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Abstract: Temperature and water vapor play crucial roles in the Earth’s climate system, and it is
important to understand and monitor the variation in the thermodynamic profile within the lower
troposphere. Among various observation platforms for understanding the vertical structure of
temperature and humidity, ground-based Fourier-transform infrared (FTIR) can provide detailed
information about the lower troposphere by complementing the limitations of radiosonde or satellite
methods. However, these ground-based systems have limitations in terms of cost, operation, and
mobility. Herein, we introduce a cost-effective and easily deployable FTIR observation system de-
signed to enhance monitoring capabilities for atmospheric conditions. The atmospheric downwelling
radiance spectrum of sky is measured by applying a real-time radiative calibration using a blackbody.
From the observed radiance spectrum, the thermodynamic profile (temperature and the water vapor
mixing ratio) of the lower troposphere was retrieved using an algorithm based on the optimal estima-
tion method (OEM). The retrieved vertical structure results in the lower troposphere were similar to
the fifth-generation reanalysis database (ERA-5) of the European Center for Medium-range Weather
Forecasts (ECMWF) and the National Centers for Environmental Prediction final analysis (NCEP
FNL). This provides a potential possibility for monitoring atmospheric conditions by a compact
FTIR system.

Keywords: FTIR; hyperspectral; infrared; atmospheric profile; interferogram

1. Introduction

Temperature and water vapor in the atmosphere play crucial roles in the Earth’s
climatic system. These are critical for the stable energy balance of the Earth, as the atmo-
spheric temperature is a key parameter in the interplay of energy received from the sun
and emitted back to space. This balance affects climate change and has direct influences
on various meteorological phenomena, which means variations in temperature and water
vapor drive the distinct formation of weather patterns and all atmospheric conditions
including wind formation and distribution and the intensity of precipitation [1–3].

Particularly, examining the vertical profile of tropospheric temperature and water
vapor within the planetary boundary layer (PBL) is crucial for various research applica-
tions. These include enhancing operational situational awareness during severe weather
events [4], initializing numerical weather prediction (NWP) models [5], facilitating pol-
lution dispersion modeling [6], and conducting research on heat and moisture exchange
processes involving the Earth’s surface with atmospheric layers [7].

Over the past 60 years, the World Meteorological Organization (WMO) has operated
the Global Observing System (GOS), encompassing a comprehensive suite of observations,
including surface measurements, aircraft data, ground-based and space-borne remote
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sensing, and weather radar observations [8]. This extensive system has been focused
on delivering reliable vertical profiles of temperature and water vapor information at
a global scale. Furthermore, the Decadal Survey in 2017 highlighted the critical role of
thermodynamic profiles within the PBL, emphasizing the need for focused observations as
a key area for future investment [9].

Although radiosondes are highly applied as references for their precise and detailed
vertical in situ measurements, the limitations in time and space coverage of the radiosonde
network are not negligible, due to the costs and labor required for launching these sys-
tems. In response to these limitations, advancements in remote sensing technologies have
emerged as valuable complements to in situ measurements, fulfilling gaps in the existing
operational observing system. Satellite observations, such as those of the Infrared Atmo-
spheric Sounding Interferometer (IASI) onboard the meteorological operational (MetOp)
satellites operated by the European organization for the exploitation of meteorological
satellite’s (EUMETSAT) [10], and the Cross-Track Infrared Sounder (CrIS) onboard the
Soumi-National Polar-orbiting Partnership (NPP) jointly operated by the National Oceanic
and Atmospheric Administration (NOAA) and National Aeronautics and Space Adminis-
tration (NASA) [11], offer global-scale coverage and have demonstrated improvements in
forecast skills for global Numerical Weather Prediction (NWP) [12]. Despite these advan-
tages, challenges still exist due to the relatively poor horizontal resolution and difficulties
in retrievals over iced surfaces, resulting in coarse vertical resolution and accuracy within
the planetary layer (PBL) and vertical profiles under cloud cover [13].

