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Renata Żochowska and Teresa Pamuła *

Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street,
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Abstract: Information about spatial distribution (OD flows) is a key element in traffic management
systems in urban transport networks that enables efficient traffic control and decisions to redirect
traffic to less congested sections of the network in emergencies. With the development of modern
techniques of remote sensing, more and more advanced methods are used to measure traffic and
determine OD flows. However, they may produce results with different levels of errors caused by
various factors. The article examines the impact of traffic volume and its variability on the error values
of short-term prediction of the OD matrix in the urban network. The OD flows were determined
using a deep learning network based on data obtained from video remote sensing devices. These
data were recorded at earlier intervals concerning the forecasting time. The extent to which there is a
correlation between the size of OD flows and the prediction error was examined. The most frequently
used measure of prediction accuracy, i.e., MAPE (mean absolute percentage error), was considered.
The analysis carried out made it possible to determine the ranges of traffic flow rate for which the
MAPE stabilizes at the level of approximately 6%. A set of video remote sensing devices was used
to collect spatiotemporal data. They were located at the entrances and exits from the study area
on important roads of a medium-sized city in Poland. The conclusions obtained may be helpful in
further research on improving methods to determine OD matrices and estimate their reliability. This,
in turn, involves the development of more precise methods that allow for reliable traffic forecasting
and improve the efficiency of traffic management in urban areas.

Keywords: traffic flow; OD matrix prediction; deep learning; prediction error analysis; short-term
prediction; urban transportation network; video remote sensing data

1. Introduction

Effective traffic management in urban transportation networks requires an extensive
database. One of the most important pieces of information is the spatial distribution of
traffic presented. This knowledge is particularly useful in atypical circumstances, such
as various types of road accidents, roadworks, vehicle or infrastructure failures, or other
situations that require redirecting the whole or only a part of the traffic to other routes.
In such cases, the spatial distribution of traffic, built and updated dynamically based on
traffic data obtained using video remote sensing devices at subsequent time intervals, is an
important element of the traffic management system in urban road networks and enables
the effective determination of optimal routes at a given moment.

One form of presenting the temporal and spatial distribution of traffic is through the
OD (origin-destination) matrix, the individual cells of which represent the number of trips
between a pair of TAZ (traffic analysis zones) or other locations marked as the origin and
destination of the trip in a specific unit of time. These connections are expressed as OD
pairs. In the analysis of transportation networks often used in planning and modeling
transport systems at the strategic level, each zone is represented by a centroid constituting
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the place of accumulation of traffic flows generating and absorbing in this zone. In practical
applications, these centroids are often moved using the so-called connectors to the nearest
nodes of the technical network (e.g., road or railway networks). In this way, the estimation
of the OD matrix between TAZ centroids can be reduced to the estimation of the OD
matrix between the nodes of the technical transport network. The same procedure is also
followed in traffic management, which requires operational activities and the preparation
of short-term traffic predictions.

OD matrices can be constructed in many ways depending on both future application
requirements and the available data. An important factor is also the specificity of a given
area related to land use, the structure of the transportation network, social characteristics,
and available transport subsystems. OD matrices can be built for various means of transport,
time intervals, travel destinations, or groups of participants. In this way, individual
demand strata are created, expressed in the form of OD matrices, specific to a given
area. These matrices can be determined for historical data, the existing state, and future
demand. Individual elements of the OD matrix can be presented in absolute units with the
interpretation of traffic volume, or in relative units expressing the share of traffic flow for
an individual OD pair in the flow on a road section.

For traffic planning in urban transport networks, travel demand models are most often
used, in which OD matrices are estimated using classical methods. They require large-scale
research and information on the socio-demographic situation, traffic conditions, transport
behavior, and spatial development of the area. Therefore, such methods are expensive and
time-consuming, and the results obtained from their use may quickly become outdated
due to the rapidly changing transport system in urban areas. Moreover, transport demand
models built based on classical methods, due to the high level of aggregation of traffic data,
do not consider temporary disturbances in the traffic flows resulting from the time of day,
seasonality, organization of mass events, road works, or weather conditions. Therefore, for
traffic management, which requires frequent updating of input data depending on changes
in actual traffic conditions, increasingly more precise information sources and modern
measurement techniques are used to build the OD matrix.

Currently, more and more cities are equipped with traffic monitoring devices that
continuously record data on traffic intensity in sections of the transport network. Most
devices use remote sensing, i.e., the process of remotely obtaining information about objects
or phenomena. Spatial data usually takes the form of a digital image. We are then dealing
with the so-called imaging remote sensing. A special type of remote sensing is video
detection, which uses the principle of processing images provided by cameras installed
on the road or at an intersection by video detector modules. Thanks to this, it is possible
to, among other things, detect the presence and direction of movement of vehicles, as
well as the detection of cyclists, vehicle classification, traffic intensity measurement, and
queue measurement. The values of traffic intensities obtained from video remote sensing
devices also enable advanced analyses to detect various types of anomalies in traffic volume
distributions [1,2].

Acquiring traffic data using video remote sensing devices is also increasingly used to
build OD matrices. Research on the optimization of the sensor locations for the estimation
of origin-destination demands is also being carried out [3,4]. Therefore, such a method of
obtaining data has great potential for development and may be considered a more attractive
alternative to classical methods [5,6]. In our study, we also analyzed traffic data obtained
using video detectors.

Traffic prediction plays a fundamental role in intelligent transportation systems [7].
Effective operation of such systems requires the use of modern forecasting methods that
ensure acceptable results. Reliable short-term forecasts of traffic volume can support the
system in route planning, driving vehicles, and minimizing congestion. This directly causes
a reduction in the costs incurred both by individual users of the transport system and by
traffic organizers and units managing road infrastructure [8,9]. As a result, it has a positive
impact on the perception of the urban area as more livable.
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However, determining reliable traffic forecasts is difficult due to the complex and
dynamic spatial–temporal relationships between traffic flows in different parts of the road
network in urban areas [1]. In recent years, much research has been carried out in this
field [10,11]. One of the most promising research directions is the use of deep learning
methods, which provide more accurate results and greater resistance to missing data and
errors than previously used approaches based on traditional machine learning methods,
such as Kalman filters, Bayesian networks, or SVMs (support vector machines) [12]. This
improves the reliability of traffic prediction.

