
Citation: Zhu, L.; Tian, G.; Wu, H.;

Ding, M.; Zhu, A.-X.; Ma, T. Regional

Assessment of Soil Moisture Active

Passive Enhanced L3 Soil Moisture

Product and Its Application in

Agriculture. Remote Sens. 2024, 16,

1225. https://doi.org/10.3390/

rs16071225

Academic Editors: John Kalogiros,

Jianzhong Lu and Marios

Anagnostou

Received: 20 February 2024

Revised: 18 March 2024

Accepted: 26 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Regional Assessment of Soil Moisture Active Passive Enhanced
L3 Soil Moisture Product and Its Application in Agriculture
Liming Zhu 1,2 , Guizhi Tian 1, Huifeng Wu 1, Maohua Ding 1,*, A-Xing Zhu 3,4,5,6 and Tianwu Ma 3,4,5

1 College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China;
zhuliming@yzu.edu.cn (L.Z.)

2 Foundation of Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239099, China
3 School of Geography, Nanjing Normal University, Nanjing 210023, China; tianwuma@nnu.edu.cn (T.M.)
4 Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education,

Nanjing 210046, China
5 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and

Application, Nanjing 210046, China
6 Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
* Correspondence: 006997@yzu.edu.cn; Tel.: +86-18052097081

Abstract: Soil moisture (SM) is a crucial environmental variable, and it plays an important role in
energy and water cycles. SM data retrieval based on microwave satellite remote sensing has garnered
significant attention due to its spatial continuity, wide observational coverage, and relatively low
cost. Validating the accuracy of satellite remote sensing SM products is a critical step in enhancing
data credibility, which plays a vital role in ensuring the effective application of satellite remote
sensing data across various fields. Firstly, this study focused on Henan Province and evaluated
the accuracy of the SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid
Soil Moisture (SPL3SMP_E) product along with its application in agriculture. The evaluation was
based on in situ SM data from 55 stations in Henan Province. The assessment metrics used in this
study include mean difference (MD), root mean square error (RMSE), unbiased root mean square
error (ubRMSE), and the Pearson correlation coefficient (R). The time span of this study is from
2017 to 2020. The evaluation results indicated that the SPL3SMP_E soil moisture product performs
well, as reflected by an ubRMSE value of 0.045 (m3/m3), which was relatively close to the product’s
design accuracy of 0.04 (m3/m3). Moreover, the accuracy of the product was unaffected by temporal
factors, but the product exhibited strong spatial aggregation, which was closely related to land use
types. Then, this study explored the response of the SPL3SMP_E product to irrigation signals. The
precipitation and irrigation data from Henan Province were employed to investigate the response of
the SPL3SMP_E soil moisture product to irrigation. Our findings revealed that the SPL3SMP_E soil
moisture product was capable of capturing over 70% of irrigation events in the study area, indicating
its high sensitivity to irrigation signals in this region. In this study, the SPL3SMP_E product was
also employed for monitoring agricultural drought in Henan Province. The findings revealed that
the collaborative use of the SPL3SMP_E soil moisture product and machine learning algorithms
proves highly effective in monitoring significant drought events. Furthermore, the integration of
multiple indices demonstrated a notable enhancement in the accuracy of drought monitoring. Such
an evaluation holds significant implications for the effective application of satellite remote sensing
SM data in agriculture and other domains.

Keywords: satellite-based soil moisture products; L-band; SMAP; irrigation signal

1. Introduction

Soil moisture is a crucial component of the Earth’s ecosystems, playing a significant
role in the interactions among water bodies, land, and the atmosphere [1]. Soil moisture
has been designated as one of the 50 essential climate variables by the Global Climate
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Observing System [2]. Soil moisture data have been extensively employed in various
research fields, such as climate change studies, drought monitoring, and terrestrial carbon
cycling [3–5].

In situ soil moisture observations and retrievals via satellite remote sensing data are
two ways to obtain surface soil moisture data [6]. In situ soil moisture observations can
provide the most direct reflection of soil water at various depths, but this method suffers
from the issue of the sparse distribution of monitoring stations [7]. Satellite remote sensing
retrieval has emerged as the most effective means for soil moisture observation due to its
advantages of spatial continuity, wide observation coverage, and cost-effectiveness. Previ-
ous studies have extensively explored satellite remote sensing retrieval of soil moisture,
capitalizing on these advantages [8,9]. For example, Li et al. [10] summarized the key
issues in the satellite remote sensing retrieval of soil moisture and provided an outlook
on its future development trends. Satellite remote sensing retrieval can be categorized
into optical remote sensing and microwave remote sensing. Compared to optical remote
sensing, microwave remote sensing offers several advantages, including less susceptibility
to atmospheric interference, deeper sensing capabilities, and a more direct physical rela-
tionship between remote sensing information and soil moisture [11]. Specifically, passive
microwave remote sensing stands out for its significant advantages, such as wide coverage,
short repeat cycles, and high sensitivity to soil moisture variations. Consequently, it has
emerged as the most promising approach for soil moisture retrieval [12].

