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Abstract: The mapping and dynamic monitoring of large-scale cropland erosion rates are critical for
agricultural planning but extremely challenging. In this study, using field investigation data collected
from 20,155 land parcels in 2817 sample units in the National Soil Erosion Survey, as well as land use
change data for two decades from the National Land Use/Cover Database of China (NLUD-C), we
proposed a new point-to-surface approach to quantitatively assess long-term cropland erosion based
on the CSLE model and non-homologous data voting. The results show that cropland in Yunnan
suffers from serious problems, with an unsustainable mean soil erosion rate of 40.47 t/(ha·a) and an
erosion ratio of 70.11%, which are significantly higher than those of other land types. Engineering
control measures (ECMS) have a profound impact on reducing soil erosion; the soil erosion rates of
cropland with and without ECMs differ more than five-fold. Over the past two decades, the cropland
area in Yunnan has continued to decrease, with a net reduction of 7461.83 km2 and a ratio of −10.55%,
causing a corresponding 0.32 × 108 t (12.12%) reduction in cropland soil loss. We also quantified the
impact of different LUCC scenarios on cropland erosion, and extraordinarily high variability was
found in soil loss in different basins and periods. Conversion from cropland to forest contributes the
most to cropland erosion reduction, while conversion from grassland to cropland contributes 56.18%
of the increase in soil erosion. Considering the current speed of cropland regulation, it is the sharp
reduction in land area that leads to cropland erosion reduction rather than treatments. The choice
between the Grain for Green Policy and Cropland Protecting Strategy in mountainous areas should
be made carefully, with understanding and collaboration between different roles.

Keywords: sampling survey; CSLE; land use change; non-homologous data voting; cropland erosion
rate
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1. Introduction

Soil, one of Earth’s most precious and threatened resources [1], provides humans
with far more than food, but also a large variety of services such as biomass production,
water filtration, nutrient transformation, carbon storage and habitat and terrestrial bio-
diversity maintenance [2,3]. However, most soil resources worldwide are in poor health,
and accelerated soil erosion induced by inappropriate human activities and related land
use changes are the primary drivers behind the problem [4,5]. Soil erosion refers to the
complex process of soil material detachment, transportation, and deposition by external
erosive forces. It has the on-farm impacts of reduced soil fertility and productivity [6,7], and
also leads to greater off-site costs such as those related to muddy flooding, sedimentation
and water pollution [8,9], threatening global biogeochemical cycles [10,11]. Theoretical
and runoff plot observations have demonstrated that cropland is the main source of soil
loss [5,12,13], where the soil erosion rates can be orders of magnitude greater than the speed
of natural soil formation as well as the rates on other land use types [13,14], especially
in mountainous areas. It is estimated that about 80% of the agricultural land around the
world is suffering from serious erosion problems, with an unsustainable mean annual
cropland erosion rate of about 30 t/(ha·a). Consequently, more than one-third of cropland
has vanished in the last few decades due to soil erosion [15,16]. To monitor and assess the
impacts of soil erosion and develop strategies to deal with them, the mapping of up-to-date
quantitative information on cropland erosion rates at the regional scale is essential, but
also very challenging [17,18], since for most areas worldwide the observed erosion data are
woefully inadequate.

On the one hand, it is difficult to gain insights into the spatial patterns of soil erosion
without information on specific soil erosion rates and hotspots; confusion arises in the
allocation of soil erosion mitigation programs and priorities, the formulation of policies and
evaluations of the effectiveness of soil conservation measures [19]. Besides this, knowledge
gaps are generated in critical fields like climate change, landslide and flood prediction,
carbon mitigation scenarios and earth science modeling, and the well-known polices of
SDGs, CAP, UNCCD and IPBES have not been addressed [20]. Despite this, soil erosion
modeling and prediction have received considerable attention from governments and
scientists for more than seven decades [21,22], with various empirical, conceptual and
physically based models and approaches developed to measure, estimate and monitor
soil erosion from the field to the landscape scale [23–26]. Yet, most models are only
applicable to micro-scales, such as field plots, hillslopes and small catchments, and are
difficult to apply to large scales due to the spatial heterogeneity of the factors affecting soil
erosion [27,28], as well as scale issues [29], model limitations and applicability [27,29,30],
and the high demands of models for input data [20,31]. Most empirical soil erosion models
are based on the scales of plots and hillslopes, with specific applicable conditions and
scopes [29]. For example, the most widely applied soil erosion prediction models, of the
USLE type, were originally developed at the plot scale for agricultural lands (gradients
less than 18%), based on the “unit plot concept” of a 22.1 m long and 1.83 m wide plot,
with a 9% slope and up- and downhill tillage [20]. The major limitation of soil erosion
modeling for any given area is that the microscopic processes involved are less closely
considered, and it is difficult to acquire up-to-date soil erosion information such as that
regarding crop rotation, terracing, mulching, contouring and hedgerow planting at large
scales, especially in fragmented mountainous landscapes. When upscaling the models to
large scales, the input variables or parameters of the models are simplified for the sake of
generalization, and huge uncertainties may thus lead to extrapolation errors, meaning the
reliability of the results is often questioned [20,29]. Currently, the contradiction between
the relatively low resolution of available input data and the high resolution required for
runoff–erosion processes is a major obstacle to overcome in the context of the large-scale
dynamic quantification of soil erosion [29]. For mountainous areas, poor data availability,
timeliness and data quality have been the biggest obstacles when mapping and visualizing
soil erosion rates at large scales [31].