Among the various remote sensing observation platforms, ground-based remote
sensing instruments, such as the Microwave Radiometer (MWR) [14,15] ground-based
Fourier-transform infrared (FTIR), and the Atmospheric Emitted Radiance Interferometer
(AERI) [16], offer a highly complementary perspective to space-borne remote sensing. This
synergy is derived from their exceptional sensitivity near the Earth’s surface and their abil-
ity to provide higher vertical and temporal resolution compared to satellite-based remote
sensing systems. With an acknowledgement of the importance of mesoscale monitoring
and prediction, in 2009, the National Research Council (NRC) stressed the need to develop
a global network of ground-based atmospheric profiling systems [17]. In particular, ther-
modynamic profiles retrieved from the AERI have been used in diverse scientific studies,
including those investigating cold fronts and drylines [18], identifying the change in var-
ious convective indices in tornadic and non-tornadic storms [4], examining the retrieval
method for the cumulus entrainment rate [19], and retrieving aerosol information [20,21].
However, these instruments not only require significant costs to purchase and operate, but
also require placement in buildings, ships, or containers, limiting their mobility to specific
observation locations. Therefore, an observation system that is more cost-effective and rela-
tively convenient to move to various locations is required to monitor the thermodynamic
profile of the lower troposphere.

In this study, we present a compact FTIR system, which offers significant mobility
advantages due to its simple installation and stabilization, designed to measure the infrared
spectral range for acquiring atmospheric information. Figure 1 shows the overall steps of the
proposed observation platform from instrumental setting to the thermodynamic retrieval
process, and that flowchart aligns with content flow in this research. In Sections 2 and 3, we
introduce the detailed configuration of the instrument, the radiometric calibration method,
and the determination of observation characteristics through the signal processing. The
retrieval method for thermodynamic profiles from observed sky radiance data is described
in Section 4, and Section 5 shows the evaluated results applied to actual observation data.
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Figure 1. The flowchart from observation to the thermodynamic profile retrieval process.

2. Instrumentation Construction of Instrument Hardware

To measure the atmospheric emitted radiance spectrum and derive atmospheric ther-
mal dynamic profiles, we constructed a compact FTIR observing system using the M4400
spectrometer (Midac Corporation, Irvine, CA, USA). Previously, the MIDAC M4400 spec-
trometer was primarily used to measure the surface emissivity [22,23] or column gas
composition in an open-path FTIR system [24]. Unlike them, we build an additional front-
end optical part to the FTIR instrument to acquire atmospheric infrared signals, as shown
in Figure 2 (the compact FTIR environment is shown in Figure S1). The entire measurement
platform consists of the FTIR instrument part and the front optics part, where the blackbody
is located for radiometric calibration of the observation spectrum.

Detailed information on the FTIR and blackbody hardware is described in Table 1.
The MIKRON M340 portable blackbody calibration sources (Mikron Instrument Company,
Oakland, NJ, USA) for two temperatures (hot and ambient) are located on both sides. The
blackbody emissivity is >0.98 within 8–15 µm, covering the atmospheric window. The
hot blackbody temperature is fixed at 333 K, while the ambient blackbody temperature
varies depending on the surrounding temperature at the time of observation. Blackbody
temperatures are easily controlled within 0.1 ◦C by a self-tuning proportional integral
differential (PID) controller from a digital temperature display. A single sky observation
consists of a repeating sequence that measures the hot blackbody, sky-view, and ambient
blackbody, at one-minute intervals. In the front optics, by adjusting the angle of the
switching mirror located in the center of the structure, the incident atmospheric emitted
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radiative energy and each blackbody source are transmitted to the FTIR instrument in
each sequence.
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Table 1. Specification of Instrument and blackbody.

Parameter Values

FTIR Spectrometer

Instrument MIDAC M4400
Type Michelson interferometer

Mirrors Gold coated, diamond tuned, permanently
aligned

Beam Splitter KBr

Detector HgCdTe (MCT; Mercury–Cadmium–Telluride)
w/Liquid N2 cooling

Metrology Laser HeLe laser
Spectral Range 500 to 4000 cm−1

Spectral Resolution * 1.0 cm−1

Accuracy >0.01 cm−1

Size 19′′ × 11.5′′ × 8′′ (W × L × H)

Blackbody

Instrument MIKRON M340
Temperature Range −20 ◦C to 150 ◦C

Temperature Resolution 0.1 ◦C
Operating Ambient Temperature 5 ◦C to 40 ◦C

Temperature Sensor Precision Platinum RTD
Stability 0.1 ◦C per 8 h period

Emitter Diameter 2.0′′

Emissivity 0.9756 ± 0.0039 @ 8–15 µm
0.9713 ± 0.0049 @ 3–5 µm

Size 11′′ × 11′′ × 6.5′′ (W × L × H)