In recent years, significant progress has been made in the utilization of satellite remote
sensing technology for soil moisture retrieval, leading to the more expedited and effective
acquisition of regional-scale soil moisture data. Various institutions have successively
released soil moisture products based on microwave satellite remote sensing data. For
example, the European Space Agency (ESA) developed the Soil Moisture and Ocean Salinity
(SMOS) mission (2009–present) [13], the National Aeronautics and Space Administration
(NASA) offered the Soil Moisture Active Passive (SMAP) mission (2015–present) [14],
and the European Organization for the Exploitation of Meteorological Satellites (EUMET-
SAT) provided the Advanced Scatterometer (ASCAT) mission (2007–present) [15]. These
products use passive microwave remote sensing data detected in various bands, enabling
their synergistic application on a global scale. The main bands include the X-band [16],
C-band [17], P-band [18], and L-band [19]. The L-band is considered the optimal frequency
range for the remote sensing of soil moisture due to its strong penetration capability [20].
SMOS and SMAP are the two newest soil moisture products retrieved based on L-band
satellite remote sensing data.

The validation and assessment of satellite remote sensing soil moisture products are
essential to ensure data accuracy before applying them. A large number of previous studies
have conducted research on the accuracy of SMOS and SMAP data [21,22]. For example,
Fernandez-Moran et al. [23] conducted a validation of the SMOS-IC product, revealing
that it exhibits high correlation and low unbiased root mean square error (ubRMSE) in
the majority of pixels. Similarly, Chan et al. [24] validated the accuracy of the SMAP level
2 passive soil moisture product (L2_SM_P) at a spatial resolution of 36 km. Through a
comparison of in situ data and satellite data using multiple indicators, they found that the
data’s ubRMSE closely approached the product’s mission requirement of 0.04 (cm3/cm3).
Moreover, Zhang et al. [25] evaluated the global spatiotemporal accuracy characteristics of
SMAP satellite soil moisture based on international ground-based soil moisture observa-
tions. The results indicated a high level of accuracy for the SMAP satellite soil moisture
product. Zhu et al. [26] compared soil moisture data from 131 stations in the upstream
region of the Huaihe River with satellite soil moisture data. The research findings indicated
that the accuracy of the SMAP soil moisture product in that region is higher than that of
the SMOS product. Similarly, Kim et al. [27] analyzed the strengths and weaknesses of two
L-band soil moisture products across different climate zones and land cover types on a
global scale. The results revealed that the SMAP product outperformed SMOS in terms of
accuracy on approximately 69% of the Earth’s surface. Li et al. [28] evaluated the perfor-
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mance of the SMAP SM product and SMAP Enhanced SM product in the Tibetan Plateau.
The results indicated that the SMAP product showed stronger correlation (0.64–0.88) and
the enhanced product provided finer details at the regional scale.

In the application of those soil moisture products, previous studies have leveraged soil
moisture products derived from microwave satellite remote sensing to extract irrigation
parameters, recognizing the intrinsic link between agricultural irrigation and variations in
soil moisture. Several studies have explored the feasibility of detecting irrigation signals
using remote sensing soil moisture data [29–34]. Zhu et al. [30] established an irrigation
signal recognition model using microwave satellite remote sensing soil moisture to extract
irrigation information. By identifying irrigation signals from satellite soil moisture data,
they successfully extracted irrigation information. Hao et al. applied a 5-points moving
average method to eliminate errors caused by the low resolution of SMAP data. Then they
detected irrigation signals in the southern part of Hebei Province, China, based on multiple
data sources, including SMAP data, MODIS data, and meteorological data. The overall
accuracy of irrigation signal detection reached 77%. Jacopo et al. [32] proposed a dual-scale
analysis to study the detectability of irrigation occurrences in central Italy using satellite
soil moisture. The results indicated a 60% overlap between satellite-detected irrigation
signals and actual irrigation events. Furthermore, Pascal et al. [34] compared the response
of SMAP and SMOS in detecting irrigation signals in Southern India at a resolution of
25 km. They found that SMAP exhibited a stronger response to irrigation signals and then
estimated the irrigation water use for the rainy and dry seasons. In addition, soil moisture
derived from microwave satellite remote sensing soil moisture products can be directly
applied to agricultural drought monitoring [4,35]. For example, lliana E et al. [35] assessed
the accuracy of assimilating soil moisture retrievals from the Soil Moisture Active Passive
(SMAP) mission into the USDA-FAS Palmer model for agricultural drought monitoring.
The results showed that the SMAP satellite soil moisture product combined with Palmer
soil moisture estimates (PM) can be very effective in monitoring agricultural drought. Cao
et al. [4] evaluated the accuracy and performance of two satellite soil moisture products,
Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), in
drought monitoring assessment between 2015 and 2018 in the North China Plain. The
study pointed out that SMAP outperformed SMOS in SM data validation and drought
monitoring in the North China Plain region.

These studies highlight the importance of satellite soil moisture products for agri-
cultural production and provide valuable references for their application in agriculture.
Employing remote sensing soil moisture data to extract irrigation parameters and drought
monitoring can aid in optimizing irrigation management, enhancing agricultural water
resource utilization efficiency, and providing decision support for crop growth and yield.
However, there is a scarcity of research in the Henan region concerning the validation of
satellite soil moisture product accuracy and the application performance of the satellite soil
moisture product. Several questions concerning this research area remain unaddressed:
(1) What are the disparities between the L-band SMAP satellite soil moisture product
and in situ soil moisture measurements in the Henan region? (2) What is the accuracy
and spatial distribution of the SPL3SMP_E soil moisture product in this area? (3) How
does the SPL3SMP_E soil moisture product perform in the agriculture applications? Our
objective is to address these questions and provide valuable insights for enhancing the
retrieval algorithm of the SPL3SMP_E soil moisture product. To achieve this goal, we plan
to employ on-site measurements from 55 meteorological stations in Henan province for the
assessment of the SMAP satellite L-band product. Our specific objectives are as follows:
(1) To assess the accuracy of the SPL3SMP_E soil moisture product in the study area and
investigate its correlation with environmental factors and (2) to explore the application of
the SPL3SMP_E soil moisture product in agriculture, including irrigation signal detection
and agriculture drought monitoring. By achieving the aforementioned objectives, we hope
to provide more accurate data for satellite soil moisture monitoring in the region and
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offer reliable decision-making support for areas such as agricultural irrigation and water
resource management.

