated the highest
similarity. Classes NPS and AL showed moderate similarity to each other but were distant
from classes VEG, HZ, and MAA, with the latter displaying less separability from the VEG
and HZ cluster. NPS and AL were distinctly separated from classes containing various
types of tree vegetation (Figure 8).

The cluster analysis generated three levels of distinction for hazelnut grove discrimi-
nation. At the first level, a cluster separated NPS_AL from MAA_VEG_HZ. At the second
level, another cluster distinguished MAA from VEG_HZ, and at the final level, a separate
cluster isolated VEG from HZ. As a result, to train the different models, all observations
for each cluster node were selectively filtered. Initially, AL and NPS were separated from
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MAA, VEG, and HZ (RF1). Subsequently, MAA was separated from VEG and HZ (RF2).
Finally, all VEG observations were separated from HZ (RF3).

Figure 8. Cluster analysis of the Euclidean distances between the median spectral–temporal signatures
of different land covers.

3.2. Model Performance on Training and Hyperparameters

The confusion matrices (Tables 3–5) illustrate the cross-validation performance for
each RF model, consistently achieving accuracy, precision, recall, and F1-scores above 0.99
with specific hyperparameters (Table 6). The VEG-HZ classifier showed minimal false
positives in the HZ class, with no significant impact on overall performance.

Table 3. Confusion matrix of the RF1 model on the training dataset.

RF1 NPS ∪ AL VEG ∪ HZ ∪ MAA

NPS ∪ AL 3359 1
VEG ∪ HZ ∪ MAA 0 8328

Table 4. Confusion matrix of the RF2 model on the training dataset.

RF2 MAA VEG ∪ HZ

MAA 2449 0
VEG ∪ HZ 0 5891

Table 5. Confusion matrix of the RF3 model on the training dataset.

RF3 HZ VEG

HZ 2406 1
VEG 7 3478
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Table 6. Accuracy metrics and hyperparameters for RF1, RF2, and RF3 models on the training
dataset. The results are averaged for both classes in each model. ES: Estimators (number of trees);
MS: Minimum Samples for node splitting, MD: Max Depth.

Model Performance on Training Set RF1 RF2 RF3

Overall Accuracy 0.99 1 0.99
Precision 0.99 1 0.99
Recall 0.99 1 0.99
F1-score 0.99 1 0.99

Hyperparameters ES: 150
MS: 5
MD: 20

ES: 150
MS: 2
MD: 20

ES: 100
MS: 5
MD: 10

3.2.1. Model Performance on Test

In the testing phase, the models achieved high performance (Tables 7–9) with overall
accuracies, precision, recall, and F1-scores close to 1 (Table 10).

Table 7. Confusion matrix of the RF1 model on the test dataset.

RF1 NPS ∪ AL VEG ∪ HZ ∪ MAA

NPS ∪ AL 822 2
VEG ∪ HZ ∪ MAA 10 2088

Table 8. Confusion matrix of the RF2 model on the test dataset.

RF2 MAA VEG ∪ HZ

MAA 605 6
VEG ∪ HZ 13 1462

Table 9. Confusion matrix of the RF3 model on the test dataset.

RF3 HZ VEG

HZ 584 2
VEG 2 822

Table 10. Accuracy metrics for RF1, RF2, and RF3 models, based on the average of both classes.

Model Performance on Test-Set RF1 RF2 RF3

Overall Accuracy 0.99 0.99 0.99
Precision 0.99 0.99 0.99
Recall 0.99 0.99 0.99
F1-score 0.99 0.99 0.99

3.2.2. Importance of the Variables

The importance of features in the classifiers, evaluated via Mean Decrease in Impurity
(MDI), is depicted in Figure 9. Generally, MDI values across classifiers do not exceed
0.1. For RF1, predominantly during the later summer months, notable importance can
be observed in the B12 and visible bands. Within B12 (SWIR), the importance gradually
increases during the summer months, reaching its peak in October. With regard to SAR
data, the VH band appears to have greater importance than the VV band, albeit with
irregular trends in different time segments throughout the year. The DEM data did not
show a significant importance in the classification process.
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In RF2 model, the features showing greater importance are also concentrated in the
summer period, particularly in the visible spectrum region. In addition, some of the Red-
Edge and NIR bands show importance at the beginning of the summer season. The SAR
and DEM bands show lower MDI values, indicating a mild contribution to the classification
process. Within the RF3 model, a clear pattern emerges, indicating that SWIR bands (B11
and B12) exhibit the most relevant MDI values, highly concentrated during the summer
period. Conversely, other bands demonstrate comparatively diminished importance in the
classification process.