* Note, the instrument can be adjusted through software to various resolutions from 0.5 to 32 cm−1. In this study,
we used a fixed value of 1.0 cm−1.
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MIDAC M4400 FTIR is a Michelson interferometer consisting of a beam splitter, a fixed
mirror, a moving mirror, a collimator, and a Mercury–Cadmium–Telluride (MCT) detector.
It measures infrared radiance from 500 to 4000 cm−1 (2.5–20.0 µm), with an unapodized
spectral resolution of 1.0 cm−1. This spectral range of the FTIR platform can cover the
various absorption bands of gases in the atmosphere, such as ozone (O3; 980–1080 cm−1),
carbon dioxide (CO2; 612–618, 624–660, 674–713, and 2223–2260 cm−1), methane (CH4;
1150–1229 cm−1), and water vapor (H2O; 538–588, and 1250–1350 cm−1), as well as the
atmospheric window (800–1250 cm−1).

The MCT detector is a photon detector, and electrons are directly excited by the
absorption radiation. In order to avoid thermal excitation, a cooling system is necessary.
Since this FTIR is not equipped with an automated cooling system, liquid nitrogen (LN2)
is used to achieve the temperature that acquires a high-sensitivity sensor. When the MCT
detector is cooled sufficiently using LN2, which means that the interferogram is stable,
the system is ready to observe. Moreover, a desiccant is placed inside, and nitrogen gas
is purged due to the high sensitivity of moisture to the major components in the FTIR
instrument. To improve the accuracy of the observation spectrum, 32 repeated scans are
merged to generate a single spectrum. The observation system is primarily designed for
operation under clear sky to avoid interference from rain, and it requires manual operation
by human sources, as it is not automated.

3. Signal Processing
3.1. Radiometric Calibration

The atmospheric emitted measured signals by the instrument need to be converted
into the known radiometric calibrated radiance unit (i.e., mWm−2sr−1cm). As mentioned
in Section 2, we performed a two-point radiometric calibration using two well-defined
black-bodies (hot and ambient) radiation sources. The single sky-view observation is
pairing with measurements of both the hot blackbody and the ambient blackbody at one
minute before and after observing sky. Then, the radiometric calibration is performed
according to the function described by [25] as follows:

Nv = Re
{

Cs
v − CA

v
CH

v − CA
v

}(
B̂H

v − B̂A
v

)
+ B̂A

v (1)

B(v, T) =
2hc2v3

ehcv/kT − 1
(2)

where Nv is the calibrated radiance at the wavenumber of v. Cv and B̂v are the observed
spectrum and Plank function radiance at the blackbody temperature (T), respectively. h, c,
and k are the Plank constant, the speed of light, and the Boltzmann constant, respectively.
The upper labels of A, H, and S denote ‘ambient’, ‘hot’, and ‘sky’, respectively. To obtain
the real quantity of the measured spectral data, all values used for radiometric calibration
use the real part of the complex [26–28].

3.2. Noise-Equivalent Spectral Radiance

The instrumental responsivity, which represents the conversion factor, can be deter-
mined as the inverse of the slope of the radiometric calibration from Equation (1) [28,29].

Rv =
CH

v − CA
v

B̂H
v − B̂A

v
(3)

Because all components of an FTIR spectrometer do not respond perfectly at all wavelengths,
the instrument’s interferometric response (Rv) varies with changes in wavelength.
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The noise-equivalent spectral radiance (NESR), which represents the precision of
each measurement, can be determined as the ratio between the standard deviation of the
spectrum of repeated measurements and the interferometric responsivity as follows:

NESR =

√
1
N ∑N

i=1

(
CRBB

v − CRBB
v

)2

Rv
(4)

where CRBB
v represents each individual measured spectrum of all measured spectra as

functions of wavenumber at a reference temperature of a blackbody (RBB). N refers to the
number of repeated measurements. Figure 3 shows the NESR, calculated from 30 repeated
measurements of a blackbody at 300 K, which is the typical atmospheric temperature near
the surface (or room condition). The NESR shows a sharp increase in noise driven by
influences of CO2 absorption (around667 cm−1) and water vapor (1400–1700 cm−1 and
3000–3500 cm−1) that exist in the interferometric path and the front optics.
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4. The Thermodynamic Profile Retrieval Algorithm
4.1. The Line-by-Line Radiative Transfer Model

The monochromatic downwelling radiance, measured at the bottom of the atmosphere
(BOA) in the thermal infrared region, is calculated based on contributions from atmospheric
layers extending from the ground to the top of the atmosphere. Each atmosphere layer,
divided into several sections, is assumed to be a plane-parallel atmosphere with uniform
characteristics, such as temperature, pressure, water vapor, and the mixing ratios of various
absorbing gases.