Remote Sens. 2024, 16, 977 3 of 26

To date, limited by the over-parameterization of physical models and the poor quality
of the datasets available, large-scale soil erosion assessment methods are generally based on
empirical models, and can be divided into the two categories of sampling surveys and re-
mote sensing assessments [19,32,33]. (a) Sampling survey is a method of allocating samples
within a region according to certain proportions and rules. Field investigations on erosion
features and parameters are then conducted, after which soil erosion models can be further
applied to quantify soil erosion rates or conditions, and statistical methods can then be
used to estimate the overall soil erosion patterns of the region. The typical examples are the
National Resource Inventory (NRI), conducted in the United States [34], the National Soil
Erosion Survey in China [35], the EUSEDcollab network [36] and gully erosion monitoring
based on the Land Use/Cover Area frame survey in Europe [36]. (b) Another category is
remote sensing-based assessments using simplified models. Since the large-scale applica-
tion of complex models is challenging, as the availability of high-resolution remote sensing
images increases, large-scale estimation using empirical models such as USLE/RUSLE is
becoming feasible due to the relatively simple nature of the input data [20]. Compared with
field investigations, satellite remote sensing is characterized by the acquisition of timely,
affordable data that are uniform over large areas, the capacity for real-time information
acquisition and the use of a regular revisit wide-view field, and it has been widely applied
in soil erosion modeling and mapping [37,38]. In particular, efforts have been made to-
wards direct soil erosion detection [37,39], as well as the estimation of parameters of rainfall
erosivity [40,41], soil-related property derivation [42], topographic factors extraction [43],
cover management (C-factor) and support practices (P-factor) [44–47], the mapping of
specific soil conservation measures using high-resolution images [48–50] and large-scale
soil erosion assessments with raster layer operations [51,52]. The biggest advantage of the
sampling survey approach is that it provides reliable soil erosion rates, and large-scale
spatial patterns of soil erosion status can be derived by combination with statistical prin-
ciples [53–55], but the field measurement and investigation of indices are labor-intensive
and costly processes. Remote sensing-based methods allow for rapid and efficient soil
erosion assessment even in areas where intensive field investigation is a challenge, but in a
more qualitative or semi-quantitative way. Although high-resolution imagery like SPOT 5,
IKONOS and QuickBird impart high-quality data in erosion mapping, their utility remains
hindered as large-area imagery is also unattainable for most countries [37].

Previous studies [56–59] have confirmed that land use/cover change (LUCC) is the
primary cause of accelerated soil erosion under climate change scenarios, and is the most
direct and informative reflection of the interaction between human activities and the soils on
the Earth’s surface [60]. For most cases, the key to prevent soil erosion is to change various
unreasonable land uses to a sustainable mode in line with the principles of sustainable
development, such as returning farmland to forest/grassland and converting slopes into
terraces in China. Meanwhile, compared with the inversion of soil erosion indices, the use
of remote sensing in LUCC monitoring is the field with the most complete and mature
technology. At large scales, by integrating the most commonly used Landsat series data
imagery, relevant studies [61,62] have also revealed the long-term impacts of land use
changes on soil erosion, and provide the information necessary for assessing soil erosion
intensity. However, due to the lack of field-based soil erosion data, the dynamic results of
estimation generally regard potential soil erosion risks without exact dynamic soil erosion
rates. Obviously, more detailed field experiment-derived data that accurately quantify soil
erosion rates are needed.

In 2010 through 2012, the Ministry of Water Resources of China (MWRC) conducted
the first ever field-based National Soil Erosion Survey (NSES) in history, using a sampling
survey and the Chinese Soil Loss Equation (CSLE) [33,63,64]. These detailed onsite in-
vestigations have provided abundant information on soil erosion rates at the land parcel
scale, thus reducing the uncertainties in soil erosion modeling and prediction [65]. Soil
erosion is a dynamic process that demands constant monitoring in order to derive up-
to-date information on its spatial pattern [37]. The combination of the advantages that
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can be derived from a combination of sampling surveys and remote sensing is the most
feasible solution to large-scale soil erosion rate quantification. The objective of this paper
is thus to quantitatively assess the cropland soil erosion dynamics induced by long-term
cropland changes in mountainous areas, approached from the perspectives of soil erosion
field investigations and LUCC scenarios based on time series satellite images.

2. Materials and Methods
2.1. Study Area

Yunnan Plateau (20◦8′–29◦16′N, 97◦31′–106◦12′E) is a low-latitude highland region sit-
uated in the southwest border region of China. It covers a total area of about 3.83 × 105 km2,
and borders the Himalayan Range, Myanmar, Laos and Vietnam (Figure 1). Mostly moun-
tainous in character, 94% of the province is dominated by mountains and plateaus, only
6% of which comprises small interspersed scattered valley basins. The landscape tilts
downward from the northwest to the southeast, and the elevation ranges from 76 m to
6740 m above sea level, with an average altitude of 2000 m [65].
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Figure 1. Map of Yunnan Province showing the six major rivers, basins and cities, and the eleva-
tion variation.

Affected by the Indian and East Asian monsoons and air masses from the Qinghai–
Tibet Plateau, the region has a subtropical plateau monsoon climate with substantial
variations, though it is relatively mild due to the elevation. The mean annual precipitation
varies from 600 in dry–hot valleys to 2300 mm in the southern and western mountains, with
over half of the rain occurring between June and August, while the dry season (November
to April of the following year) accounts for only 20% or less of the 1100 mm annual
precipitation. The annual average temperatures in the winter and summer are 6–8 ◦C and
19–22 ◦C, respectively [66,67]. Soils in Yunnan are generally rich in clay and formed under
conditions of high precipitation and temperature, and include Acrisols, Cambisols and
Luvisols. It is particularly worth mentioning that Yunnan has long been recognized as
a hotspot for biodiversity in China. Taking vegetation resources as an example, tropical,
seasonal, subtropical evergreen broad-leaved, temperate coniferous forests and meadow
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steppes can all be found in the region [68]. The landscape is dissected by the six major
rivers of the Irrawaddy, Nu (Salween), Lancang (upper reach of the Mekong), Jinsha (upper
reach of the Yangtze), Honghe and Pearl. The province also features the largest sloping
cropland area in China, as the limited basin areas have already been fully utilized, meaning
that the soil erosion pressure on the remaining land resources is extremely high.

2.2. Data Sources
2.2.1. Sampling Survey and Primary Sample Units (PSUs)

The sampling survey in the NSES was conducted using a non-equal probability
sampling method (Figure 2a). In view of the dominant erosive force of soil loss and the
integrity of county boundaries, the whole country was firstly divided into a water erosion
region, a wind erosion region, a freeze–thaw erosion region and regions showing the
co-occurrence of erosion types (Figure 2b).
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Figure 2. (a) A spatial representation of the sampling design and grid division scheme; (b) soil
and water conservation regionalization map of China based on erosive forces; (c) Primary Sample
Units (PSUs) allocated in Yunnan Province in the National Soil Erosion Survey (NSES) in China;
(d) distribution of corresponding PSUs with different sampling densities and investigation goals in
the NSES.