The level of errors in traffic predictions is influenced not only by the choice of the
method, which covers the data acquisition technique, its quality and level of aggregation,
the observation range, and the prediction horizon, but also by many different factors of
temporal, spatial, and movement nature. The predictability limit depends, among others,
on the time and type of day, season, and location in the urban network—factors that also
influence changes in traffic volume in road sections. The method of obtaining data is also
important. In our research, we assumed that the data would be recorded by video sensing
devices. Therefore, the main goal of our research was to check whether and to what extent
traffic flow affects the reliability of OD matrix estimation.

This article is based on the research presented in the publication [11], which describes
a method for estimating and predicting the OD matrix using a recursive network with
LSTM (long short-term memory) and DLNA (deep learning network with autoencoders).
This network enables capturing time series characteristics over short and long periods
and is often used for traffic forecasting. Traffic predictions using LSTM networks may
achieve higher reliability [13,14]. During the research, it was observed that the OD flow
prediction error MAPE (mean absolute percentage error) depends on the traffic volume and
its variability. Therefore, a research question arose as to whether this trend regarding short-
term traffic predictions also holds when estimating the value of the OD flows. The MAPE
value is a good measure for assessing error because it provides an average of the prediction
errors for the test period, reflecting the degree of dispersion between the predicted values
and the actual data. Moreover, this measure is expressed as a percentage, which allows the
comparison of the accuracy of predictions for different models.

According to our current knowledge, there are no publications on the dependence of
the OD flow prediction error on traffic intensity and its variability. Therefore, a research
hypothesis was formulated in the form of a question: is there a significant relationship
between the MAPE expressing the prediction error of OD matrix estimation and the size
of the traffic flow rate? A positive answer may contribute to further research aimed at
determining the limit value of traffic volume (expressed in absolute or relative terms),
above which the obtained predictions can be treated as reliable. This issue is important
from the point of view of road traffic management, in which short-term traffic predictions
are useful tools.

The remainder of this article is structured as follows. Section 2 provides a general
review of the literature on short-term OD matrix prediction methods, and mainly includes
articles from 2015 to 2022. Section 3 describes the method for estimating the prediction
errors of the OD matrix. It also includes a description of the prediction model using the
LSTM network. Section 4 presents a case study of the road network of the city of Gliwice
(Poland) along with the results. Section 5 analyses the results obtained. The analysis is
extended in Section 6 in the form of multiple linear regression functions, which determine
the dependence of the average MAPE error for a given range on traffic intensity based on
two factors: average traffic intensity and the coefficient of variability of traffic intensity.
Finally, Section 7 provides conclusions and plans for further research.

2. Related Work

Methods for determining the OD matrix can be classified in many ways depending on
the adopted criteria. A broad overview of this area was presented in publications [15,16],
among others. The choice of method mainly depends on the purpose of using the final
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OD matrix, the degree of aggregation of available data, and the size of the study area. For
traffic planning purposes, the OD matrix can be obtained from a macroscopic demand
model for a city or larger area. However, if the study area is too small and is only in one
or several TAZs, or if a macroscopic model is missing, estimating the OD matrix becomes
a problem for practitioners. In such cases, information on traffic counts may be useful to
estimate the OD matrix. This data can also be used for traffic management purposes due
to the possibility of continuously updating what is possible by using the video detection
systems installed in various parts of the examined area.

Methods for estimating the OD matrix using traffic counts differ primarily in the
data acquisition process and the techniques for building the traffic assignment. The traffic
data used to estimate the OD matrices can be obtained in various ways. The most widely
used data acquisition methods include vehicle license plate registration [17–20], mobile
phone data analysis [21–24], FCD (floating car data) [25–27], traffic intensity and speed
measurements [28], vehicle GPS position recording [29], and others [30,31]. Data obtained
from video sensing devices are also an important source of information on traffic flow
in a section of the road [2], especially when it is necessary to estimate the OD matrix in
real time.

Among the techniques for estimating OD matrices, approaches based on traffic model-
ing are often used, including approaches based on gravity models, gravity-opportunity-
based models, information minimization and entropy maximization approaches, or linear
programming techniques. Mathematical methods also constitute an important group, in-
cluding gradient-based solution techniques, Kalman filtering techniques, PCA—Principal
Component Analysis, the bilevel programming approach, PFE—Path Flow Estimator, and
statistics such as the maximum-likelihood method, the generalized least squares method,
Bayesian inference, and the Gaussian elimination method.

There are also more and more publications in the literature in which a neural network
was used to estimate the OD matrix [32,33]. In [28], the authors proposed a data-driven
method for estimating the OD flows in cases where a supply pattern including the speeds
and traffic volume is available. They used a simple multilayer perceptron neural network
to predict the production and attraction of regions of origins and destinations. The authors
showed that no iterative dynamic procedure that leads to equilibrium assignment is needed
in the case of these input data.