I↓v (µ) =
∫ ∞

0
B(Tz)

dγv(µ)

dz
dz (5)

where µ is the cosine of the solar zenith angle. γv is monochromatic transmittance. For a
specific wavenumber, the optical depth of each layer of the atmosphere can be calculated
using the Line-By-Line method by adding the contributions from neighboring absorption
lines. The optical depth (τv) at a given wavenumber for an atmospheric vertical optical
path (∆z) is

τv = ∆z ×
[
∑

i

{
∑

j
Sjif

(
v − v0

ji

)}
ni + σcont

v ncont

]
(6)
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where Sij denotes the intensity of the line (jth) of the species (ith). The f
(

v − v0
ji

)
term refers

to the spectral line-broadening effect centered at v0
ji. ni is the number density of the species

(ith). σcont
v ncont refers to the contribution of the continuum spectrum.

To simulate the atmospheric transfer process, we adopted the Radiative Transfer Model,
LBLDIS, which integrated the Line-By-Line Radiative Transfer Model (LBLRTM) [30,31] to
calculate the gas spectral optical depth and Discrete Ordinates Radiative Transfer (DIS-
ORT) [32,33] to consider the aerosol effect. In the progress of radiative transfer, the HIgh-
resolution Transmission molecular absorption database (HITRAN) 2012 [34], and Mlaw-
erTobinCloughKneizysDavies (MT_CKD) [35] are adopted for optical properties of trace
gases and water vapor continuum, respectively. The Voight profile was applied to consider
for spectral absorption line broadening [36].

4.2. Optimal Estimation Retreival

To retrieve the thermodynamic profile, we apply the physical retrieval algorithm based
on the optical estimation method (OEM) [37], which was developed by [21] and has origins
in the tropospheric optimal estimation retrieval (TROPoe) algorithm [38] (for the detailed
algorithm and performance, refer to [21,38]).

The OEM relies on the Levenberg–Marquardt approach, which provides efficient
retrieval of thermodynamic profiles. This optimized method, which uses gradient descent
along with the Gauss–Newton methods, iteratively determines the best solution for the non-
linear problem. The thermodynamic profiles (iteratively state vector, Xn+1) are determined
as follows:

Xn+1 = Xn +
[
(1 + γ)S−1

a + KT
nS−1

ϵ Kn

]−1[
KT

nS−1
ϵ (Y − F(Xn))− S−1

a (Xn − Xa)
]

(7)

Here, the a priori of state vector (Xa) and the covariance matrix (Sa) are adopted from
the atmospheric composition data of the whole atmosphere community climate model
(WACCM) [39]. F(X) represents the radiance spectrum simulated by LBLDIS. Kn is the
Jacobian matrix. The standard deviation of the calibrated radiance spectrum is used to
calculate the observation error covariance (Sϵ). The optimized solution minimizes the
discrepancy function, named the cost function (c) given by:

c = (Y − F(x))TS−1
ϵ (Y − F(X)) + (Xa − X)TS−1

a (Xa − X) (8)

The Levenberg Parameter (LP), denoted as γ, acts as a damping factor, Imposing
variable weights between the observation and the solution from the preceding iteration
step. For high LP values, prior information is given greater weight than observations,
while for low LP values, observations are emphasized. The value of LP is determined in
each iteration based on the ratio of each step of the cost functions (R), which is calculated
as follows:

R = (cn − cn+1)/(cn − cn+1,FC) (9)

The calculation of cn+1,FC is based on the assumption of F(Xn+1) = F(Xn) + KndXn+1. The
iteration is deemed converged when R falls below 0.25, at which point LP is halved to give
more weight to the observations. If R lies between 0.25 and 0.75, LP remains unchanged.
However, if R exceeds 0.75, LP is increased tenfold. Convergence at each iteration is
determined by: (

Xn − Xn+1
)T

S−1
(

Xn − Xn+1
)
< N (10)

N and S are the dimensions of the state vector and the posterior error covariance matrix,
respectively. S is determined as:

S =
(
γS−1

a + KT
nS−1

ϵ Kn

)−1(
γ2S−1

a + KT
nS−1

ϵ Kn

)(
γS−1

a + KT
nS−1

ϵ Kn

)−1
(11)



Remote Sens. 2024, 16, 1136 8 of 19

Convergence is declared based on the difference in state vectors between the current and
previous iteration steps. This algorithm is applied to discrete continuous spectral bands, as
presented in Table 2.