Generally, uniform national gridding was employed for water erosion, which has the
greatest implications. Four layers of grids were set with different grid sizes, including
the county level (40 km × 40 km), the township level (10 km × 10 km), the control area
level (5 km × 5 km) and the Primary Sample Units (1 km × 1 km). The grids were divided
according to the Gauss–Krüger Projection zoning method, which divides the country into
3◦-interval geographical zones (a total of 22 zones). In each zone, in the Y-axis direction,
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grids were divided on both sides based on the central meridian, and in the X-axis direction,
grids were divided on both sides based on the equator. PSUs for water erosion were
allocated, with four sampling densities of 4%, 1%, 0.25% and 0.0625% [32,33]. For the plain
area, the PSU was a single 1 km × 1 km grid, while for the mountainous area, the PSU was
a small watershed of 0.2–3.0 km2. The PSU here was a small geographical area with a fixed
location and area that could express the basic characteristics of soil erosion and show spatial
heterogeneity in soil erosion factors (especially soil conservation measures). For areas with
glaciers, permanent snowfields, deserts, swamps, large lakes and reservoirs where no water
erosion occurs, at high altitudes exceeding 4800 m (thus with lower human activities), water
erosion was generally less notable [33,69]. Based on the erosion characteristics, human
disturbance and accessibility of each province, a total of 33,966 PSUs were determined
nationwide in the NSES (Figure 2d). Different from the NRI, in China, the NSES is actually
an area-sampling survey rather than a point-sampling survey [63].

PSUs were the main focus of the field investigation and data collection in the NSES.
Each PSU was then divided into pieces of land defined as a land parcel that share the
same land types and conservation measures. The data gatherers were then trained to
investigate each land parcel and collect information concerning the soil erosion factors of
the CSLE, with uniform standards. Specifically, by using high-precision topographic maps
as field survey base maps, detailed information regarding land parcel number, fraction
vegetation coverage, canopy density, land use, vegetation type, engineering measures and
crop rotation patterns was acquired. As it suffers from a serious water erosion problem,
Yunnan drew a lot of attention in the NSES, and the numbers of both PSUs and land parcels
selected were the largest among all provinces in China, at 2817 and 20,155, respectively
(Figure 2c). All these field-derived data were provided by Beijing Normal University (the
technical support unit of the NSES) [32,69].

In addition to the data derived from field investigations, critical data involved in
calculating the annual average soil erosion rates were obtained nationwide as follows:
(a) daily erosive rainfall (greater than 12 mm) data for three decades; (b) digital DEMs of
1:10,000 scale for each PSU to extract slope gradient and length; (c) more than 10,000 records
of soil profile data and soil types at 1:500,000 scale retrieved from the Second National
Soil Survey, and observed unit plot and cropland plot data; (d) time series multi-spectral
reflectance data of Sentinel-2, Landsat TM/ETM/OLI images prepared to revise vegetation
indices from 2000 to 2020; and (e) high-resolution satellite imagery for Yunnan, comprising
GF-1 (2 m), GF-2 (1 m) and GF-7 (0.8 m) images and Beijing-2 (resolution of 0.65 m) at
different periods, to optimize the land use map.

After standardizing the data processing, with each PSU containing 7 raster layers
(spatial resolution of 10 m) of soil erosion factors in the CSLE model, the soil erosion
modulus was then computed using the raster multiplication operation and statistical
methods, and soil loss for each land use type was finally evaluated at the land parcel,
PSU, province and national levels. Figure 3 presents the official procedure [32,33] for
calculating soil erosion modulus in PSUs using the CSLE model and detailed information
on a random PSU of a small watershed, and each land parcel within it. For this study, the
most critical data concerned the multi-year average soil erosion rates of various land use
parcels obtained based on field surveys, which were taken as the basis for comprehensive
analyses of soil erosion distribution, area, ratio and intensity.

2.2.2. Land Use/Cover Change (LUCC) Dynamics

Initialized in the latter half of the 1990s, the National Land Use/Cover Database of
China (NLUD-C) [70] has been applied to land use/cover-related research as the most
well-known LUCC database in China for decades. By drawing boundaries and labeling
attributes for each LUCC polygon based on Landsat TM/ETM/OLI images (resolution of
30 m), we have updated the database for several periods using the interactive interpretation
method. The NLUD-C includes datasets of land use status and LUCC dynamics of China
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with a 5-year interval, and land use types are here classified into 6 first-level categories and
25 corresponding second-level classes.
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Compared to the numerous LUCC products retrieved using automatic classification
and change detection methods, the biggest advantage of NLUD-C lies in its use of profes-
sional knowledge, its uniformly interpretable symbols and its unified image acquisition
phases before and after, which ensure the high accuracy of its information on land attributes.
Although the OA of the NLUD-C is significantly higher than those of other similar products,
distortion and inaccurate patch boundaries still occur in mountainous areas, since manual
geometric correction is performed in different periods. At present, remote sensing LUCC
data with a higher resolution may be a better choice for soil erosion modeling, as they
reduce model uncertainty, but are also characterized by the shortcomings of high image
acquisition costs and short time series. To optimize the accuracy of land use data, we
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employed NLUD-C as the main basis of the LUCC, supplemented by 7 publicly accessible
non-homogeneous LUCC datasets, comprising the three long-term 30 m resolution prod-
ucts of GLC_FCS30 [71], CLCD [72] and GlobeLand30 [73], as well as the four short-term
10 m resolution products of ESRI_LandCover [74], ESA_WorldCover [75], CRLC [76] and
Dynamic World from Google [77]. Detailed information on these land use datasets is listed
in Table 1. In this study, land use maps of Yunnan in 2000, 2005, 2010, 2015 and 2020 have
been prepared for further analysis.

Table 1. Details of the publicly accessible non-homogeneous LUCC datasets used.

Datasets Image Source Method Cover Resolution OA

NLUD-C Landsat TM/ETM Interactive
interpretation China 30 m >90%

GLC_FCS30 Landsat TM/ETM/OLI Random forest Global 30 m 82.5%

CLCD Landsat TM/ETM/OLI Supervisory
algorithm China 30 m 79.31%

GlobeLand30 Landsat/HJ-1/GF-1 POK method Global 30 m 85.72%
ESRI_LC Sentinel-2 Deep learning Global 10 m 85%
ESA_WC Sentinel-2 Random forest Global 10 m 75%

CRLC Sentinel-2 Deep learning China 10 m 84%
Dynamic

World Sentinel-2 Deep learning Global 10 m 72%

2.3. Methods
2.3.1. The CSLE Model

By adapting the parameters of the Universal Soil Loss Equation (USLE) to China, Liu
et al. [33] developed a CSLE model based on data measured on Chinese unit plots and
numerous plots modified to a unit plot. As the official model of the Ministry of Water
Resources of China (MWRC) for soil erosion assessment, the differences between the CSLE
and USLE regard modifications that elucidate crop systems, management, practices, soil
types, rainfall patterns and topography in China.