An important direction in the development of methods to predict traffic volume or
estimate the OD matrix is the use of deep learning [7,13–15,24,34–38]. The research results
indicate that these methods significantly increase the possibilities and reliability of traffic
prediction. The most frequently used networks include:

• LSTM—Long Short-Term Memory network
• TCN—Temporal Convolutional Network
• ConvLSTM—Convolutional LSTM Network
• ST-GCN—Spatial–Temporal Graph Convolutional Network
• MLP—Multi-Layer Perceptron network
• DLNA—Deep Learning Network with Autoencoders
• MGC—Multi-Graph Convolutional network
• ED-MGC network—Encoder–Decoder Multi-Graph Convolutional network
• DySAT—Dynamic Self-Attention Network
• DNEAT—Dynamic Node-Edge Attention Network
• RMGC—Residual Multi-Graph Convolutional network
• ST-ED-RMGC—Spatio–Temporal Encoder–Decoder Residual Multi-Graph Convolu-

tional network
• MF-ResNet—Multi-Fused Residual Network
• CAS-CNN—Channel-wise Attentive Split–Convolutional Neural Network,
• GTFNN—Graph–Temporal Fused Neural Network,
• EEMD-LSTM—Ensemble Empirical Mode Decomposition LSTM Network.
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The paper [15] presents a comprehensive review of deep learning approaches used in
traffic forecasting from multiple perspectives and summarizes existing traffic forecasting
methods. Deep learning methods provide good results and are currently most used in
traffic forecasts. The level of forecast error depends on various factors. For example, the
authors of [15] found that the precision of the prediction depends mainly on the dataset
used and the forecast horizon.

Traffic prediction errors can be assessed using various measures. Widely used methods
in the estimation of OD matrices include:

• RMSE (Root Mean Squared Error)
• MAE (Mean Absolute Error)
• MAPE (Mean Absolute Percentage Error)

The RMSE determines how much, on average, the forecast variable’s realizations
deviate from the calculated forecasts. The values of this error are expressed in units of
forecast values and depend on the traffic volume. In turn, the MAE determines by how
much, on average, during the prediction period, the actual realizations of the forecast
variable will deviate in absolute value from the forecasts. The MAPE was chosen for
the analysis because it provides information on the average size of the prediction errors
determined as a percentage of the actual value. The MAPE values allow us to compare the
accuracy of forecasts obtained for different models. This error is considered one of the best
metrics for assessing the prediction accuracy of the model.

To summarize the literature review, it should be noted that deep learning is an impor-
tant and promising direction of research in the field of OD matrix estimation, but when
choosing a type of network to be used, special attention should be paid to the level of pre-
diction estimation error. In the presented publications, the authors estimated OD matrices
using various methods, including multiparameter hybrid models that required very high
computational power. However, we did not find any studies on the assessment of the
error of the predicted OD matrix estimated using deep learning as a function of the traffic
volume or its variability. In our opinion, this is an important research problem because
OD matrices can only be predicted with an acceptable level of reliability within a certain
range of traffic volume values. The purpose of this article is, among other things, to define
this range.

The authors’ contributions are presented below.

• We examine the impact of the traffic flows and their variability on the accuracy of the
estimated OD flows,

• we used the model of direct OD matrix prediction based on traffic volume using
deep learning,

• we pre-process several hundred thousand data on traffic intensity from video-sensing
detectors located at key points in the city,

• we have shown that the higher the traffic intensity value, the smaller the average
MAPE error in estimating the OD matrix,

• we determined regression models of the dependence of the average error of the
prognostic OD matrix on the intensity values and their variability recorded using
video remote sensing devices in 15 min intervals.

3. Materials and Methods

Analysis of prediction error was performed for the method of estimating and forecast-
ing the OD matrix in the urban road network presented in the publication [8]. The main
data were obtained from video remote sensing devices recording information on traffic
intensity, which are in key locations of the studied area. A 15 min analysis period was
adopted for the prediction of the OD matrix. It was also assumed that there were no traffic
disruptions during the measurements. In this case, it is not necessary to consider the path
change for the OD pair depending on the level of traffic flow intensity. This assumption
allows for the adoption of constant routes in each period.
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In the proposed method, the OD pair contains two vertices where a single vehicle trip
begins and ends. These points are located at the vertices of the transport network in places
where video remote sensing devices have been installed. They recorded traffic intensity
in the directions of entry and exit from the study area. Therefore, the structure of the OD
matrix corresponds to the connections between these points.

The general scheme of the method for determining the error of OD matrix estimation
is shown in Figure 1. The most important input data obtained from video detectors include
the registered number of vehicles passing a specific road cross-section in a unit of time,
which to prepare the predicted OD matrices was set at 15 min. Moreover, to prepare a road
and street network model, it is important to define the boundaries of the analysis area and
identify the road infrastructure that can be used to distribute traffic flows. On this basis,
minimal paths enabling traffic assignment are determined, both at stage 2 of determining
the prior OD matrix and after determining the predicted OD matrix.
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The method of estimating the OD matrix based on traffic counts consists of four
steps [11]. First, a road network model should be built to enable further analysis. For
this purpose, information about the network structure and the location of video detectors
recording traffic data is necessary. The road network model is built based on elements of
graph theory.

The road network has been mapped in the form of a directed graph G(N,L), where N
corresponds to a set of nodes and L—to a set of links of this graph. The vertices are divided
into two subsets:

• NB—a set of border nodes, located on the boundaries of the analysis area; these are
places with video detectors that enable data acquisition, and record traffic entering
and exiting the analysis area.

• NA—set of nodes inside the study area; these may be places where the main traffic
flows divide and merge, as well as those where additional devices enabling vehicle
registration are located, i.e., providing information that can be used when building
the predicted OD matrix.

These subsets are disjunctive and complementary. Thus, the set of all nodes used to
build the road network model can be described as follows:

N = {. . . , i, . . . , j, . . . : i, j ∈ NB ∪ NA, i ̸= j, NB ∩ NA = ∅} (1)

Each section of the road network has been mapped in the form of a pair of nodes
between which there is a direct connection by the road infrastructure, i.e., (i,j), with
i ∈ N, j ∈ N, i ̸= j. Therefore, the set of links can be described as follows:

L = {. . . , (i, j), . . . : i ∈ N, j ∈ N, i ̸= j} (2)

The nodes included in the NB set were used to build the structure of the OD matrix.
By connecting the nodes between which there are connections, the OD pairs with the
individual elements described as (o,d) were obtained, where o ∈ NB, d ∈ NB, o ̸= d.

The assumptions that the road network between the nodes o ∈ NB, d ∈ NB is
coherent—which means that at least one path can be provided between each pair of
nodes—and that at each point i ∈ NB traffic data for two directions can be recorded, lead
to the conclusion that the OD matrix is square. Furthermore, the presented research covered
only OD flows with different origins and destinations, i.e., o ̸= d.