Table 2. Spectral bands utilized for temperature and the water vapor mixing ratio in the retrieval algorithm.

Temperature Water Vapor Mixing Ratio

612.0–618.0 cm−1

624.0–660.0 cm−1

674.0–713.0 cm−1
1250.0–1350.0 cm−1

5. Results

The experiments were carried out at the Kyungpook National University (Daegu,
Republic of Korea; 35.9◦N, 128.6◦E), using a FTIR observation system for atmospheric
observation. Before starting the observation, we sufficiently lowered the temperature
of the MCT detector by cooling with LN2. After that, we were able to secure stabilized
measurement signals by checking the alignment in real time.

The downwelling atmospheric radiance and the blackbody emitted source (measured
by FTIR) are expressed as interference spectra for all wavelengths. Figure 4 shows an
example of a short double-sided interferogram measured for an ambient blackbody at
304 K, which shows the commonly named zero path difference (ZPD), i.e., where maxi-
mum interference occurs due to the moving mirror in the instrument. The interferogram
produced at the ZPD point serves as a reference point for phase correction, since the entire
spectral range of the light source produces an ideal interference pattern at this location [40].
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cially due to the CO2 Q-branch effect. In this way, if the measurement system is not com-
pletely purged, the influence of trace gases present inside may be included in the interfer-
ogram and radiance spectrum. However, this inevitable influence of CO2 has li le effect 
because it is not included in the thermodynamic profile retrieval band (Table 2).  

Figure 4. The short, double-sided asymmetric interferogram measure for an ambient blackbody
at a temperature of 304 K. The entire interferogram is expressed as a single-sided asymmetric
interferogram, as shown in Figure S2.

The interferometric spectrum can be expressed as a function of wavelength in terms of
signal intensity using the fast-Fourier transform (FFT). Figure 5 shows the FFT converted
measured intensity of the sky view, the hot black body, and the ambient black body from 500
to 4000 cm−1 at 0300 UTC on 18 July 2018 (Local Time = UTC + 9 h). The observations have
clearly revealed significant features, including the difference in intensity magnitude due to
temperature variations between ‘hot’ and ‘ambient’ blackbody conditions. Additionally, the
atmospheric spectrum fluctuates highly across different wavelengths. Unlike the purged
interior of the instrument, the irregular non-smooth spectral shapes at wavelengths of
around 667 cm−1, 1400–1700 cm−1, and 3000–3500 cm−1 are due to the presence of CO2
and H2O in the optical path at the front optics.
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However, the instrument intensity spectrum, expressed in terms of machine unit
intensity, does not allow precise delineation of the atmospheric radiation signal targeted
for analysis. Therefore, an atmospheric downwelling radiance spectrum could be obtained
by conducting a radiometric calibration using Equation 1, as shown in Figure 6. The clear
sky condition is insured by the communication, oceanography, and meteorology satel-
lite (COMS) meteorological imager (MI) infrared 1 channel (IR1; 10.8 µm) observations
(Figure 7). This 10.8 µm channel measures infrared radiation emitted from the top of cloud
and the Earth’s surface. Consequently, clouds exhibit a cooler brightness temperature,
whereas clear skies display a warmer temperature. The edge curvature of the radiometric
calibrated spectrum follows the Planck function of the ambient blackbody temperature
between 500 and 4000 cm−1. The observed radiances above 1600 cm−1 are very small
in magnitude and are not utilized in this study. Generally, the spectrum of atmospheric
downwelling radiance in the infrared region is greatly influenced by atmospheric con-
ditions [16,18,20,21]. The spike feature that increases steeply between 650 and 700 cm−1

was caused by the emission of CO2 present in the optical path at the higher temperature,
especially due to the CO2 Q-branch effect. In this way, if the measurement system is not
completely purged, the influence of trace gases present inside may be included in the
interferogram and radiance spectrum. However, this inevitable influence of CO2 has little
effect because it is not included in the thermodynamic profile retrieval band (Table 2).
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Figure 6. The radiometric calibrated sky downwelling radiance spectrum (black) and Plank function
at hot (red) and ambient (blue) blackbody temperatures.