Figure 9. Variable importance (MDI) analysis for the RF1, RF2, RF3 classifier.

3.3. Classification on AOI

In Figure 10, the land cover classification of the AOI is presented. Along the Tyrrhenian
Sea coastline, the dominant land cover is attributed to the NPS_AL class, outlining a
landscape characterized by expansive arable fields and rural settlements. The discernible
features of Lake Vico and Lake Bolsena contribute to the distinctiveness of this pattern.

Clusters of the MAA class are observed in specific regions, including the western
flank of Mount Cimino and the peripheries of Lake Bolsena, showcasing a combination of
vineyards and olive groves.

The VEG class is represented by large, scattered patches, encompassing diverse veg-
etation formations like Mediterranean maquis, garigue, and oak groves. This botanical
continuum extends inland, featuring a notable prevalence of chestnut trees and other shrub-
like species. Particularly in areas with pronounced topographical gradients unsuitable for
conventional agriculture, these botanical constituents thrive. Importantly, the classification
reveals branching, ramified configurations indicative of riparian vegetation within the
overall vegetation mosaic.
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Figure 10. Hierarchical classification result over the entire AOI. For enhanced graphical interpretation,
classes were sieved using different thresholds: NPS-AL at 100 pixels, HZ at 20 pixels, VEG and MAA
at 5 pixels.

Hazelnut Groves on AOI

The area occupied by HZ (Figure 11) forms a compact central nucleus, covering
the eastern volcanic slope and the crater of Mount Cimino, with significant extensions
around Lake Vico. Moving westward, the HZ extension significantly diminishes, primarily
appearing as large fragmented fields, especially towards the coastal area and the city of
Viterbo. After sieving, the predicted HZ area covers 22,780 hectares, of which 22,670 (99.5%)
are located within the PDO area.

Figure 11. Map of the area occupied by HZ within the AOI.
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3.4. Characterization of HZ Polygon
3.4.1. PCA and Cluster Identification

PCA analysis revealed that 16 principal components are necessary to capture 90%
of the HZ spectral–temporal data variability (Figure 12). Subsequently, score matrices
were generated for each of the 16 principal components and pixels, and these matrices
were subjected to the elbow method (Figure 13) to assess the optimal number of clusters,
determined to be N = 3.

Consequently, a K-means algorithm with three clusters was applied to the reduced
dataset, assigning each pixel its corresponding cluster number as depicted in Figure 14.

Figure 12. Explained variance of the principal components (PC) that accounts for at least 90% of the
total variance.

Figure 13. Curve of Inertia (SSE) values for K-means clustering with the elbow point highlighted.

3.4.2. Clusters Analysis

The boxplots illustrating the VH/VV ratio (Figure 15) for different clusters reveal a
consistent temporal pattern across all clusters. Particularly, there is a distinct rise in the
discrepancy between the two bands during late spring and summer, followed by a gradual
increase in the index during autumn and winter. Analyzing individual clusters, Cluster 1
consistently exhibits a higher prevalence of the VH band over VV compared to Clusters 2
and 3, both of which show a similar trend and comparable medians.
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Figure 14. K-means classification of the HZ cover.

Figure 15. Panel of boxplots depicting the distribution of VH/VV ratio values in dB across various
months for different clusters, obtained from the sampling points.

Concerning the NDVI index (Figure 16), distinct temporal patterns are observed.
Cluster 3 consistently maintains uniform median values throughout the year, experiencing
a rapid decline in the index during November and December. Cluster 3 demonstrates
higher index values during winter compared to Clusters 1 and 2 but significantly lower
values during the summer period. In contrast, Clusters 1 and 2 follow a more analogous
temporal trajectory, with values peaking during the summer and experiencing a sharp
decline in late autumn. It is noteworthy that Cluster 2 maintains higher median values
compared to Cluster 1, except during the summer months, when Cluster 1 exhibits a
substantially higher value.
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Figure 16. Panel of boxplots depicting the distribution of NDVI index across various months for
different clusters, obtained from the sampling points.