CSLE is a model used to estimate annual soil loss by sheet and rill water erosion
for a given combination of factors affecting soil erosion. The major advantage of CSLE
is that it more closely reflects the topographical conditions and the actual situation of
soil conservation measures in China, while the two factors of cover management and
support practices (C, P) set out in the USLE have been modified into three factors of
biological measures (B), engineering measures (E) and tillage measures (T) [64,78,79]. The
five dimensionless factors of slope length, slope gradient, biological measure, engineering
measure and tillage measure are used to modify the soil loss determined by the dimensional
rainfall erosivity factor and soil erodibility factor in this model.

The principal equation of CSLE can be expressed as follows:

A = R × K × L × S × B × E × T (1)

where A is the mean annual soil loss, with a unit of t/(hm2·a); R is the rainfall and runoff
factor or rainfall erosivity, MJ·mm/(hm2·h·a); K is the soil erodibility factor,
t·hm2·h/(MJ·hm2·mm); L is the slope length factor and S is the slope steepness factor;
B is the biological measure factor; E is the engineering measure factor; and T is the factor of
tillage measures. The B, E and T factors have a unitless range of 0–1, and the smaller the
value is, the better the soil conservation effect of the related measure.

The specific methods of calculation for factors R, K, L and S are described in detail
in our previous work [65,80,81] and in the related literature [69,82,83]. They can be listed
as follows:

R = ∑24
k=1 Rk (2)

Rk =
1
N ∑N

i=1 ∑m
j=0 (α · P1.7265

i,j,k ) (3)
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WRk =
Rk
R

(4)

where k represents the 12 months in a year, Rk is the average rainfall erosivity in the k-th
month (MJ·mm·ha−1·h−1·a−1), N refers to the time series, α takes a value of 0.3937 for the
warm season and 0.3101 for the cold season, Pi,j,k is the actual erosive rainfall (≥12 mm)
on the j-th day in the k-th month in the i-th year and m is the number of days with erosive
rainfall in the corresponding month. WRk is the ratio of average rainfall erosivity in the
k-th month to the average annual rainfall erosivity, which reflects the seasonal distribution
of rainfall erosivity.

K =
[
2.1 × 10−4M1.14(12 − OM) + 3.25(S − 2) + 2.5(P − 3)

]
/100 (5)

M = N1(100 − N2) (6)

M = N1(N3 + N4) (7)

where N1 (particle size: 0.002–0.1 mm) is the percentage of silt (0.002–0.05 mm) plus
very fine sand (0.05–0.1 mm), N2 (<0.002 mm) is the clay fraction, (100–N2) (0.002–2 mm)
represents all soil fractions other than clay, OM is the soil organic matter content (%), S is
the soil structure code and P is the soil permeability code.

S =


10.8 sin θ + 0.03 θ ≤ 5◦

16.8 sin θ − 0.50 5◦ < θ ≤ 10◦

21.9 sin θ − 0.96 θ > 10◦
(8)

Li =
(λm+1

out − λm−1
in )

[(λout − λin)× 22.13m]


m = 0.2 θ ≤ 1◦

m = 0.3 1◦ < θ ≤ 3◦

m = 0.4 3◦ < θ ≤ 5◦

m = 0.5 θ > 5◦
(9)

where Li is the slope length factor of the i-th pixel, λout and λin are the pixel exit and
entrance slope lengths and m is the slope length exponent depending on the slope.

FVC =
NDVImax − NDVIsoil
NDVIveg − NDVIsoil

(10)

B =
∑12

i=1 BiRi

∑12
i=1 Ri

(11)

Bi =


1 FVC = 0
0.6508 − 0.3436lgFVC × 100 0 < FVC ≤ 0.783
0 FVC > 0.783

(12)

where NDVImax refers to the regional maximum NDVI; NDVIveg is the NDVI value of
the pure vegetation pixels; NDVIsoil is the NDVI value of the pure bare soil pixels; Bi is
the B-factor of the i-th month. The relationship between the FVC and B values can be
determined using Equation (12). The ET factors in the CSLE are mainly collected from field
surveys, with reference to the corresponding values derived from runoff plot experiments
performed by local experts and an extensive literature review on the national level.

2.3.2. Non-Homogeneous Data Voting and LUCC Optimization

The rapid development of remote sensing technology provides a key technical ap-
proach to obtain comprehensive information on large-scale land use/cover distribution
and changes. In recent years, scientists worldwide have incorporated image processing
methods to interpret and analyze remote sensing images, and produced numerous LUCC
products with different spatial resolutions.

Our evaluation of the accuracy of datasets and extensive literature review demon-
strate that automatic image classification and change detection approaches can provide
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satisfactory results only when applied to certain land use types with homogeneous col-
ors and textures, such as water bodies, built-up land and bare rock [70]. Due to the
differences between satellite sensors, processing methods and classification systems, the
capacities of different LUCC products to describe Earth surface conditions are also dif-
ferent, especially in fragmented mountainous areas like Yunnan, affected by cloudy and
rainy weather, where high-quality image availability is hard to come by, making the dif-
ference even more significant. As a result, the reliability of data is often questioned. For
example, despite the 8 datasets we mentioned above sharing similar definitions of crop-
land, the cropland areas of Yunnan in 2020 provided by them are totally different. The
cropland areas of the 4 long time series 30 m datasets were 6.74 × 104 km2 for NLUD-C,
3.24 × 104 km2 for GLC_FCS30, 8.39 × 104 km2 for CLCD and 10.99 × 104 km2 for Glo-
beLand30, while the cropland areas of the 4 recent 10 m datasets were 3.58 × 104 km2 for
ESRI_LC, 5.09 × 104 km2 for ESA_WC, 9.77 × 104 km2 for CRLC and 2.50 × 104 km2 for
Dynamic World, respectively. For Yunnan, based on our field surveys, CLCD significantly
underestimates the impervious area, GLC_FCS30 generally underestimates the cropland
area, GlobeLand30 significantly overestimates the cropland area, ESRI_LC and Dynamic
World significantly overestimate the impervious area, CRLC misclassifies woodland into
cropland and ESA_WC misclassifies impervious area into bare land. Misclassification,
omissions and high degrees of confusion between grassland and shrub can be found in
almost all of the datasets. High-resolution datasets do not always provide more reliable
information, and significant differences can be found at the same resolution. Obviously,
the overall accuracy of global or national-scale LUCC datasets in local areas needs to be
verified, since the verification methods and reference data used by the datasets are different,
meaning that the independent accuracy assessments cannot be directly compared [84].
Therefore, a critical evaluation of the suitability and optimization of LULC products based
on application purposes should be performed before use.