We performed a thermodynamic profile retrieval algorithm using the radiance spec-
trum generated for clear sky conditions at 0300 UTC on 18 July 2018. Figure 8 shows
the changes in the fitting residuals which represent the difference between observations
and simulation results for temperature and the water vapor mixing ratio band during the
iterative execution of the retrieval algorithm. As spectral fitting was repeated to find an
optimal solution, the difference between observed radiance and calculated radiance from
the Radiative Transfer Model is decreased, and the Root Mean Square Error (RMSE) of
radiance within the fitting spectral region decreases from 3.781 to 0.604 mWm−2sr−1cm.

To investigate the impact of trace gases on the performance of radiance and thermody-
namic profile retrieval performance, we generated synthetic radiance using the RTM by
adopting thermodynamic profiles from in situ radiosonde data. We performed sensitivity
tests for the concentrations of three representative trace gases, CO2, N2O and CH4, for
which strong absorption lines exist in the infrared regions. The prior gas concentrations are
410 ppm, 330 ppb, and 1860 ppb, respectively, which are the global average mixing ratios.

Figure 9 shows the change in the radiance spectrum as the concentration of each gas is
varied by −1%, +1%, 5%, and 10%. The differences in radiance at ±1% tests are considered
negligible. The maximum difference radiance at +10% test is approximately 0.5 radiance
unit (RU) for CO2. This difference is small (within 1 RU) compared to the actual radiance,
which ranges from 160 to 165 RU. The range of differences for N2O and CH4 is similar to
the results of the CO2 sensitivity test. However, the radiances between 1250 and 1350 cm−1

are low at 40–60 RU, so the relative difference is larger than that between 600 and 720 cm−1.
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Figure 7. The brightness temperature of communication, oceanography, and meteorology satellite
(COMS) meteorological imager (MI) infrared 1 channel (IR1; 10.8 µm) at 0300 UTC on 18 July 2018.

Figure 10 shows the impact of varying the concentration of each trace gas from −1%
to +10% thermodynamic profile retrieval. The differences in temperature and water vapor
derived from ±1% errors are very small. The maximum difference from 10% concentration
uncertainty in temperature is approximately 0.25 K and the water vapor mixing ratio is ap-
proximately 0.5 g/kg, respectively. In case of N2O and CH4, the differences in temperature,
which is approximately 0.9 K, are larger than results from CO2. However, the maximum
differences in water vapor are similar with CO2 even though the shapes are all distinct
between different trace gases. These results indicate that the impact of the concentration
of each trace gas on the retrieval of thermodynamic structures is minor. In particular, the
effect on temperature below the atmospheric boundary layer (below 1 km) is very small.
In actual atmospheric conditions, these trace gases do not vary dramatically, so that the
impact from uncertainty of trace gas concentrations can be considered small when prior
values are used appropriately.

Figure 11 shows the retrieved thermodynamic profile (temperature and the water
vapor mixing ratio) in the lower troposphere below 5 km. To evaluate the thermodynamic
profiles obtained from our compact FTIR observations, the retrieved results were compared
with those of the fifth-generation reanalysis database (ERA-5) of European Centre for
Medium-range Weather Forecasts (ECMWF) [41] and the National Centers for Environmen-
tal Prediction Final analysis (NCEP FNL) data [42]. Since both reanalysis meteorological
fields are provided at 6 h intervals each day (00, 06, 12, and 18 UTC), the retrieved results
were compared accordingly. The ERA-5 data were compared with the 00 UTC analysis,
which is 3 h before the actual ground observation time. Meanwhile, the NCEP FNL data
were compared with the 03 UTC meteorological field, which is 3 h forecasted from 00 UTC.
The derived temperature and water vapor mixing ratio profiles show strong similarities to
those from ERA-5 and NCEP FNL, show small differences above 2 km. Notably, the derived
surface temperature (33.4 ◦C) is higher than that of ERA-5 three hours earlier (31.3 ◦C), and
closer to the NCEP FNL (34.3 ◦C) and the surface temperature from the automated synoptic
observing system (ASOS) site of Korea meteorological administration (KMA) (34.1 ◦C),
approximately 4.5 km away from the observation site.
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Figure 10. The changes in the retrieved thermodynamic profiles with different concentration of each
trace gas, (a,b) are for CO2, (d,e) are for N2O, and (c,f) are for CH4, respectively. Each color represents
different concentrations (red: −1%, green: +1%, blue: +5%, and magenta red: −1%, green: +1%, blue:
+5%, and magenta: +10%).