2. Study Area

This study focused on Henan province in China as the study area, with a total area
of 167,000 km2. The terrain in the region exhibits higher elevations in the west and lower
elevations in the east, with predominantly flat plains. The northern, western, and southern
boundaries are characterized by a semi-circular distribution of mountainous areas along
the provincial border (Figure 1a).
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As shown in Figure 1, the primary land use type in the research area is cultivated
farmland, with wheat cultivation covering 54% of the total grain sowing area. Additionally,
there are areas dedicated to corn, potatoes, and other crops. Forests and grass lands cover
approximately 24.53% of the land, primarily concentrated in the mountainous regions.
The majority of the study area is located in the warm-temperate zone, with the southern
part crossing into the subtropical zone. It falls under a continental monsoon climate,
transitioning from the northern subtropical zone to the warm-temperate zone. The average
annual temperature stands at 15.8 ◦C. The average annual precipitation measures 594.3 mm,
with the bulk of the rainfall occurring between June and August. There are a total of 110
in situ sites in the study area. In order to ensure the quality of the satellite SM, the pixels
were filtered by the summed fraction of urban, wetland, and open water. Finally, a total of
55 soil moisture monitoring stations were chosen in the region (Figure 1c). To ensure data
completeness, we ultimately selected soil moisture data from the 55 stations.

3. Datasets and Methods
3.1. Datasets
3.1.1. In Situ Soil Moisture Dataset

In situ soil moisture data were obtained from 55 soil water monitoring stations within
the study area, as shown in Figure 1a. These in situ soil moisture monitoring stations are
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primarily situated in the plain area and are thus unaffected by topographical variations.
During the data collection process, a time domain reflectometry (TDR) sensor was employed
to probe soil moisture at regular intervals of 10 cm starting from the surface, providing
data that cover a depth range of 1 m below the ground surface. The error of the TDR sensor
is ±3%. The in situ soil moisture data from these monitoring stations were provided by
the Agricultural Meteorological Station of Henan Province Meteorological Bureau, which
were collected at six o’clock am (Beijing time) every day from 1 January 2017 to 1 January
2021. Peng et al. [36] suggested that soil moisture data obtained at a depth of 10 cm from
the monitoring stations exhibit the closest correspondence to satellite-derived soil moisture.
Therefore, in this validation experiment, in situ soil moisture data collected at a depth of
10 cm from the monitoring stations were used as the reference.

3.1.2. SMAP Enhanced Level 3 (L3) Product

The concept of the SMAP mission [14] involves employing radar backscatter and
radiometer measurements to achieve soil moisture retrieval with a spatial resolution of up
to 3 km [37]. The L-band radiometer component of the SMAP mission, which operates at a
center frequency of 1.4 GHz, is placed in a near-polar sun-synchronous orbit. Its primary
mission objective is to provide daily global observations of soil moisture at depths ranging
from 0 to 5 cm, with observations acquired consistently at 6 a.m. UTC [24]. However,
due to a radar malfunction in July 2015, there has been a lack of high-resolution soil
moisture information [38]. To obtain high-resolution data, we adopted the level 3 spatially
enhanced soil moisture product (L3_SM_P_E 005). This level 3 product is a daily global
composite of level 2 geophysical retrievals for the entire UTC day. It is derived from the
Backus–Gilbert interpolation of radiometer brightness temperature measurements and
is posted on a grid with a resolution of 9 km. The product represents volumetric water
content at a depth of 5 cm below the ground surface [39,40]. The daily SMAP SM data
retrievals from morning overpasses were chosen, and the data were filtrated according to
the retrieval_qual_flag_am.

3.1.3. Auxiliary Datasets

The proportion of Land Use and Land Cover Change (LUCC) is derived from the
GlobeLand30 dataset, which is a global land cover dataset developed in China with a spatial
resolution of 30 m. The update of this dataset was initiated by the Ministry of Natural
Resources in 2014, and the latest version, GlobeLand30 2020, has been successfully updated
(https://www.webmap.cn/mapDataAction.do?method=globalLandCover) (accessed on
3 May 2023). The 1 km × 1 km resolution elevation data (dataset of 1 km resolution DEM
in China, 2020) used in this study can be downloaded from the website of the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx) (accessed on 20 May 2023).

The daily precipitation data and irrigation data we used were sourced from the Agri-
cultural Meteorological Station of Henan Province Meteorological Bureau. The irrigation
method employed at the monitoring stations is fixed quota irrigation.