In the second step, a prior OD matrix is constructed based on data obtained from
traffic monitoring devices, which can be formally presented in the form:

OD(t) ≡
[

xod(t)
]
=



−
x21(t)

...
...

xn1(t)

x12(t)
−
· · ·
· · ·
· · ·

· · ·
· · ·
−
· · ·
· · ·

· · ·
· · ·
· · ·
−

xnn−1(t)

x1n(t)
...
...

xn−1n(t)
−

 (3)

where n is the number of rows or columns in the square OD matrix.
The iterative procedure supporting the process of building this matrix assumes that

after assigning the estimated OD matrix to a road network, the deviations between the
registered and estimated traffic flows on individual sections should be as small as possi-
ble [11]. Therefore, we are looking for such values of estimated OD flows ÔD(t) which,
when assigned to the network, give minimal deviations between the estimated volumes
of traffic flows Q̂(t) and the real ones Q(t), i.e., registered by the video-sensing detectors
during the period t. This corresponds to the formulation of the optimization task for each
interval t in the following form:

ÔD(t)∗ = argmin
L

F
(
Q(t), Q̂(t)

)
∧ Q̂(t) = asssign

(
ÔD(t)

)
(4)
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where the notation asssign
(

ÔD(t)
)

denotes the assignment of the matrix ÔD(t) to the
road network. Furthermore:

ÔD(t) ≡
[

x̂od(t)
]
—estimated (predicted) OD matrix,

Q(t) ≡
[
qij(t)

]
—matrix containing intensity values on the sections (i, j) ∈ L, recorded

by video-sensing devices,
Q̂(t) ≡

[
q̂ij(t)

]
—matrix containing the intensity values on the sections (i, j) ∈ L, esti-

mated based on the assignment of the estimated OD matrix, i.e., ÔD(t) to the road network.
The minimization of the objective function is performed separately for each period

t. This means that the effect of this procedure is to obtain such a set of OD matrices (for
each interval), the assignment of which on the road network leads to the best convergence
with the observed results. These matrices constitute reference matrices for the process of
training neural networks in step 3 [11].

The spatial scope of the analysis was assumed to cover the area in which the path of
every OD pair is traveled by traffic flows in a time shorter than the analysis period t. It was
also assumed that the network is not overloaded, which means that for individual OD pairs
the shortest minimum paths are constant and independent of the analyzed period. Hence,
for each OD pair, one path is defined in all intervals. Therefore, the overall relationship
between traffic volumes on the link and OD flows can be determined as:

qij(t) = ∑
(o,d)

αod
ij (t)·xod(t) (5)

where:
qij(t)—registered traffic volumes on the link (i, j) ∈ L in period t,
αod

ij (t)—fraction (share) of OD flows for the pair (o,d) that uses link (i, j) ∈ L in period t,

xod(t)—O-D flows for the pair (o,d) in period t; the element of the matrix OD(t).
To analyze the impact of traffic flows on the prediction error, the OD matrix prediction

error values were used, which were calculated using a deep learning neural network with
autoencoders (DLNA). This prediction method turned out to be better than the method
using the LSTM network or the historical method [8]. The structure of the neural network
with autoencoders used to predict the OD matrix flows is shown in Figure 2. After reaching
an acceptable error level, the neural network was used to predict the OD matrix in the last
stage of the method.
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The network maps the function:

ÔD(t + 1) = F(Q(t)) (6)
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During network training, traffic volume matrix sequences are provided for inputs:
Q(t), Q(t − 1), . . ., Q(t− r), where Q(t) ≡

[
qij(t)

]
, with qij(t) interpreted as traffic intensity

in the road section (i, j) ∈ L in the interval t (15 min), (r + 1)—number of elements of the
training set.

The output data are the predicted OD matrices in the next interval, i.e., ÔD(t + 1),
ÔD(t), . . ., ÔD(t − r + 1), where ÔD(t + 1) ≡

[
x̂od(t + 1)

]
, with x̂od(t + 1) interpreted as

an element of the OD matrix in the interval (t + 1). Traffic flow sequences on the input of
the network are time series.

A deep learning network for the prediction of the OD flow matrix consists of an
input DLNA layer, an FC layer, and a REG layer as the output layer. The traffic flow
corresponding to successive 15 min intervals was given at the network input. The number
of entries was 28 values of traffic flows on links registered in the same interval.

Various network configurations were checked by changing the number of neurons
in the autoencoder layers and the number of neurons in the FC layer. The best network
that contained autoencoder layers consisted of a stack of two layers of autoencoders with
20 neurons in each layer. The number of inputs were 28 and outputs and the remaining
network layers were 42 neurons for the OD matrix with dimensions of 7 × 7, disregarding
the values on the main diagonal corresponding to intrazonal flows. The maximum number
of epochs was 100.

The MATLAB 2020a (Academic License) software and a laptop with an Intel (R) Core
(TM) i5, 1.19 GHz processor, 8 GB RAM, and 1 TB SDD disk were used for network training.
The training time depended mainly on the number of epochs, the number of layers, the
number of neurons in autoencoder layers, as well as the mini-batch value, and ranged from
5 min to 4 h.

When training the network, the input was the traffic flow in each interval, and the
output was the predicted OD matrix in the next interval. Then, the predicted OD matrix
was assigned to the road network, which made it possible to estimate values of traffic
intensity at the border nodes (i.e., i ∈ NB), which were compared with the values recorded
by video remote sensing devices at these points.

The data obtained from the video detectors included both the values of traffic intensi-
ties entering the study area in the period t, marked as qin

i (t), and exiting this area, marked
as qout

i (t). Therefore, at each location of the video detector (i.e., i ∈ NB), data were obtained
in the form of two vectors:

• Qin
i ≡

[
qin

i (t)
]
—a vector containing the values of traffic intensity qin

i (t) entering the
study area in subsequent intervals t,

• Qout
i ≡

[
qout

i (t)
]
—a vector containing the values of traffic intensity qout

i (t) exiting the
study area in subsequent intervals t.