This suggests a capture of atmospheric changes due to heating by solar radiation.
Particularly, the difference below 2 km with ERA-5 indicates that the downwelling emitted
radiance spectrum observed by ground-based FTIR effectively reflects changes in the
vertical temperature structure of the lower troposphere. The water vapor mixing ratio
profile also shows a very similar feature in vertical distribution and magnitude across the
overall altitude. In the lower troposphere, the differences between the three datasets are
less than 2 g/kg. These results prove the positive potential for retrieving thermodynamic
profiles through a compact ground-based FTIR measurement system and demonstrate the
effective performance of the retrieval algorithm.
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Figure 11. Comparison between the retrieved temperature (left) and the water vapor mixing ratio
(right) with NCEP NFL and ECMWF ERA-5 at 0300 UTC on 18 July 2018.

Since our semi-portable compact FTIR measurement system does not have a rain detec-
tion sensor and is manually observed by human labor, the algorithm is designed to operate
only under clear sky conditions. Nevertheless, we investigated whether radiance spectrum
observations were possible on cloudy days. Figure 12 show the measured radiometric
calibrated radiance spectrum for cloudy sky. The observed spectrum shows a significant
difference in radiative intensity compared to the simulated spectrum, which assumed clear
sky conditions without aerosols and clouds, using NCEP FNL thermodynamic profiles.
This difference was predominantly revealed in the spectral range from 700 to 1300 cm−1.
This discrepancy is attributed to the influence of clouds. As the clouds become thicker
and closer to the surface, the observed radiance spectrum increasingly resembles that of
a blackbody. At this time, ASOS recorded a total cloud cover of 30% and the cloud type
was Altocumulus (Ac). Additionally, the presence of clouds over the observation site
was confirmed in the COMS/MI satellite image. The successful observation of the down-
ward emission radiance spectrum of a cloudy sky suggests that continuous observations,
including the effects of clouds, might be feasible in the future.
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Figure 12. (a) The observed radiance spectrum of a cloudy sky at 0300 UTC on 29 November 2018
(black) compared to the radiance spectrum simulated by the RTM, which assumes clear sky conditions
(orange). (b) The brightness temperature of COMS/MI IR 1 channel at the same time. It can be
noticed that clouds exist over the observation site.

6. Discussion

The hyperspectral downwelling emitted radiance is measured using a compact FTIR
system configured to real-time radiometric calibration. In this study, the compact FTIR
system shows well characterize the downwelling emitted radiance spectrum under both
clear and cloudy sky conditions.

However, there are several points that need to be considered when the observation
system starts to operate. If the temperature of the MCT detector is not cooled sufficiently
or the alignment is not stabilized, the observed interferogram and the radiance spectrum
will provide incorrect information. The use of equipment equipped with cryocooling
components can minimize the hassle associated with the use of LN2. Additionally, it is
necessary to replace periodically the laser source due to aging and desiccants to remove
moisture from inside the equipment. After opening the outer casing of the equipment, it
should be completely purged using nitrogen gas to minimize the residual effects of CO2
and H2O.
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The thermodynamic vertical structure of the atmosphere is then estimated using an
OEM-based algorithm that uses observed radiance and simulated radiance using the RTM.
Consequently, the performance of the retrieval algorithm is sensitive to the intensity of
the radiance spectrum as a function of wavenumber, which is simulated by the RTM and
takes into account various atmospheric conditions (such as thermodynamic and trace gas
profiles) as well as the instrument measurement performance. Because uncertainties from
CO2 line mixing and water vapor continuum absorption used in the RTM are still existing,
the accuracy can be improved through continuous efforts about better understanding in
radiative transfer equation and optical properties of atmospheric compositions including
absorption lines of O3, as well as the greenhouse gases CO2 and CH4. As shown in the O3
channel spectrum shown in Figure S3, it will be possible to improve the algorithm in the
future to simultaneously consider and derive information from these trace gases.