For plateau mountain areas like Yunnan, long-term high-resolution (higher than
10 m) LUCC data have been inaccessible and impractical so far. Here, we employ
the non-homologous data voting method [85] to modify and optimize the NLUD-C
data. The concept of non-homogeneous data voting originates from pure pixels in
image classification. The basic idea is to determine the consistency of the classification
results of the same feature by multiple datasets through spatial overlay analysis on
the basis of a standardized and unified classification system. For pixels with high
consistency, the original classification results will continue to be used, and for pixels
with low consistency, reclassification and optimization will then be processed. Non-
homogeneous data voting can, to some extent, effectively solve the problem of the
broad representativeness and authenticity of sample data. Specifically, we select
geometrically fine time series-corrected Landsat images from October to February in
each year to ensure the uniformity of multiple phases. Based on NLUD-C, with clear
interpretation symbols and professional knowledge, non-homologous data voting was
then performed to analyze the classification consistency. For areas with a high degree
of consistency, we kept the first-level type to reduce uncertainty, while for areas with
a high degree of confusion, especially for basin valleys and urban peripheral areas
with frequent human activities and dramatic changes, high-resolution remote sensing
images were used to assist in the precise visual interpretation. Finally, the time series
LUCC data obtained combined the advantages of multiple datasets and avoided the
respective shortcomings. Figure 4 presents the workflow of the non-homologous data
voting method used for modifying the LUCC data, and Figure 5 shows our revised
NLUD-C results for a typical inter-mountain basin. Using high-resolution remote
sensing images, we also compared them to three other time series land use products
for different underlying surfaces.
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3. Results
3.1. Soil Erosion Pattern of Yunnan Based on Sampling Survey and Field Investigation
3.1.1. Investigated Land Parcel Basics of Yunnan in the NSES

According to the sampling survey, a total of 20,155 land parcels in 2817 PSUs were
investigated on site in Yunnan. The average area of the PSUs was 34.83 ha, and the average
patch area of the land parcels was 4.79 ha, which is consistent with the model requirements.
The measured mean slope gradient for all the land patches was 20.23◦, with a range of
0–82.8◦, while the mean slope length was 47.73 m with a range of 0–233.9. The average
soil erosion rate of all the land use parcels was 17.02 t/(ha·a). Table 2 lists the basic
information on the land parcels of the first-level NLUD-C types. Obviously, in terms of
spatial distribution, woodland showed the largest average patch area and number (a total
of 10015 land parcels), and was the dominant land use mode in the landscape. The average
patch area of cropland was 2.77 ha, and the average slope reached 17.88◦, making it very
prone to soil erosion.

Table 2. Land parcel basic information for the PSUs in Yunnan in the National Soil Erosion Survey.

First-Level
Types

NP
APA

Max-
PA

Min-
PA ASG ASL SEM SEM

RangeNumber %

Cropland 6714 33.31 2.77 81.92 0.02 17.88 47.94 40.47 0–428.95
Woodland 10,015 49.69 7.03 86.53 0.03 22.79 48.62 5.37 0–174.12
Grassland 1742 8.64 3.05 73.16 0.02 20.84 47.85 5.16 0–49.70

Water bodies 257 1.28 1.34 18.56 0.03 4.14 21.28 — —
Built-up land 1237 6.14 1.33 25.01 0.01 14.02 42.96 2.95 0–293.67
Unused land 190 0.94 2.50 41.96 0.04 19.05 44.94 96.52 0–455.15

Notes: NP, number of patches; APA, average parcel area (ha); Max-PA, max parcel area (ha); Min-PA, min parcel
area (ha); ASG, average slope steepness (◦); ASL, average slope length (m); SEM, soil erosion modulus (t/(ha·a)).

3.1.2. Soil Erosion Rate Variations under Different Land Use Types and Topography

Table 3 lists the various soil erosion factors in the CSLE and the multi-year average
soil erosion rates of the NLUD-C second-level land types. Woodland showed a higher av-
erage rainfall erosivity than other types, with a value of 3570.37 t·hm2·h/(MJ·hm2·mm),
followed by grassland, cropland, built-up land, water bodies and unused land. The
highest rainfall erosivity was found in paddy fields and garden plantations (classified
as woodland in NLUD-C), as these were mainly distributed in southern Yunnan. Addi-
tionally, the lowest lower R values were found on sparse grass and bare land, which
are mostly distributed in the northern part of Yunnan and the dry–hot valleys of the six
major rivers. Since the main soil types are highly sticky, the K values here were relatively
close and small in all regions. In terms of terrain factors, except for built-up land, water
bodies, and irrigated land (basically cropland in flat areas with irrigation conditions),
all other land types were characterized by high slope steepness and short slopes, and
the LS values were generally high for sloping cropland, gardens and unused land. In
the CSLE model, the vegetation factor B mainly concerns woodland and grassland.
The vegetation coverage of woodland in Yunnan was significantly higher than that of
grassland (lower B factor value), while the impact of vegetation on cropland soil erosion
has been incorporated into the tillage measure factor T, and intercropping and rotation
were here the dominant tillage measures. Out of 6714 cropland parcels investigated,
52.25% of them were adopted with engineering measures. Overall, cropland without
ECMs contributed 83.51% of the total soil loss from croplands, with a land area of
only 47.75%.
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Table 3. Soil erosion rates and factors of NLUD-C land types at parcel scale based on investigation.