Regarding the NDMI index (Figure 17), all clusters show a similar temporal trend
characterized by two distinct peaks during spring and late autumn, with a subsequent
decrease during the early months of the year and in the summer. Concerning the individual
clusters, Cluster 3 displays higher values compared to Clusters 1 and 2 during the initial
and final months of the year, while being markedly lower during the summer period.
Clusters 1 and 2 demonstrate a pronounced peak in spring and early summer, with the
median value of Cluster 1 being consistently higher than Cluster 2 during this period, while
the latter exhibits higher values during the winter months.

Figure 17. Panel of boxplots depicting the distribution of NDMI index across various months for
different clusters, obtained from the sampling points.

From the analysis of elevation data at random sampling points within the different
clusters (Figure 18), higher values of Cluster 1 can be observed compared to Clusters 2 and
3, which are more similar. However, when examining the overall data distribution using
boxplots, considerable variability is evident in Cluster 3.
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Figure 18. Sampling points elevation values in different clusters (meters above sea level).

The non-parametric Kruskal–Wallis test was employed to examine statistically signifi-
cant differences in the elevation of sampling points, as the data deviated from normality
assumptions. The consistently low p-values, approaching zero, provide robust evidence
for rejecting the null hypothesis of equal altitude distributions (Table 11).

Table 11. Results of the Kruskal–Wallis test for altitude comparisons among clusters.

Comparison n Statistic p

Cluster 1 vs. Cluster 2 3400 1283 5.01 x 10−281

Cluster 1 vs. Cluster 3 3400 506 3.90 x 10−112

Cluster 2 vs. Cluster 3 3400 55.6 8.81 x 10−14

4. Discussion
4.1. Model Performance Results and Classification of AOI

The spectral analysis reveals clear separability among land cover types. Specifically,
NPS surfaces exhibit spectral dissimilarity compared to arboreal vegetation but demonstrate
proximity to arable or plowed fields (AL), likely influenced by post-harvest periods affecting
the spectral signature, akin to artificial surfaces [90].

The MAA cluster shows closer proximity to VEG and HZ, attributed to prevalent olive
groves with irregular planting patterns. This results in significant exposed bare ground,
influencing pixel spectral signatures while retaining arboreal vegetation coverage. VEG
and HZ, characterized by compact and uniform tree coverage with substantial canopy
development, exhibit higher similarity. Differences in phenological phases may significantly
impact spectral–temporal signature similarities between VEG, HZ, and MAA [91].

The performance of the RF models and the hierarchical workflow employed is ex-
cellent, both during cross-validation and testing on independent samples in the training
process. The models consistently achieve average accuracies, precisions, recalls, and F1-
scores exceeding 0.99. The hierarchical approach highlights how optimal hyperparameter
search and cross-validation lead to specific and generalized models, effectively discriminat-
ing nested categories, such as the HZ class within VEG.

The study highlights the crucial influence of summer months on spectral–temporal
classification. The NIR and Red-Edge bands show limited significance in RF1, aligning
with prior research [92]; on the other hand, significant importance is attributed to the B12
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band (SWIR). The combined NPS ∪ AL clusters exhibit heightened reflectance in the visible
band, attributed to high reflectivity from soil and artificial surfaces, distinguishing them
from vegetated regions [93]. In RF1, radar-derived parameters, particularly VH, strongly
influence outcomes, reflecting the high entropy scattering of vegetated tree surfaces [94]
with respect to flat surfaces as AL.

RF2 also underscores the importance of visible bands, especially during summer, in
distinguishing MAA from VEG ∪ HZ. The spectral–temporal signature of MAA, which
includes olive groves and vineyards, appears influenced by visible soil due to inter-row
spacing in olive groves and due to biomass reduction during summer thinning in vineyards.
SWIR, DEM, and SAR variables show limited importance in this classification step. RF3
underscores the significance of SWIR variables during summer, indicating a lower leaf
water content in hazelnut groves compared to spontaneous vegetation (Figure 19). This
could be attributed to the hazelnut’s limited ability to regulate stomatal conductance
during thermal stress [89]. The discernible difference among SWIR variables during the
summer period might indicate a distinctive characteristic for distinguishing hazelnuts from
natural vegetation.