In this study, different scales of vegetation indices were obtained using the Google
Earth Engine (GEE) cloud platform [41]. The image data adopted in this paper include the
normalized difference vegetation index (NDVI) product MOD13A1, evapotranspiration
(ET) product MOD16A2, and land surface temperature (LST) product MOD11A1, and the
time-fixed number of years are 2017~2020. Specifically, image data with a resolution of
9 km and a temporal interval of 16 days between 2017 and 2020 were extracted from GEE.
The relevant data can be accessed from the website (https://earthengine.google.com/)
(accessed on 25 May 2023).

https://www.webmap.cn/mapDataAction.do?method=globalLandCover
https://www.resdc.cn/Default.aspx
https://earthengine.google.com/
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3.2. Methods
3.2.1. Statistical Analysis Methods for the Performance of the SPL3SMP_E Product

Four statistical indicators are used in this study to assess the accuracy of the satellite-
based soil moisture product, namely, MD, RMSE, ubRMSE, and R [42,43]. The formulas
for these four statistical indicators are presented in Table 1. In Table 1, S_SM denotes the
soil moisture values obtained from the SMAP satellite, and M_SM denotes the in situ
soil moisture measurements from the monitoring stations, both expressed in (cm3/cm3).
When calculating R, µS denotes the mean of satellite-derived soil moisture; µM denotes
the mean of in situ soil moisture measurements, both expressed in (cm3/cm3); δS denotes
the standard deviation of satellite-derived soil moisture; and δM denotes the standard
deviation of in situ soil moisture measurements, both expressed in (cm3/cm3).

Table 1. Statistical metrics used for soil moisture evaluation.

Metric Symbol Definition Range Perfect Score

Mean Difference MD
N
∑

i=1
(S_SMi−M_SMi)

N
[−∞,+∞] 0

Root Mean Square Error RMSE

√
N
∑

i=1
(S_SMi−M_SMi)

2

N

[0,+∞] 0

Unbiased Root Mean
Square Error ubRMSE

√
(RMSE)2 − (MD)2 [0,+∞] 0

Pearson Correlation
Coefficient R

N
∑

i−1
(S_SMi−µS)(M_SMi−µM)

(N−1)δSδM

[−1, 1] 1

3.2.2. Temporal and Spatial Correlation Analysis

The one-way ANOVA test was employed to examine the significant variations in the
time series of the four statistical indicators. At the 95% confidence level, the data for each
indicator over four years were divided into two subsets: the first half of the year and the
second half of the year. Consequently, each statistical indicator had four treatment groups,
each comprising two replicates. By employing the LSD and Waller–Duncan methods
for mean difference analysis and assessing the significance p-value, we aim to determine
whether noteworthy distinctions among the various treatment groups exist.

Moran’s index was employed to quantify the spatial auto-correlation of four statistical
indicators. With values ranging between -1 and 1, this index quantifies the level of spatial
association in the data. Positive values signify spatial positive correlation, negative values
indicate spatial negative correlation, and a value of zero suggests spatial randomness in
the data. The Z-score represents how many standard deviations a data point deviates
from the mean, reflecting the confidence level. A higher Z-score (positive value) or lower
Z-score (negative value) indicates a higher confidence level. When the Z-score is greater
than 1.96 or less than −1.96, the confidence level is typically at 95%. If the Z-score is greater
than 2.58 or less than −2.58, the confidence level is generally at 99%. The research process
involves two main steps: global Moran’s index analysis and local Moran’s index analysis,
which includes clustering and outlier analysis.

3.2.3. Irrigation Signal Detection of the SPL3SMP_E Product

The assimilation of surface observation data is a method that relies solely on high-
precision satellite soil moisture data to detect irrigation signals. The method identifies the
irrigation signal based on precipitation greater than 5 mm during the increasing period
of soil moisture. When there is no precipitation greater than 5 mm during the increasing
period of soil moisture, and the increased soil moisture is greater than 0.04 m3/m3, then the
increase in soil moisture is considered to be caused by irrigation. Conversely, the increase
in soil moisture is considered to be caused by precipitation. A similar method has been
used in previous studies [44,45].
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In this study, we adopted this approach to verify irrigation signals in the study area.
Figure 2 displays the line graph illustrating both in situ soil moisture and satellite soil
moisture throughout the entire growth period of winter wheat in the study area, along with
the corresponding bar chart representing precipitation amounts. The in situ soil moisture
and satellite soil moisture exhibited consistent trends. Notably, at the four time points
marked in the chart, there was relatively low precipitation. However, both in situ and
satellite soil moisture showed an increase. After consulting the agricultural meteorological
data from local weather stations, agricultural irrigation was confirmed to have taken place
during these four instances. Therefore, it can be inferred that the satellite soil moisture
product is capable of capturing irrigation signals. In summary, this study validated the
presence of the irrigation signal in the study area by observing the phenomenon of no
rainfall or insufficient rainfall leading to an increase in soil moisture over a period of time;
meanwhile, satellite soil moisture increased abnormally.
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Figure 2. The response of the SPL3SMP_E product to irrigation during the 2018 winter wheat
growing season.

3.2.4. Drought Monitoring of Winter Wheat with the SPL3SMP_E Product

Developing agricultural drought monitoring models involves the Random Forest (RF)
and Multi-layer Perceptron (MLP) algorithms, respectively. Among these, the independent
variables of the training sample set consist of SPL3SMP_E soil moisture product data along
with other remote sensing indices [46,47], while the dependent variable is the classification
of drought levels based on soil moisture content at a depth of 20 cm in situ [48], and its
classification is shown in Table 2.

Table 2. Drought classification of relative soil moisture.