NLUD-C Land Types
R K L S B E T A

First-Level Second-Level

Cropland
Dryland 3343.94 0.006 1.48 5.69 1 0.69 0.33 45.34

Paddy fields 3898.49 0.005 1.25 4.37 1 0.02 0.40 1.61
Irrigated land 2681.28 0.006 1.15 2.17 1 0.51 0.27 7.80

Woodland

Forest 3485.29 0.006 1.56 3.96 0.03 1 1 3.61
Shrub 3270.27 0.006 1.57 4.16 0.04 1 1 4.68

Sparse woods 3378.44 0.005 1.55 3.73 0.12 0.96 1 14.48
Gardens 3825.29 0.006 1.52 6.42 0.05 0.77 0.98 6.65

Grassland
Dense grass 3569.07 0.006 1.48 3.51 0.05 0.97 1 4.89

Moderate grass 3218.25 0.006 1.49 3.62 0.06 0.97 1 5.72
Sparse grass 3029.18 0.005 1.52 3.79 0.06 0.97 1 5.87

Water
bodies — 3147.59 — 0.98 2.06 0 1 1 —

Built-up
land

Rural 3249.22 0.006 1.40 4.57 0.02 0.2 1 1.18
Urban 3200.18 0.006 0.91 0.71 0.01 0.09 1 1.20

Mining land 3271.48 0.005 1.39 3.81 0.95 0.14 1 18.21
Unused

land
Bare soil 2945.28 0.006 1.47 5.90 1 0.98 1 156.73
Bare rock 3017.59 0.006 1.47 6.21 0 0.98 1 0

Notes: R, MJ·mm/(hm2·h·a); K, t·hm2·h/(MJ·hm2·mm); L, S, B, E, T, dimensionless; A, t/(hm2·a).

As Yunnan is the only province with a fully plateau–mountainous landscape in
China, the impact of terrain on the soil erosion rate is crucial, and it is often the most
important factor in water erosion models. With the change of terrain conditions, the
soil erosion rates of the five major land use types except water bodies showed varying
degrees of difference in different slope gradient and length zones, and soil erosion was
found to be much more sensitive to changes in slope steepness than to changes in slope
length (Figure 6). For cropland, the average annual soil erosion rate was 40.47t/(ha·a)
and the erosion ratio was 70.11% (4707 out of 6714 land parcels with soil erosion rates
higher than the soil loss tolerance of 5 t/(ha·a)), far exceeding these values for other
land types (28.57% for woodland, 35.42% for grassland, 10.27% for built-up land and
60.53% for unused land). Rain-fed dry land was the main type of cropland (5644 out of
6714 land parcels), with a soil erosion rate of 45.34 t/(ha·a) and erosion ratio of 81.48%
(4599 out of 5644 land parcels with soil erosion rates higher than soil loss tolerance),
which values are also significantly higher than those of paddy fields and irrigated
cropland. For woodland and grassland parcels, higher values were mostly found for
sparse vegetation and garden plantations (categorized as woodland but retaining the
attributes of cropland). Due to their low coverage and intensive disturbance, high soil
erosion rates were mainly found for built-up land in mining areas. Bare soil suffers
from some of the highest soil erosion rates among all NLUD-C second-level land types,
but it here occupied a small area and did not contribute much to the total soil.

To better present the spatial patterns of cropland erosion rates, we mapped the
spatial distribution patterns of cropland erosion rates at the PSU scale (Figure 7a)
according to the classification standards of the MWRC. As can be seen from the figure,
soil erosion rates in downstream areas of the six major river basins were generally
higher than those in upstream areas, and aggregation occurred. Cropland land erosion
rates in the central flat area were much lower. Considering the influence of terrain, and
similarities in soil properties, planting systems and rotation patterns, the differences
can be attributed to the fact that the rainfall erosivity values in the downstream areas
were significantly higher than those in the upstream areas (Figure 7a).
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3.1.3. Impact of Engineering Conservation Measures on Cropland Soil Erosion

For a long time, scientists and soil conservancy departments have attached great
importance to soil conservation in cropland, but with limited data availability, little is
known about the effectiveness of engineering conservation measures (ECMs) at large scales.
ECMs refer to the measures applied by changing micro terrain conditions to intercept
runoff and increase soil infiltration or crop production, such as including a level terrace, a
sloping terrace, a fruit tree pit, a check dam, intercepting drains, diversion canals, etc. In the
NSES, one of the major tasks is to conduct detailed field surveys on the type, distribution,
quantity and area of ECMs. We also quantified the impact of ECMs on soil erosion based
on the literature, standard runoff plot observations and data collected under natural or
artificial simulated rainfall conditions. To further understand the impacts of ECMs on
cropland erosion, we also mapped the spatial distribution of ECMs on PSUs that contain
cropland parcels, and analyzed their impact on soil erosion rates at different slope steepness
intervals (Figure 8a). Obviously, except for the cultivated areas with flat terrain and low soil
erosion rates in the central part, ECMs were spatially distributed throughout the province.
The proportion of cropland parcels with ECWs showed a decreasing trend as the slope
steepness increased. This was mainly because the large-scale adoption of remediation
measures on steep slopes in plateau mountainous regions is difficult, unaffordable and
may cause disasters like landslides. Besides this, farmers are more encouraged to return
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steeply sloping cropland to forest/grassland rather than terraced fields, based on the Grain
for Green Policy.
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Figure 8b illustrates the effectiveness of soil conservation measures used in mitigating
cropland erosion beyond just a reduction in the magnitude of erosion rate. In the sloping
cropland in the province, the soil erosion rates of cropland both with and without ECMs
increased as the slope gradient increased. Based on field investigations, cropland parcels
were found in 1863 out of 2871 PSUs, and the average cropland soil erosion rate for those
with ECMs was 12.14 t/(ha·a), while the average cropland soil erosion rate for those
without ECMs was 67.25 t/(ha·a). The difference in rates was greater than five-fold, based
on the premise that croplands with low erosion rates in their central part were not equipped
with ECMs. For steeply sloping zones, this difference was even bigger, reaching a gap
of 100 t/(ha·a) in the steepness class of 30–35◦, indicating that the effect of ECMS also
decreased as the slope gradient increased. Apparently, the allocation of ECMs largely affects
the spatial distribution pattern of cropland erosion rates. In terms of soil loss prevention,
almost all the croplands in Yunnan demand ECMs to keep the soil erosion within a tolerable
rate. However, more attention should be directed towards assessing the difficulty, costs
and effectiveness of the treatment (including soil productivity) to determine priority areas
where projects should really be adopted.

3.2. Land Use Change Dynamics in Yunnan from 2000 to 2020

Following the update to the NLUD-C data, we optimized the land use change dynamic
data for Yunnan from 2000 to 2020. Figure 9 shows the corresponding land use maps for
2000, 2005, 2010, 2015 and 2020. Woodland (67.79–68.44%), cropland (16.56–18.51%) and
grassland (10.43–11.64%) were the dominant land types. Woodland could be found in
the whole province, while cropland was mainly distributed in the central, northeast and
southeast parts, and grassland was concentrated in the Jinsha River Basin and the dry–hot
valleys of other river basins. The proportions of water bodies (1.19–1.22%), built-up land
(0.82–3.33%) and unused land (0.05–0.06%) were relatively low.