As a result of the comparison, the error values MAPEin and MAPEout were calculated
for the estimation of the OD matrix for each interval for a given working day of the week
and for each border node according to the formulas:

MAPEin,wd
i (t) =

∣∣∣∣∣ qin,wd
i (t)− q̂in,wd

i (t)

qin,wd
i (t)

∣∣∣∣∣ ∗ 100% (7)

MAPEout,wd
i (t) =

∣∣∣∣∣ qout,wd
i (t)− q̂out,wd

i (t)

qout,wd
i (t)

∣∣∣∣∣ ∗ 100% (8)

where:
wd—the type of working day,
qin,wd

i (t)—the values of traffic intensity entering the study area on working day wd,
registered in interval t by the video remote sensing device located at the node i ∈ NB,

qout,wd
i (t)—the values of traffic intensity exiting the study area on working day wd,

registered in interval t by the video remote sensing device located at the node i ∈ NB,
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q̂in,wd
i (t)—the values of traffic intensity entering the study area on working day wd

at the node i ∈ NB in interval t estimated based on the assignment predicted OD matrix
ÔD(t) to the road network,

q̂out,wd
i (t)—the values of traffic intensity exiting the study area on working day wd

at the node i ∈ NB in interval t estimated based on the assignment predicted OD matrix
ÔD(t) to the road network.

4. Datasets

An important step was to build a road network model for the tested area, which is
presented in Section 4.1. Examples of input and output data for training the neural network
are presented in Section 4.2, and the method of analyzing traffic intensity recorded by video
sensing devices is discussed in Section 4.3.

4.1. Description of the Study Area

The research was carried out based on data obtained from the Traffic Control Center
in a medium-sized city in Poland, Gliwice. The analysis area and the locations of the video
detectors from which the measurement data were obtained are shown in Figure 3. The
border nodes (i.e., included in the NB set) are marked in red. For each of them, the direction
corresponding to the vectors Qin

i and Qout
i is marked.
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Figure 3. Analysis area with location of detectors and road network model marked.

The lack of traffic congestion allows the assumption of fixed shortest paths between
the selected points. Paths for individual OD pairs were determined using the Dijkstra
algorithm. On this basis, a schematic structure of the aggregated model of the road network
shown in Figure 3 has been constructed.

Based on the symbols in Figure 3, sets of nodes and links for the road network have
been presented in Table 1.

At points P4, P5, P6, P7, P9, P14, and P19, there are additional devices recording
traffic intensity, which were used in the estimation of the OD matrix. The points designated
as X1, X2, and X3 are places where traffic flows are divided or merged, and they were
introduced to enable the construction of a road network model. In the set of links, the traffic
intensities for the following ones were considered for the analysis of errors MAPEin,wd

i (t):
(P2, X1), (P3, P4), (P8, P7), (P10, X2), (P13, P14), (P15, X1), and (P18, P9). They are
marked in red in Figure 3.
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Table 1. Sets of nodes and links for the road network.

Elements of
Network

Set
Designation Elements of the Set Number of

Elements of the Set

nodes
NB {P2, P3, P8, P10, P13, P15, P18} 7
NA {P4, P5, P6, P7, P9, P14, P19, X1, X2, X3} 10

links L

{(P3, P4), (P4, P3), (P4, X1), (P2, X1), (P15, X1), (X1, P6), (P13, P14),
(P14, P13), (P14, P5), (X2, P5), (P10, X2), (P19, P9), (P19, X3), (P9, X3),

(P9, P18), (P18, P9), (P7, X3), (P7, P8), (P8, P7), (X1, P4),
(X1, P15), (X1, P2), (P5, X1), (P5, P14), (P5, P6), (P6, P5), (P6, X2),

(X2, P19), (P19, X2), (X2, P10), (P9, P19), (X3, P19), (X3, P9), (X3, P7)}

34

4.2. Input and Output Data for Neural Network

The research was carried out using data from video remote sensing detectors for three
months (May, June, and July). Data were collected at 5 min intervals, but for the study,
they were processed in 15 min. The camera viewing range and detection field for recording
traffic data using video remote sensing are shown in Figure 4.
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Figure 4. The method of recording traffic data using video remote sensing; (a) the camera viewing
range; (b) the detection field.

Based on the selected locations of the measurement points and traffic data recorded by
the video detectors, the OD flows for 42 OD pairs were estimated. An interval of 15 min
was considered when generating the OD matrix for each of the five working days separately.
A total of 2400 prior OD matrices were estimated for the training sequence and 480 (i.e.,
5 × 96) for the test sequence.

Example input and output data (i.e., training data) for the neural network for the
selected interval are presented in Tables 2 and 3. The values of the reference OD matrix are
expressed as relative units.

The results obtained for test data for five working days, from Monday to Friday and
from 6:00 a.m. to 10:00 p.m., were analyzed.
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Table 2. Traffic intensities [veh/15 min] on 16.05.2016 (Monday) in the period from 07:45 a.m. to
08:00 a.m.

P2 in P2 out P3 in P3 out P4 in P4 out P5 in

257 233 199 115 148 108 142

P5 out P6 in P7 in P7 out P8 in P8 out P9 in

379 350 164 191 157 138 132

P9 out P10 in P10 out P13 in P13 out P14 in P15 in

100 101 126 57 128 141 211

P15 out P18 in P18 out P19 in P19 out P13 in P13 out

125 154 104 99 77 182 135

Table 3. OD matrix [-] for 16.05.2016 (Monday) in the period from 07:45 a.m. to 08:00 a.m.