Grade Type Relative Soil Moisture at Depth of 20 cm

1 No drought 60% < RSM
2 Mild drought 50% < RSM ≤ 60%
3 Moderate drought 40% < RSM ≤ 50%
4 Severe drought 30% < RSM ≤ 40%
5 Extreme drought RSM ≤ 30%

RF is a machine learning algorithm based on ensemble learning. The core concept is
to employ the Bootstrap resampling technique to repeatedly and randomly draw samples
with replacement from the original training set, thereby generating a new set of training set.
Subsequently, multiple decision trees are constructed by using these bootstrapped datasets.
Employing a voting mechanism, the final result is determined by the predictions from these
multiple decision trees.
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MLP is a type of feed-forward artificial neural network consisting of 3 to 5 layers
of neurons, including an input layer, an output layer, and several hidden layers, all of
which are fully connected. The MLP algorithm can be employed for both regression and
classification tasks. During training, a supervised back-propagation learning method is
typically utilized to obtain the values of various parameters within the network.

In April, during the jointing and heading stage of winter wheat, the water requirement
is at its peak, making it the most susceptible period to drought throughout the entire growth
cycle. In this study, an 80% random sample from the dataset is chosen as the training set,
with the remaining 20% allocated for the testing set, to construct the two aforementioned
machine learning models. Subsequently, SPL3SMP_E soil moisture product data and
other remote sensing datasets for the study area on April 6, 2018, are selected to conduct
comprehensive drought monitoring across the region. Additionally, spatial auto-correlation
analysis is performed on the results of drought monitoring.

4. Results
4.1. Overall Accuracy of the SPL3SMP_E Soil Moisture Product

An analysis of the overall accuracy of the SPL3SMP_E soil moisture product is pre-
sented for the period from 2017 to 2020, while ensuring that the satellite grid and ground
stations correspond spatially. Furthermore, its performance is evaluated on a monthly
scale. The evaluation metrics for the SPL3SMP_E soil moisture product are presented in
Table 3, and the performance of these evaluation metrics on a monthly scale are illustrated
in Figure 3. Through an analysis of the metrics in Table 3, a comprehensive assessment of
the accuracy of the SPL3SMP_E soil moisture product can be derived. Meanwhile, Figure 3
provides a more intuitive representation of how these evaluation metrics vary over time.
It should be pointed out that a total of 130 pairs of SM data in each year were used to
calculate the metrics in Table 3.

Table 3. Evaluation metrics for the SPL3SMP_E soil moisture product.

Year
Symbol

MD (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) R

2017 −0.08 0.13 0.05 0.42
2018 −0.07 0.13 0.05 0.38
2019 −0.06 0.12 0.04 0.28
2020 −0.07 0.12 0.04 0.44

Overall accuracy −0.07 0.125 0.045 0.38

Table 3 reveals notable consistency in the results of the indicators across each year.
Notably, MD consistently displays negative values, while ubRMSE consistently achieves
minimal values. Only R shows a relatively substantial change in 2019. In this study area,
the ubRMSE of the SMAP soil moisture product is approximately 0.04 (m3/m3). This
outcome indicates that the evaluation accuracy of the SPL3SMP_E soil moisture product
aligns closely with its intended design accuracy. This finding is consistent with conclusions
drawn from research conducted in other regions [49–51]. Simultaneously, the consistently
negative values of MD may indicate a prevalent underestimation of soil moisture by the
SPL3SMP_E soil moisture product in this specific region. Additionally, the significant
variation observed in R during 2019 may necessitate further research and explanation.

As shown in Figure 3, it becomes evident that different statistical indicators reflect
temporal discrepancies in the accuracy of the satellite soil moisture product. For the MD,
the product accuracy reaches its highest value in July and its lowest value in January,
exhibiting an overall trend of lower precision at the beginning and end of the year, with
higher precision during the mid-year period. As for RMSE, the product accuracy peaks in
September, but the overall trend shows higher precision in the first half of the year compared
to the second half. Conversely, ubRMSE, which combines MD and RMSE, exhibits the
opposite trend to MD, with higher product accuracy at the beginning and end of the year
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and lower accuracy during the middle of the year. However, all indicators remain below
0.1 (m3/m3), almost approaching 0, thus rendering them suitable for verifying the accuracy
of a satellite product for each month. Furthermore, by comparing the monthly R values
over the four-year span while excluding outliers, it is evident that R consistently remains
greater than 0. This result indicates a positive correlation between the soil moisture data
from the in situ and the SPL3SMP_E soil moisture data. Moreover, there are no apparent
consistent trends in R over the time scale, suggesting that R exhibits randomness over time.
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Figure 3. Monthly variations in accuracy metrics for the SPL3SMP_E soil moisture product.

To investigate the presence of randomness in the statistical indicator results, we
employed one-way ANOVA (analysis of variance) to perform a statistical analysis on
several metrics on a monthly scale. The results of the one-way ANOVA test are presented
in Table 4. Table 4 presents an analysis of the temporal significance differences among the
four statistical indicators. Notably, all p-values are significantly greater than 0.05, indicating
no statistically significant differences among the various statistical indicators over time.

Table 4. One-way ANOVA for variability in SPL3SMP_E soil moisture product accuracy metrics.