As noted above, the presence of clouds in the atmosphere alters the feature of the
radiance spectrum. Unlike the thick clouds shown in Figure 12, which exhibit a significant
increase in overall radiance intensity (approaching the blackbody spectrum) compared to
clear sky conditions, fractional clouds or cirrus clouds are semi-transparent. This semi-
transparency can lead to misidentification, confusing these clouds with conditions of low
aerosol optical depth or attributing their effects to atmospheric vertical structures due to
water vapor, especially under clear sky conditions. This confusion arises because these
clouds have thin optical thickness and emit less energy. Therefore, additional filters or
observations are required to distinguish the influence of clouds within the continuous
observations. It can be possible to identify and separate signals that are affected by the
presence of thin, high altitude cirrus or fractional clouds using cloud information (cloud
cover or cloud type) from high-resolution satellites or a ground-based Total Sky Imager
(TSI) system.

7. Summary and Conclusions

In this study, we built a compact FTIR system in which the MCT detector is cooled
using LN2 and real-time radiometric calibration can be applied using two blackbodies, and
the downwelling atmospheric radiance was successfully measured for both clear and cloudy
skies. The observed spectrum of the sky reflected the characteristics of the atmosphere and
was similar to the spectrum simulated by the RTM, demonstrating the reliable performance
of the observation. In addition, the lower troposphere thermodynamic profile obtained
using the OEM-based algorithm agreed well with ERA-5 and NCEP FNL data as well as
the ASOS surface. Therefore, these results demonstrate the potential of monitoring the
thermodynamic profile of the lower troposphere using the compact observation system
that we have built. In conclusion, our proposed compact, low-cost FTIR system offers
significant cost benefits compared to traditional high-cost instruments. Despite some
limitations, such as the need for manual operation and lower accuracy, its portability and
real-time observation performance make it a valuable tool for specific applications and field
campaigns. This system represents a promising approach for atmospheric observations,
especially in scenarios where cost and mobility are critical considerations.

In this study, we used a limited sample of observations to configure an instrument
for atmospheric observations and evaluate the applicability of the thermodynamic profile
retrieval algorithm in the infrared region. Future work will therefore involve conduct-
ing continuous observations and analyzing the variation of the vertical structure of the
atmosphere. Through long-term observation, we will be able to check whether systematic
drift occurs in the equipment and perform statistical analysis on the accuracy and error
characteristics of the results to improve the retrieval algorithm based on this. Identification
of the continuous thermal vertical structure of the lower troposphere using compact FTIR
can contribute to very short-term forecasting through data assimilation into NWP models
in the future.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16071136/s1, Figure S1: Compact FTIR observation environment and
details of equipment configuration. Figure S2: The single-sided asymmetric interferogram measure
for an ambient blackbody at a temperature of 304 K. Figure S3: The observed radiance spectrum at
0300 UTC on 18 July, 2018 (black) compared to the radiance spectrum simulated by the RTM (orange)
from 1000 to 1100 cm−1. The absorption effect by ozone is clearly revealed in the observed spectrum.
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Abbreviations

AERI Atmospheric Emitted Radiance Interferometer
ARM Atmospheric Radiation Measurement
ASOS Automated Synoptic Observing System
BOA Bottom Of the Atmosphere
COMS Communication, Oceanography, and Meteorology Satellite
CRIS CRoss-track Infrared Sounder
DISORT Discrete Ordinates Radiative Transfer
ECMWF European Centre for Medium-RangeWeather Forecasts
ERA-5 ECMWF Reanalysis version 5
FFT Fast Fourier Transform
FTIR Fourier Transfer Infrared
GOS Global Observing System
HITRAN HIgh-Resolution Transmission molecular absorption database
IASI Infrared Atmospheric Sounding Interferometer
KMA Korea Meteorological Administration
KNU Kyungpook National University
LBLRTM Line-By-Line Radiative Transfer Model
LN2 Liquid nitrogen
LP Levenberg Parameter
MCT Mercury–Cadmium–Telluride
METOP METeorological OPerational
MI Meteorological Imager
MT_CKD MlawerTobinCloughKneizysDavies
MWR Microwave Radiometer
NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Prediction
NESR Noise-Equivalent Spectral Radiance
NOAA National Oceanic and Atmospheric Administration
NRC National Research Council
NPP National Polar-orbiting Partnership
NWP Numerical Weather Prediction
OEM Optimal Estimation Method
PBL Planetary Boundary Layer
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PID Proportional Integral Differential
RMSE Root Mean Square Error
RU Radiance Units
RTM Radiative Transfer Model
TROPoe Tropospheric Optimal Estimation Retrieval Algorithm
WACCM Whole Atmosphere Community Climate Model
WMO World Meteorological Organization
ZPD Zero Path Difference
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