Nodes P2 P3 P15 P13 P10 P18 P8

P2 - 0.183 0.275 0.194 0.217 0.181 0.140

P3 0.201 - 0.167 0.159 0.167 0.150 0.125

P15 0.257 0.150 - 0.170 0.187 0.157 0.127

P13 0.200 0.144 0.163 - 0.166 0.147 0.125

P10 0.214 0.132 0.156 0.148 - 0.083 0.083

P18 0.153 0.121 0.123 0.125 0.097 - 0.438

P8 0.208 0.160 0.166 0.169 0.147 0.127 -

4.3. Traffic Volume Analysis

Before we started analyzing the dependence of the OD matrix prediction error on
traffic flows, we carried out a preliminary analysis of this intensity. Figure 4a,b show
daily traffic patterns at point P2, where the highest average traffic volumes were recorded
considering the entire network, and at point P13, with the lowest average traffic volumes.

In Figure 5, for example, traffic intensities recorded by video detectors show significant
differences in specific periods of the day. Hence, averaging the flows, e.g., for OD pairs,
for the whole road network would not be a good solution. Similarly, the average of peak
hours differed depending on the OD pairs. Therefore, we decided to divide the traffic
intensity values at the border points for flows entering and exiting the study area into
ranges, regardless of the time of occurrence. Seven ranges of traffic intensity were adopted
as follows: 0–50, 51–100, 101–150, 151–200, 201–250, 251–300, and 301–351 [veh/15 min].
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Figure 5. Daily traffic flow patterns for selected measurement points: (a) P2 out and P2 in—the
highest intensity; (b) P13 out and P13 in—the lowest total intensity.

We averaged the traffic intensity and prediction errors of the OD matrix for the applied
traffic intensity ranges in the period from 6:00 a.m. to 10:00 p.m., for each test day of the
week and each direction (entry and exit) of OD flows. Sample data for Friday for the vectors
Qout

i are presented in Tables 4 and 5. Empty cells mean that at a given measurement point
for a specific direction, no traffic intensity within a given range of values was recorded.

Table 4. Averaged values of traffic intensity [veh/15 min] for the ranges.

Ranges of Traffic Intensity Measurement Points
P2 out P3 out P15 out P13 out P10 out P18 out P8 out

0–50 - 48 36 40 32 43

51–100 97 77 79 71 84 77 78

101–150 123 129 114 112 130 120 119

151–200 185 171 - 167 171 154 160

201–250 228 - - 226 217 - -

251–300 273 - - - - - -

301–350 314 - - - - - -

Table 5. Averaged values of MAPEout [%] for the ranges of traffic intensity.

Ranges of Traffic Intensity Measurement Points
P2 out P3 out P15 out P13 out P10 out P18 out P8 out

0–50 - 12.969 9.465 7.922 - 12.652 8.452

51–100 5.315 9.377 7.032 6.261 7.996 8.540 8.235

101–150 7.570 6.704 8.001 6.677 7.453 6.993 8.026

151–200 6.627 6.232 - 5.479 5.802 4.583 5.849

201–250 6.587 - - 3.201 6.051 - -

251–300 5.133 - - - - - -

301–350 6.584

During the analysis, we noticed that the variability of traffic intensity was different
in particular ranges. Moreover, the calculated values of MAPE for the estimation of the
OD matrix depended not only on traffic intensity but also on its variability. Therefore, we
also included this parameter in our analyses. As a measure of the spread of traffic intensity,
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the coefficient of variation was determined for the given ranges, calculated separately for
flows entering and exiting the studied area according to the formulas:

CVin,wd
i,r =

SDwd
r

(
Qin

i
)

AVGwd
r

(
Qin

i
) ∗ 100% (9)

CVout,wd
i,r =

SDwd
r

(
Qout

i
)

AVGwd
r

(
Qout

i
) ∗ 100% (10)

where:
SDwd

r
(
Qin

i
)
—standard deviation of the traffic intensities for vehicles entering the study

area, recorded at the measurement point i (presented in the form of a vector Qin
i ) on the

working day wd and falling within the range r,
SDwd

r
(
Qout

i
)
—standard deviation of the traffic intensities for vehicles exiting the study

area, recorded at the measurement point i (presented in the form of a vector Qout
i ) on the

working day wd and falling within the range r,
AVGwd

r
(
Qin

i
)
—average value of the traffic intensities for vehicles entering the study

area, recorded at the measurement point i (presented in the form of a vector Qin
i ) on the

working day wd and falling within the range r,
AVGwd

r
(
Qout

i
)
—average value of the traffic intensities for vehicles exiting the study

area, recorded at the measurement point i (presented in the form of a vector Qin
i ) on the

working day wd and falling within the range r.
Table 6 presents the values of the coefficient of variation of traffic intensity for the

given ranges, for the dataset presented in Table 4 (Friday for the vectors Qout
i ).

Table 6. Averaged values of coefficient of variation [%] for the ranges of traffic intensity.

Ranges of Traffic Intensity Measurement Points
P2 out P3 out P15 out P13 out P10 out P18 out P8 out

0–50 - - 26.219 19.592 - 28.684 16.462

51–100 - 22.457 15.554 15.854 18.970 18.759 20.239

101–150 12.015 10.213 10.190 12.434 10.132 10.674 9.727

151–200 5.738 7.813 - - 7.893 - -

201–250 7.178 - - - - - -

251–300 5.381 - - - - - -

301–350 2.429 - - - - - -

Empty places in the table indicate no traffic intensity in this range was recorded, or a
single value for which the standard deviation cannot be calculated.

5. Results

The prediction errors of the OD matrix were calculated using data recorded over half a
year, from January to June, in parallel at all measurement points to take into account spatial–
temporal relationships. As previously mentioned, our analysis included data registered for
five test working days from Monday to Friday from 6 a.m. to 10 p.m.

To verify our thesis, we analyzed the dependence of the average MAPE prediction
error on the average traffic intensity values for a given intensity range for five working days
and all measurement points. Charts of these dependencies for, for example, points P2 and
P3 for one working day (Thursday) are presented in Section 5.1, along with a discussion.