Symbol K (Degree of Freedom) F P

MD 7 0.50 0.70
RMSE 7 0.43 0.75

ubRMSE 7 0.72 0.59
R 7 2.77 0.18

Figure 4 displays a comparison of the variance between the first half and second half
of each year for the four indicators. The results indicate that “a” is not significant, implying
that the variance of data within each group of data is consistent, and statistically significant
differences in data are not observed. In other words, the overall accuracy of the satellite
product does not exhibit variation over time. Based on the combined results from Table 4
and Figure 4, we conclude that no significant differences over time are shown by the four
statistical indicators in this study. Additionally, the overall accuracy of the satellite soil
moisture product remains stable over the long-term time scale.
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4.2. Spatial Distribution of the Accuracy Indicators

Through data preprocessing, we only use data with one-to-one correspondence be-
tween grids and ground stations. Therefore, we used the Kriging interpolation method
to spatially analyse the accuracy metrics for the whole study area. Kriging interpolation
is a method for optimal linear, unbiased interpolation estimation of spatially distributed
data. The method not only takes into account the spatial correlation between known data
points, but also provides information on the variance of the estimated accuracy. Figure 5
provides a visual representation of the spatial distribution of the MD indicator at the site,
while Figure 6 presents the spatial distribution of the RMSE indicator. Figure 7 displays the
spatial distribution of the ubRMSE indicator, and Figure 8 exhibits the spatial distribution
of the R indicator. These interpolation images serve to offer a more intuitive insight into
the spatial distribution of the soil moisture statistical indicators within the study area.

In Figure 5, the interpolated map of the MD indicator reveals that values in the eastern
and northeastern regions are comparatively lower, while values in the southeastern region
are higher. The central and western areas have values closer to 0, covering a substantial
portion of the total area. This phenomenon provides strong evidence supporting the high
accuracy of the satellite soil moisture product. The difference in RMSE shown in Figure 6
exhibits a similar trend as MD, with an increasing proportion of areas exhibiting values close
to 0 over time. It further confirms the high accuracy of the satellite soil moisture product.
Figure 7, illustrating the interpolated map of ubRMSE, demonstrates an increasing trend
in spatial distribution from the central or northwestern regions toward the eastern region.
However, it is essential to note that the absolute values of this indicator are relatively small.
Despite the observed variation trend, it effectively underscores the product’s high accuracy.
In Figure 8, R shows a consistent increasing trend from the northwest to the southeast over
the four-year period. After removing several outliers, all R values are positive, indicating a
positive correlation between satellite soil moisture and in situ soil moisture.
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4.3. Spatial Aggregation Features of the Accuracy Indicators

To investigate the aggregation features of the accuracy indicators of the SPL3SMP_E
soil moisture product, this study calculated the Moran’s index of the four accuracy indica-
tors. Table 5 provides a summary of the Moran’s index and their corresponding Z-scores.
Table 5 shows that all Moran’s index values for the indicators are close to or greater than
0, and their corresponding Z-scores all exceed 1.96. These findings indicate that all four
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indicators exhibit significant spatial clustering and have a high level of confidence, gen-
erally exceeding 95%. Taking MD as an example, Figure 9 displays the spatial clustering
distribution of the indicator within the study area. Approximately 70% of grid cells exhibit
significant spatial clustering, indicating no significant differences in spatiality. Outliers are
primarily concentrated in the southernmost region of the study area, demonstrating a high-
value clustering characteristic. In summary, the statistical indicators exhibit no significant
temporal variation but demonstrate spatial clustering patterns across the study area.

Table 5. Moran’s index and Z-scores for the four accuracy indicators for the SPL3SMP_E product.

MD RMSE ubRMSE R

2017
Moran’s-I 0.17 0.05 0.10 0.36

Z-score 2.82 2.27 2.00 4.08

2018
Moran’s-I 0.22 0.04 0.03 0.26

Z-score 2.64 2.33 3.68 2.99

2019
Moran’s-I 0.30 0.07 0.07 0.42

Z-score 3.57 4.16 2.18 4.72

2020
Moran’s-I 0.33 0.12 0.01 0.32

Z-score 3.91 1.99 2.40 3.66
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4.4. Response of Satellite Soil Moisture Product to Irrigation

The accurate capture of irrigation signals is of significant importance for agricultural
production management and decision making. Based on in situ soil moisture data and
precipitation data, we evaluated the detection capability of the SPL3SMP_E soil moisture
product for irrigation signals. Table 6 shows an in-depth study of the capture capability
of the SPL3SMP_E satellite soil moisture product for the winter wheat growing season
irrigation signals at the 53990 (Hebi City) site from 2017 to 2020. We assessed the irrigation
signal capture capability of the satellite product in different months, as shown in Table 6.
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Table 6. Response of SPL3SMP_E soil moisture product to irrigation signals at site 53990.

Irrigation
Time

SM the Day before
(cm3/cm3)

P the Day before
(mm)

SM on the Day
(cm3/cm3)

P on the Day
(mm)

SM the Day after
(cm3/cm3)

P the Day after
(mm)

The Satellite
Captures or Not

(Y/N)