Based on the land use transfer matrix, the land use transformation process and change
dynamics from 2000 to 2020 are presented in Figure 10. For the 2000–2005 and 2005–2010 pe-
riods, the total land change areas were 1.62 × 104 km2 and 1.73 × 104 km2, respectively,
wherein the conversions between cropland and woodland were the dominant changes. For
the 2010–2015 and 2015–2020 periods, the total land change areas were 2.06 × 104 km2 and
1.97 × 104 km2, respectively, and the cropland–grassland transformation dominated these
periods, while the one-way conversion from cropland to built-up land was also noticeable.
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and a rate of 300.39%. The cropland area continued to decrease, with a net decrease of
7461.83 km2 and a rate of −10.55%. The grassland area continued to decrease, and the
net decrease was 4603.39 km2, with a rate of −10.36%. The woodland area increased by
2482.63 km2, but because of the large area base, the change rate was the lowest, at 0.95%.
The water bodies and unused land were relatively stable, with increasing areas of 92.75 km2

and 36.75 km2, respectively. Although the change trend of LUCC in each period was
relatively consistent, significant differences were also found in region, quantity and main
change scenarios. It should be highlighted that the land conversion area related to cropland
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accounted for 74.02% of all the transformation scenarios, and was the most significant type
of land use conversion.

To finally achieve the dynamic quantitative monitoring of cropland erosion rates and
soil loss, we analyzed the conversions between cropland and other land types spatially. For
each time period, most of the cropland change area was converted to woodland, grassland
or built-up land, with lower levels of conversion to water bodies and unused land, while
the cropland reclamation area also mostly began as grassland and woodland (Figure 11).
Cropland–woodland conversions were mainly found in the river basins of Lancang, Nu,
Irrawaddy and southern parts, while cropland–grassland conversions mainly occurred in
the Jinsha River Basin and the central grassland–cropland–built-up transition zones. For
the past 20 years, the cropland loss areas of the six major river basins can be ordered as
Lancang (21.35 km2) > Honghe (13.86 km2) > Nu (13.45 km2) > Pearl (10.76 km2) > Jinsha
(9.70 km2) > Irrawaddy (5.50 km2), while the cropland loss ratios can be ordered as Nu
(28.76%) > Irrawaddy (22.95%) > Lancang (20.34%) > Honghe (10.20%) > Pearl (5.74%)
> Jinsha (4.66%). Apparently, northwestern Yunnan has been suffering serious cropland
degradation and loss problems.
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As can be seen from Figure 11c, the areas with the largest net decrease in cropland
were concentrated in western Yunnan, and mainly distributed in the Irrawaddy River Basin,
Nu River Basin and Lancang River Basin. The spatial patterns of the cropland reduction
trends in the three river basins were basically consistent with each other. Specifically, a
reduction in net cropland from 2000 to 2005 was mainly found in the upper reaches of the
basins, but with time, the center of the reduction in net cropland gradually moved from the
upstream to the downstream areas. Nearly 90% of the basin area experienced cropland loss.
Notably, in the Irrawaddy River Basin, the net decrease was mainly concentrated in the
middle and upper reaches before 2015. From 2015 to 2020, the entire basin showed a net
decrease in cropland.

3.3. Cropland Soil Erosion Dynamics in Yunnan from 2000 to 2020

In previous work, we optimized the input parameters of the CSLE with the annual
average values of vegetation coverage and erosive rainfall data from 2000 to 2020, and
recalculated the annual average soil erosion rates for each land type of the PSUs. Since the
updated NLUD-C and NSES originated from different programs with different application
purposes, the process of land use/cover classification using NLUD-C is much simpler than
that using field investigations. Thus, we unified the classification system and retained the
six first-level land types of NLUD-C, and determined the average soil erosion rates using an
area percentage-weighted average method in PSUs. The high-precision soil erosion rates for
different land types in PSUs were further interpolated to the corresponding control areas of
PSUs using a nearest neighbor interpolation method. Finally, net soil erosion rates and soil
loss changes for different land use conversion scenarios were calculated (Table 4), and then
up-to-date dynamic and quantitative soil erosion information on cropland was acquired by
incorporation with the revised LUCC dynamics area derived during the past two decades
(Figure 12). Considering the average soil erosion rates of each land type, for different LUCC
scenarios in Yunnan, we see that cropland change induced increases and decreases in soil
erosion rate, and soil loss occurred during the four periods. Conversion from cropland
generally reduced the soil erosion intensity, while slope cropland reclamation was the main
LUCC type that intensified soil erosion.

Table 4. Soil erosion rate changes under different LUCC scenarios in the six major river basins.

LUCC Scenarios Honghe Irrawaddy Jinsha Lancang Nu Peal

C to F −46.02 −31.72 −24.63 −65.22 −52.90 −28.80
C to G −44.82 −29.02 −23.12 −64.31 −48.91 −28.53
C to W −50.12 −34.53 −29.17 −69.95 −57.06 −33.12
C to R −43.23 −28.16 −27.72 −66.53 −55.72 −29.27
C to U 64.02 101.11 63.23 93.83 115.62 54.69

Notes: unit, t/(ha·a); C—cropland; F—forestland; G—grassland; W—water; R—residential land; U—unused land.

Figure 12 presents a representative area located in the Jinsha River Basin. Here, each
grid is the control area (grid size of 5 km × 5 km) of a specific Primary Sample Unit.
Through sampling surveys, we calculated the multi-year average soil erosion rates of all
the land use types in the corresponding grids, as well as the erosion rate changes of various
conversion scenarios. It can be seen that both cropland abandonment and expansion
occurred in the region, and there was a significant variation in the soil erosion rates for the
same LUCC conversion process between grids, despite the fact that they were very close
together in geographic distance. During this period, 1.66 km2 and 0.91 km2 of cropland
abandonment and expansion, respectively, occurred in the representative area, with the
largest area of cropland converted to built-up land, followed by conversion to water bodies.
In the dynamic zones, the soil erosion rates caused by different cropland transformation
types were also different. Returning cropland to woodland and grassland, and converting
cropland to built-up land, reduced the soil erosion rate dramatically.
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When the land use type changes, the soil erosion rates and intensity will change
accordingly. From 2000 to 2020, as cropland-related LUCC transformations were domi-
nant in the landscape, changes in soil erosion rates and soil loss were also significant in
corresponding areas. In the past two decades, the amount of soil loss due to the cropland
transfer was −1.28 × 108 t, while the amount of soil loss due to cropland reclamation was
0.96 × 108 t, and the net change in soil erosion caused by cropland transformations was
−0.32 × 108 t, with a decrease ratio of 12.12% of the total cropland soil loss (Figure 13).
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The cropland area continued to decline over the following two decades, and most of it
was converted into woodland, grassland or built-up land. The conversions from cropland
to woodland and grassland accounted for the greatest proportions of cropland erosion
reduction, at 43.75% and 34.64%, respectively. The conversion from cropland to built-up
land accounted for 21.36% of the reduction. Conversion from cropland to woodland has
also been a major contributor to the decline in soil erosion in cropland areas. As for the
increase in soil erosion, about 99% of it was caused by cropland reclamation, and conversion
from grassland to cropland contributed 56.18% of the total increase in soil erosion.