Next, Section 5.2 presents the results of the correlation analysis for the average traffic
intensity values at the analyzed measurement points and the MAPE error value of the
predicted OD flows both for the flows entering (i.e., inputs) and exiting (i.e., outputs) the
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study area. In turn, Section 5.3 presents the results of correlation analysis for prediction
errors and the traffic volume coefficient of variation.

5.1. Analysis of the Dependence of the Average MAPE Prediction Error on the Average Intensity
for the Ranges

For the intensity ranges included in Tables 4–6, the average MAPE errors and the
average traffic intensity values were calculated. The results were compared for five test
working days and all border points where the video remote sensing devices were located.
The results for selected points P2 and P3 are shown in Figure 6.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 21 
 

 

study area. In turn, Section 5.3 presents the results of correlation analysis for prediction 
errors and the traffic volume coefficient of variation. 

5.1. Analysis of the Dependence of the Average MAPE Prediction Error on the Average Intensity 
for the Ranges 

For the intensity ranges included in Tables 4–6, the average MAPE errors and the 
average traffic intensity values were calculated. The results were compared for five test 
working days and all border points where the video remote sensing devices were located. 
The results for selected points P2 and P3 are shown in Figure 6. 

  

  

Figure 6. Dependence of the MAPE on the traffic intensity values for the entry (in) and exit (out) 
directions for measurement points P2 and P3. 

For point P2 in, traffic intensity values less than 50 [veh/15 min] occurred only on 
Monday and Thursday, while for point P2 out, the intensity values exceeded 50 [veh/15 
min] on all working days from Monday to Friday. In turn, for the points P3 in and P3 out, 
the intensity values did not exceed 250 [veh/15 min]. 

In Figure 6 it can be seen that the MAPE error for both points P2 and P3 stabilizes at 
a value of approximately 6–7% for the traffic intensity range above 150 [veh/15 min]. A 
similar situation occurs for the remaining measurement points. 

Traffic intensities for individual working days were also analyzed separately. For 
each day, the intensities at all measurement points were studied simultaneously. The re-
sults of these analyses are presented in Figure 7. 

Figure 6. Dependence of the MAPE on the traffic intensity values for the entry (in) and exit (out)
directions for measurement points P2 and P3.

For point P2 in, traffic intensity values less than 50 [veh/15 min] occurred only on Mon-
day and Thursday, while for point P2 out, the intensity values exceeded 50 [veh/15 min]
on all working days from Monday to Friday. In turn, for the points P3 in and P3 out, the
intensity values did not exceed 250 [veh/15 min].

In Figure 6 it can be seen that the MAPE error for both points P2 and P3 stabilizes at
a value of approximately 6–7% for the traffic intensity range above 150 [veh/15 min]. A
similar situation occurs for the remaining measurement points.

Traffic intensities for individual working days were also analyzed separately. For each
day, the intensities at all measurement points were studied simultaneously. The results of
these analyses are presented in Figure 7.

In Figure 7, as before, a decreasing trend of the MAPE error with increasing traffic
intensity for all measurement points (both inputs and outputs) is observed, except for
single deviations.



Remote Sens. 2024, 16, 1202 16 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) (b) 

Figure 7. The values of MAPE error for all measurement points for Thursday; (a) for traffic flows 
entering the studied area (in); (b) for traffic flows exiting the study area (out). 

In Figure 7, as before, a decreasing trend of the MAPE error with increasing traffic 
intensity for all measurement points (both inputs and outputs) is observed, except for sin-
gle deviations. 

5.2. Correlation between MAPE Error and Traffic Volume 
The next step of the analysis was to examine the correlation between the MAPE value 

of the prediction error of the OD matrix and the average intensity of the traffic. The anal-
ysis was performed for five working days for all measurement points for both the inputs 
and outputs of the OD matrix. Figure 8 shows the results in the form of correlation plots 
for Thursday. 

  
(a) (b) 

Figure 8. Dependence of the average MAPE error and the average traffic flows for intensity ranges; 
(a) for traffic flows entering the studied area (in); (b) for traffic flows exiting the study area (out). 

The R2 coefficient for all P in points (Figure 8a) is greater than 0.6, which indicates a 
high correlation between the prediction error and the intensity value. As the average traf-
fic intensity increases, the prediction error value of the OD matrix decreases. On average, 
the decrease in the error value is 0.045 per unit of intensity [veh/15 min] for all inputs from 
the points for Thursday, calculated as the average of the regression line parameters for all 
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fact that the intensity values at this point do not exceed 150 [veh/15 min]. For the outputs, 

Figure 7. The values of MAPE error for all measurement points for Thursday; (a) for traffic flows
entering the studied area (in); (b) for traffic flows exiting the study area (out).

5.2. Correlation between MAPE Error and Traffic Volume

The next step of the analysis was to examine the correlation between the MAPE value
of the prediction error of the OD matrix and the average intensity of the traffic. The analysis
was performed for five working days for all measurement points for both the inputs and
outputs of the OD matrix. Figure 8 shows the results in the form of correlation plots
for Thursday.
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Figure 8. Dependence of the average MAPE error and the average traffic flows for intensity ranges;
(a) for traffic flows entering the studied area (in); (b) for traffic flows exiting the study area (out).

The R2 coefficient for all P in points (Figure 8a) is greater than 0.6, which indicates a
high correlation between the prediction error and the intensity value. As the average traffic
intensity increases, the prediction error value of the OD matrix decreases. On average, the
decrease in the error value is 0.045 per unit of intensity [veh/15 min] for all inputs from
the points for Thursday, calculated as the average of the regression line parameters for all
measurement points.

For the point outputs of the OD matrix, the coefficients of correlation R2 are also mostly
high. Only in the case of point P13 is the correlation very weak, which is due to the fact that
the intensity values at this point do not exceed 150 [veh/15 min]. For the outputs, the aver-
age decrease in the error value is 0.042 per unit of intensity [capacity/15 min]—Figure 7b.
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5.3. Correlation between MAPE Error and Coefficient of Variation

During our analyses, we also noticed that not only the range of traffic intensity values
but also the traffic variability index has a significant impact on the prediction error. Figure 9
shows the correlation plots of the average MAPE error and the calculated coefficient of
variation of the traffic intensity for all inputs and outputs of the OD matrix for Thursday.
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points for Thursday; (a) for traffic flows entering the studied area (in); (b) for traffic flows exiting the
study area (out).