5 March 2017
0.19 0.35 0.34

Y0 0 0

1 May 2017 0.17 0.36 0.36
Y0 0 0

19 November 2017
0.17 0.19 0.22

Y0 0 0

20 January 2018 0.24 0.23 0.29
Y0 0 0

8 March 2018
0.24 0.23 0.31

Y0 0 0

9 May 2018 0.14 0.12 0.32
Y0 0 0

25 October 2018
0.15 0.15 0.32

Y0 0.50 0

24 January 2019 0.28 0.26 0.25
N0.10 0 0

30 March 2019
0.15 0.15 0.33

Y0 0 0

19 May 2019 0.16 0.15 0.32
Y0 0 0

21 March 2020
0.19 0.19 0.34

Y0 0 0

20 April 2020 0.24 0.22 0.20
N0.80 0 0

19 May 2020 0.20 0.18 0.17
N0 0 0

8 June 2020
0.10 0.10 0.32

Y0 0 0

25 October 2020
0.17 0.17 0.32

Y0 0 0

As noted in Table 6, the SPL3SMP_E soil moisture product exhibited strong capability
in capturing irrigation signals, with over 70% of irrigation events being detected by the
satellite over the four-year period. This conclusion was further validated using data from
other stations, which confirmed that the satellite SPL3SMP_E soil moisture product captured
irrigation signals reliably and fairly accurate. However, it is worth noting that these signals
were often reflected in the data on the day after irrigation due to a delay of 12–24 h,
which is described in the official documentation (https://smap.jpl.nasa.gov/observatory/
operations/) (accessed on 16 March 2023). The success rate of regional irrigation capture was
higher than that of site-specific irrigation due to the current low resolution of the satellite
soil moisture products. Although this validation experiment uses a resolution of 9 km, there
were still multiple agricultural activities within a grid cell, making it difficult to precisely
target irrigation at a specific site. Furthermore, various factors, including the climate, crops,
and soil, led to the soil moisture remaining unchanged or decreasing after irrigation, which
was a normal occurrence [52]. This occurrence also contributed to the satellites’ inability to
accurately capture irrigation signals. In conclusion, it is essential to consider factors such as
data latency and resolution when using them, although the satellite soil moisture product
demonstrated strong capabilities in capturing irrigation signals.

4.5. Drought Monitoring with the SPL3SMP_E Product

Training the Random Forest (RF) and Multi-layer Perceptron (MLP) models involves
utilizing 80% of the datasets for the training process, while the remaining 20% is reserved

https://smap.jpl.nasa.gov/observatory/operations/
https://smap.jpl.nasa.gov/observatory/operations/
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for validation. The results indicate that the RF model achieves an accuracy of 83% when
solely relying on satellite soil moisture data for agricultural drought monitoring. When
incorporating both satellite soil moisture and other remote sensing indices, the accuracy of
the RF model increases to 92%. Similarly, the MLP model achieves an accuracy of 78% when
solely utilizing satellite soil moisture data for agricultural drought monitoring, which rises
to 94% when integrating satellite soil moisture with other remote sensing indices. Hence,
there is no significant difference in the accuracy of agricultural drought monitoring between
the two models. However, the combined use of satellite soil moisture and other remote
sensing indices (NDVI, LET, ET) yields higher accuracy in agricultural drought monitoring
compared to solely relying on SPL3SMP_E soil moisture data.

Figure 10a illustrates the agricultural drought distribution solely considering satel-
lite soil moisture monitoring using the RF algorithm. Figure 10b depicts the agricultural
drought distribution considering both satellite soil moisture and other remote sensing
indices monitoring using the RF algorithm. Figure 10 c,d, respecttively, present the agricul-
tural drought distribution monitored in the study area using the MLP algorithm. From the
monitoring results, it is evident that the eastern region of the study area has experienced
relatively severe drought events, while extensive no-drought areas are observed in the
south. In the RF algorithm, the monitoring results based on a single factor show significant
dispersion. However, in multi-factor monitoring, drought is predominantly concentrated in
the eastern and western regions. The MLP algorithm demonstrates the highest accuracy in
multi-factor drought monitoring. However, it exhibits lower sensitivity to drought events in
single-factor monitoring, which may be attributed to the suitability of the algorithm itself.
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Figure 11 illustrates the spatial clustering of drought events under four different
drought monitoring approaches. The clustering results indicate a pronounced high-high
clustering phenomenon in the eastern part of the study area, where the frequency of agricul-
tural drought events is significantly higher than in surrounding areas, with a significance
level of 99%. This finding is substantiated by reference to the Agricultural Meteorological
Monthly Report of Henan Province, which documented a notably severe drought event in
the eastern part of the study area in early April 2018.
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(d) MLP multi-factor monitoring.

In conclusion, the SPL3SMP_E satellite soil moisture product can be effectively utilized
for agricultural drought monitoring, demonstrating its capability to capture major drought
events. Further integration of additional remote sensing indices with soil moisture data
contributes to enhancing the accuracy of drought monitoring. This integrated approach
proves to be effective in monitoring drought events that may be challenging to observe
using individual factors alone.

5. Discussion

The accuracy of the SPL3SMP_E soil moisture product appears to be unaffected by
temporal factors but exhibits a strong spatial clustering pattern. Therefore, this study
further explored the relationship between the accuracy of the satellite soil moisture product
and environmental factors, including the land use proportion and vegetation indices. The
land use was classified into five categories: cultivated land, forest, grass land, water bodies,
and building land. The normalized difference vegetation index (NDVI) was selected as the
vegetation index. Table 7 provides an overview of the MD, R, and correlation coefficients
of these six factors. Through the computation of these correlation coefficients, we can gain
insights into the extent of the relationship between the SPL3SMP_E soil moisture product
and different land use types and vegetation indices.

Table 7. Correlation between the accuracy indexes (MD and R) and environmental factors.