Figure 19. Density plot for SWIR variables for HZ and VEG in the training set during the summer
period.

The importance of SAR variables in the classification process is limited to the initial
stage (RF1), and in the month of May for RF3, where hazelnut showed a lower VH backscat-
tering compared to the spontaneous vegetation (Figure 20). This is probably due to mowing
and weeding operations that take place in this month in the inter-row spaces.

However, the general importance across all variables and classifiers is consistently
low, typically ranging from 0 to 0.1. Consequently, while certain variables may exhibit
slightly higher significance, the cumulative contribution of all features makes specific
feature selection less pivotal in this work context.

After the sieving process, the ultimate AOI classification indicates a hazelnut cov-
erage of 22,780 hectares, in close accordance with national statistics, which reported
23,900 hectares in total and 21,700 hectares in production for the year 2022. The mapping
delineates hazelnut groves primarily within the PDO area (99.5%). Intensive cultivation
is observed in the Monte Cimino area, especially around the volcanic crater of Lake Vico,
with extensive and compact extensions on the eastern and southern slopes. The western
flank exhibits mixed agricultural systems with hazelnuts facing environmental and social
constraints. Some large parcels outside the core area indicate emerging transformations in
agricultural landscapes. However, currently, hazelnut cultivation is confined mainly to the
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PDO area. Despite the effectiveness of our multi-year optical approach in capturing the
spectral and temporal patterns of the crop accurately, several limitations are acknowledged.
Specifically, the method encounters challenges in accurately identifying young hazelnut
orchards due to the temporal discrepancy, wherein the crop might not fully cover the
ground three years prior, potentially leading to misclassification. Additionally, during
the preprocessing stage of radar data, a three-pixel speckle filter is applied for noise re-
duction, which may induce confusion along the boundaries of classified patches. These
limitations are predominantly attributed to the still coarse resolution of currently available
satellite sensors.

Figure 20. Density plot for VHVV backscattering in May.

From a statistical perspective, it is evident that hazelnut cultivation may not always
be declared or updated by producers, as these areas are not eligible for EU subsidies
except for agri-environmental premiums or new installations co-financed by European
Union aid. Therefore, relying solely on statistical data may lead to an underestimation of
the areas dedicated to hazelnut cultivation. This aspect underscores the usefulness and
effectiveness of remote-sensing techniques and satellite image classification for mapping
hazelnut-growing areas. It is also crucial to have a methodology and analysis tool that
enables the assessment of hazelnut orchard dynamics over the years in a replicable, scalable,
and exportable manner.

4.2. Characterization of a Hazelnut Polygon

By employing K-means analysis, a discernible geographical pattern of distinct hazelnut
classified zones emerges. Cluster 1, predominantly situated in the volcanic crater of Lake
Vico and its surroundings, exhibits elevated altitudes and higher meteoric precipitation [95].
On-site observations and historical imagery affirm the maturity of these hazelnut groves,
surpassing a 20-year age threshold, with heights exceeding 3 m and dense canopies.

Index analysis reveals that Cluster 1 hazelnut groves show increased NDWI during
summer, indicating elevated water availability. A distinct temporal shift in vegetative vigor
patterns is observed in the NDVI index, potentially linked to lower temperatures during
the vegetative phase. The persistent elevation of the VH/VV ratio in Cluster 1 aligns with
a denser canopy, supporting the hypothesis of mature hazelnut groves.

Cluster 2, at lower altitudes, features mature hazelnut groves with narrower spacing,
lower heights, and less dense canopies. Drip irrigation systems are consistently used in
response to lower precipitation levels. The lower VH/VV ratio suggests a less developed
canopy to facilitate mechanical intervention, with the NDVI index indicating early vegeta-
tion development due to higher temperatures. The NDMI index shows reduced intensity
in summer, likely due to water deficit and elevated temperatures.