The graphs presented in Figure 9 clearly show that the correlations between the MAPE
error value and the coefficient of intensity variation are high, and in most cases, the value
of the coefficient R2 for all models is greater than 0.6. This confirms our thesis about the
significant impact of traffic intensity variability on the value of the MAPE prediction error.
The greater the intensity variability, the greater the error. However, in several cases, the
impact of the coefficient of variation on the prediction error may not satisfy this thesis. This
is mainly due to the small amount of data on intensity in this range of traffic intensity.

6. Discussion

It was shown in Sections 5.1–5.3 that the prediction error MAPE depends on the
average value of traffic intensity within the range and the coefficient of variation of this
intensity in the range. The relationship models for inputs and outputs were determined in
the form of multiple linear regression using the least squares method as follows:

MAPEin,wd
avg,r = m1in·Qin,wd

avg,r + m2in·CVin,wd
avg,r + m3in (11)

MAPEout,wd
avg,r = m1out·Qout,wd

avg,r + m2out·CVout,wd
avg,r + m3out (12)

where:
MAPEin,wd

avg,r —average value of MAPE error for the traffic flows entering the study area
in the working day wd with the recorded value of intensity within the range r,

MAPEout,wd
avg,r —average value of MAPE error for the traffic flows exiting the study area

in the working day wd with the recorded value of intensity within the range r,
Qin,wd

avg,r —average values of traffic intensities for the flows entering the study area in the
working day wd with the recorded value of intensity within the range r,

Qout,wd
avg,r —average values of traffic intensities for the flows exiting the study area in the

working day wd with the recorded value of intensity within the range r,
CVin,wd

avg,r —average values of coefficient of variation of traffic intensities for the flows
entering the study area in the working day wd with the recorded value of intensity within
the range r,
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CVout,wd
avg,r —average values of coefficient of variation of traffic intensities for the flows

exiting the study area in the working day wd with the recorded value of intensity within
the range r,

m1in, m2in, and m3in—values of the parameters of the regression model for the flows
entering the study area,

m1out, m2out, and m3out—values of the parameters of the regression model for the
flows exiting the study area.

The multiple linear regression models are presented in Figure 10.
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Figure 10. Dependence of the average MAPE error on the traffic flow ranges and the coefficient
of variation; (a) for average traffic flows entering the studied area (in); (b) for average traffic flows
exiting the study area (out).

The parameters of the multiple regression function (i.e., m1in, m2in, and m3in for flows
entering the study area, and m1out, m2out, and m3out for the flows exiting the study area)
were calculated. Their values are appropriately 0.00089, 0.2696, and 4.4454 for the inputs,
and 0.001154, 0.3307, and 3.6735 for the outputs. To calculate the parameters, the values
of vectors containing MAPE errors, the corresponding traffic intensities, and coefficients
of variation for five test working days for all measurement border points were used. The
coefficient of intensity variation has a greater impact on the error value than the average
traffic intensity.

The dependence of the prediction error on the average intensity and the coefficient
of the variation calculated for the intensity ranges is well shown by the bubble chart in
Figure 11. The size of the bubbles determines the value of the coefficient of traffic intensity
variation for specific ranges.
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The graph clearly shows that as the intensity increases, the prediction error decreases.
At the same time, the error is larger when the bubble size is larger. A larger bubble means a
larger coefficient of the variation of traffic intensity.

7. Conclusions

Errors in the short-term forecasting of the OD matrix can significantly affect the
effectiveness of traffic management and, therefore, also the traffic conditions in the transport
network. Thus, efforts should be made to ensure that the methods used are subject to the
lowest possible level of error and the obtained predictions are characterized by the highest
possible level of reliability.

The article presents the results of the analysis of MAPE prediction errors, calculated
based on the prediction of OD flows using the deep learning method [8] as dependent
on the traffic intensity and its variability. To facilitate the analysis, the intensity values
registered by video remote sensing devices in the measurement points both for the traffic
flows entering and exiting the study area were divided into ranges. For the intensity ranges,
the average values of errors, intensities, and coefficients of variation were calculated. The
influence of traffic intensity, the influence of the coefficient of variation, and the influence of
both parameters on the error values were examined separately. The results of the analysis
showed that as the average traffic intensity increases, the error decreases, while an increase
in the value of the coefficient of variation causes an increase in the prediction error. To check
the influence of both parameters simultaneously, the multiple linear regression function
was used. The parameters of this function, calculated for all measurement points, showed
that the coefficient of variation has a much greater impact on the error value than the
intensity itself.

The subject discussed in the article requires further in-depth analysis to detect the
dependence of the OD matrix prediction error on factors other than traffic characteristics.
An interesting direction for further research is to find a relationship between the location of
video remote sensing devices, the structure of the road network, or transport subsystems
operating in the studied area, and the degree of their use in transport demand. Additionally,
an interesting area of research is to check whether there are also relationships between
traffic intensity and its variability for other metrics of error in the estimation of OD matrices
(e.g., RMSE, MAE) and whether they are shaped in a similar way as in the case of the MAPE
error. It is also worth comparing prediction errors in this respect for different deep learning
network models (including MF-ResNet, CAS-CNN, STGCN, STSGCN, and STFGNN).

The results obtained can be used to assess the prediction of the OD flows. Correction
of the predicted values of the OD matrix considering the parameters mentioned above can
significantly improve the accuracy of the prediction and therefore have a positive impact
on traffic management and traffic conditions on the road network.
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8. Jacyna, M.; Wasiak, M.; Lewczuk, K.; Karoń, G. Noise and environmental pollution from transport: Decisive problems in

developing ecologically efficient transport systems. J. Vibroeng. 2017, 19, 5639–5655. [CrossRef]
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