Proportion of
Cultivated

Proportion of
Forest

Proportion of
Grass

Proportion of
Water

Proportion of
Building NDVI

MD 0.47 −0.16 −0.10 −0.27 0.48 −0.22
R 0.32 −0.05 −0.18 0.01 0.35 0.15

Concerning MD, the indicators positively correlate with the proportion of cultivated
land and building land, while they negatively correlate with the proportion of forests, grass
lands, and NDVI. Regarding R, the indicators positively correlate with the proportion of
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cultivated land, water bodies, building land, and NDVI, and they negatively correlate
with the proportion of forests and grass lands. The MD’s scatter plot and linear regression
concerning the proportion of the five land use types and average NDVI are shown in
Figure 12. R’s scatter plot and linear regression concerning the proportion of the five land
use types and average NDVI are shown in Figure 13.
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Figure 12. Scatter plots of the mean difference (MD) of SMAP soil moisture product relative to six
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Body; (e) Proportion of Building Land; (f) NDVI.

The scatter plot excluded data points with a proportion of zero for any land use
type to avoid any impact on the correlation. Satellite data included soil information and
surface and subsurface water information. In this regard, a significant positive correlation
is observed between the soil moisture content and electrical conductivity of cultivated
land. However, for forest and grass land, the correlation between soil moisture content
and electrical conductivity is not deemed significant [53]. In the study area, cultivated
land primarily supports crops such as cotton, corn, and wheat, which have substantial
water requirements throughout the year. Additionally, the electrical conductivity of water
is considerably higher than that of soil. Satellite remote sensing demonstrates a heightened
sensitivity to electrical conductivity [54]. Consequently, the soil moisture in the cultivated
land is higher than the normal values, which leads to a positive correlation with the
measured data (MD). Conversely, for building land, the electrical conductivity of concrete
is lower than that of soil, and the soil moisture content is relatively low, resulting in the
soil moisture of building land being lower than normal values and leading to a positive
correlation with the measured data (MD). In the case of forest and grass land, the soil
moisture and electrical conductivity do not exhibit a significant correlation, and the satellite
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soil moisture product detects soil moisture within the normal range. Consequently, these
areas show a negative correlation with the soil moisture data.
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Building Land; (f) NDVI.

Figure 13 shows that R has a high positive correlation with cultivated land, water
bodies, and building land. These regions were predominantly covered with low-lying crops,
water bodies, or no vegetation, resulting in lower biomass characterized by flat terrain.
Consequently, the soil moisture product was less affected by vegetation in these regions.
This finding is consistent with the findings of Zeng et al. [55], who concluded that satellite
soil moisture products yield better correlation results in areas with sparse vegetation. In
contrast, the extensive vegetation coverage, tall and lush trees, and high biodiversity in
forests and grasslands resulted in larger errors, leading to a negative correlation between R
and these two land use types [56].

The negative correlation between NDVI and MD, as well as the positive correlation
between NDVI and R, were in line with statistical logic. Nevertheless, a comprehensive
exploration of the correlation between NDVI and statistical parameters, along with an
in-depth examination of the underlying mechanisms, are required due to the myriad of
factors influencing vegetation indices.

It is important to acknowledge that L-band satellite SM products are limited to pro-
viding near-surface soil moisture measurements at a depth of 5 cm. In this study, an
assumption was made that the in situ soil moisture at 10 cm depth closely approximates
that at 5 cm. Consequently, the in situ measurements at 10 cm were utilized as a reference to
assess the performance of the SPL3SMP_E SM products. While this approach capitalizes on
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the availability of dense soil moisture stations in the study area, it unavoidably introduces
uncertainty into the evaluation process. Additionally, the spatial mismatch between the
grid-based satellite observations and point-specific in situ measurements further compli-
cates the interpretation of results. This disparity may explain why the statistical analysis
indicates a larger bias in the SPL3SMP_E SM product compared to its intended design
accuracy within this study. It underscores the need for careful consideration of depth
assumptions and spatial discrepancies when evaluating satellite-derived soil moisture data.

6. Conclusions

This study employed measured soil moisture data from 55 soil moisture monitoring
stations in Henan Province, along with precipitation data from meteorological stations,
to validate the accuracy of the SPL3SMP_E soil moisture product. In addition, this study
analyzed the response of the SPL3SMP_E soil moisture product to irrigation practices, and
the study explored the performance of the SPL3SMP_E soil moisture product in drought
monitoring. Firstly, this study calculated the differences in statistical indicators between the
in situ soil moisture data and the SPL3SMP_E soil moisture data. Then, we conducted an
analysis of the temporal and spatial variations in these statistical indicators and conducted
significance tests to discern any notable differences. Subsequently, the correlation between
accuracy indicators and environmental variables was calculated to gain an understanding
of how various factors may influence the performance of the SPL3SMP_E soil moisture
product. Next, the response of the satellite soil moisture product to irrigation signals based
on the records of precipitation and irrigation at the monitoring stations was investigated.
This specific aspect distinguished this research from other accuracy validation studies, as it
focused on understanding how well the satellite product captures irrigation-related changes
in soil moisture. Finally, this study utilized machine learning algorithms to apply the
SPL3SMP_E soil moisture product for agricultural drought monitoring. Based on the results,
the following conclusions were drawn: (1) The overall accuracy of the SPL3SMP_E soil
moisture product was high, and the four statistical indicators (MD, RMSE, ubRMSE, and R)
showed no significant differences over time but exhibit significant spatial clustering. (2) The
accuracy of the SPL3SMP_E soil moisture product exhibited a significant correlation with
land use types and vegetation indices. (3) The SPL3SMP_E soil moisture product performed
well in capturing irrigation signals. (4) With the aid of the SPL3SMP_E soil moisture product
and machine learning algorithms, it is possible to effectively monitor major drought events,
while combining various indices can enhance the accuracy of drought monitoring.
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