Field and historical investigations link Cluster 3 to young hazelnut groves, not present
before 2014–2015, suggesting cultivation expansion. A lower VH/VV ratio and reduced
vegetation indices during summer indicate diminished canopy volume, attributed to
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significant soil contribution. Higher NDVI values during winter suggest the prolific growth
of inter-row weeds. Notably, Cluster 3 includes large recent plantations or areas with
sparse hazelnut coverage or gaps between plants, necessitating subsequent agronomic
ground studies.

In summary, the clusters represent discrete hazelnut cultivation zones (Figure 21).
Cluster 1 hosts mature hazelnut groves at a higher elevation with extensive canopies,
coinciding with the historical core of hazelnut cultivation. Cluster 2 comprises relatively
younger mature orchards with tighter spacing, an irrigation system, earlier development
of the canopy, and notable mechanized interventions. Cluster 3 encompasses young
orchards (<10 years) as well as areas where canopy coverage is lacking for various reasons,
warranting on-site agronomic investigations.

For the characterization phase, a comprehensive collection of meteorological data
from ground-based sensors could contribute to a better understanding of the dynamics
governing the diverse spectral and temporal responses of the different hazelnut groves.

The approach pursued has enabled the achievement of a high level of accuracy, al-
though certain limitations can be identified. Specifically, the methodology, which relies
on median values over a four-year timeframe in the optical dataset, faced challenges in
effectively identifying hazelnut groves younger than four years old.

Figure 21. Ground investigation within the clusters. Photos (A,B) were taken (by the authors) in June
2023, within Cluster 3 and Cluster 1 patches, respectively. Image (C) was captured from Google Earth,
in correspondence to a Cluster 2 patch (July 2019). The red box in Image C highlights the presence of
the drip irrigation hose.

5. Conclusions

Many regions in Italy have witnessed a significant increase in hazelnut cultivation,
and Tuscia, particularly the province of Viterbo, is no exception.

Such rapid expansion has brought about significant social changes, further promoting
the industrialization of the sector and property concentration. Small producers are making
way for medium to large companies that actively search for new plots. As a result, hazel-
nut production and marketing are based on well-organized companies, often capable of
devising innovative solutions and maintaining strong integration with other players in the
supply chain.
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The present study has demonstrated how the wealth of multi-temporal and multi-
platform data available through cloud platforms allows for accurate analyses of specific
crops. Additionally, consideration must be given to the spatial, temporal, and spectral
resolutions of the sensors used. In our study, the implemented workflow has successfully
identified 22,780 hectares of hazelnut orchards within the agroindustrial system of Viterbo.
This estimation closely aligns with the 21,700/23,900 hectares reported in the national
statistical system in the year 2022, primarily concentrated within the PDO-designated area.

Our analysis has unveiled three distinct geographic distribution patterns of hazelnut
orchards. The historical area is notable on the elevated terrain of the Cimino volcanic system.
In tandem, a compact cluster extends along the slopes towards the Tiber River, constituting
relatively newer yet well-established hazelnut orchards that likely represent the core of
hazelnut production in this region. This sector displays denser planting arrangements,
irrigation practices, and a high degree of mechanization. Another cluster signifies nascent
plantations characterized by larger parcel systems (>20 hectares), indicating the recent
expansion of hazelnut cultivation. Nevertheless, these areas remain confined within the
PDO-designated region and do not extend into other PDO production zones, such as PDO
Canino olive oil and the renowned vineyards in the Lake Bolsena area.

To enhance the methodology’s performance, the integration of an additional layer
based on high-resolution orthophotos is proposed. This layer would facilitate the extraction
of specific textures, particularly relevant for very young hazelnut orchards, addressing a
current limitation related to the spatial resolution of available satellites. Simultaneously,
this augmentation would enable effective field segmentation through CNNs (Convolutional
Neural Networks) or computer vision algorithms, thereby mitigating edge effects.

In conclusion, the work described in the presented paper proves to be suitable for the
specific mapping of certain perennial tree species in agricultural settings. By leveraging a
three-year median for optical data and an average SAR for recent years, this methodology
adopts a spectral-separated hierarchical approach. It effectively discriminates a specific
perennial crop, allowing to characterize diverse aspects influenced by environmental
variations and agronomic practices. Such an approach facilitates a comprehensive regional
exploration, holding considerable implications for corporate interests within the realm of
Agriculture 4.0.
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