The conversions between cropland and other land uses also had different effects on
the quantity of soil erosion in different periods. Among these, compared with mutual
conversions between woodland and grassland, the conversion between cropland and built-
up land more often represented a unidirectional change. Due to the larger size of the net
change area, the net reduction in erosion caused by cropland to built-up land conversion
was also the largest, and the cropland–built-up land change scenario accounted for nearly
40% of the total reduction in soil erosion during the 2010–2015 period, as this was also the
period with the fastest urbanization speed. For the four periods of 2000–2005, 2005–2010,
2010–2015 and 2015–2020, the mutual conversions between cropland and woodland were
relatively stable. Most of the soil erosion reduction caused by the conversion from cropland
to grassland was concentrated in 2010–2020, while the increase in soil erosion caused by
conversion from grassland to cropland showed a decreasing trend year by year.

4. Discussion

The constant measurement and observation of soil erosion rates at large scales have
proven to be extremely challenging and unrealistic. Based on field sampling surveys, the
CSLE model and LUCC data, we proposed a rapid monitoring method to extrapolate
cropland soil erosion rates and soil loss from point to surface in mountainous areas. The
20,155 investigated land parcels showed the same data quality, and all of them met the
requirements of USLE-type empirical models in size and scale (less than 150 ha). The LUCC
data were further improved using a non-homologous data voting method, with steps of
accuracy assessment, consistency analysis and standardization of the classification system.
To facilitate decision-making, we provided continuous distribution information on cropland
erosion rates, hotspots and soil loss amounts. The soil erosion rates of each land type were
in good agreement with the values reported in the literature [6,30]. Apparently, when
choosing a soil erosion model, one should pay more attention to the model’s strengths,
limitations and application scope. If the input data do not meet the requirements, the
results produced by over-parameterization and scaling extrapolation are often less reliable
than those given by a simple model.

Under climate change and land use change scenarios, cropland erosion and degra-
dation are a mutually promoting process. In areas with extremely high biodiversity like
Yunnan, the implementation of policies such as returning farmland to forest/grass is of
great value in relation to controlling soil erosion and protecting habitats and biodiversity.
However, our research shows that a cropland area of 7461.83 km2 (−10.55%) has vanished
during the past 20 years, which is an extremely shocking figure, and the originally small
cropland area per head of population is continuing to shrink. Furthermore, the newly
reclaimed slope lands are often accompanied with severe soil erosion rates, directly threat-
ening local food security. The real threat that should be noted here is that more and more
land is becoming unfarmable due to high soil erosion rates. It is estimated that if the current
soil erosion rate in China continues, food production will decrease by 40% in the next
50 years. Moreover, the rising global population demands the intensification of agricultural
production to meet food demand, which is expected to increase by 50% in 2030, possibly
doubling by 2050 [1]. If the current population growth speed and soil erosion rates continue
unchecked, humankind may eventually lose the ability to feed itself in the future, barring
unforeseen scientific advances [5]. The regulation of sloping croplands is extremely difficult
in mountainous areas, as the croplands are distributed in a fragmented manner on steep
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slopes. According to local statistics [86], the annual average cropland land area subjected to
newly developed erosion control measures in Yunnan is 31.69 km2. It will take more than
1000 years and CNY 180 billion to complete the regulation of unmeasured sloping cropland,
and this is assuming that each cropland area can be managed without considering the
difficulties of governance. Considering the cropland loss speed, urgent action is needed
to face the threat of cropland soil erosion; we must develop a shared understanding via
collaboration among stakeholders and those in different roles (e.g., scientists, governments,
farmers and environmentalists).

Field observations of soil erosion are always closer to the truth than modeling results
and thus constitute the most vital part of scientific investigation. However, due to the
high cost of construction and monitoring of standard runoff plots, most regions around the
world face the problem of an under-representation of observational data, especially in large
mountainous areas of developing countries with poor economic conditions, so full-coverage
real erosion measurements validation is challenging despite we have made some validation
for specific land use types like grasslands [80] and orchards [81] in certain places. Currently,
remote sensing is instrumental for investigating, evaluating, monitoring and understanding
the spatial extent and rate of soil erosion due to the advantages of its large coverage area
and short revisit period. High-resolution imagery provides high-quality data and thus
raises fewer uncertainties in soil erosion mapping, but its utility remains hindered due to
the acquisition costs. As the spatial, hyperspectral and temporal resolution continuously
increase, this technology sheds more and more light on small-scale heterogeneity, and most
of the limitations of large-scale soil erosion modeling may eventually be resolved in the
future. With a robust framework of samples with high density, using remote sensing in
large-scale dynamic soil erosion mapping and monitoring will be very promising.

We proposed a combination method of point (PSUs) and surface (LUCC data) ap-
proaches for quantitative soil erosion assessments in a large region; the work depended
greatly on the collection of detailed data in the field. The NSES was the first ever national
soil erosion investigation undertaken using field investigations, thus ensuring the accuracy
of the input data. However, the quality and representativeness of the data for areas with
low sampling density and missing sample information require further evaluation.

5. Conclusions

Long-term, quantitative information on large-scale cropland erosion rates is vital for
agricultural planning and management, but has long been hindered by data availability
and model limitations. Taking the CSLE as a monitoring tool, by integrating a large
number of field sampling surveys and LUCC remote sensing data into national surveys,
we here proposed a long-term time series dynamic method for monitoring cropland soil
erosion rates and soil losses, and we conducted application research in the Yunnan Plateau,
featuring complex terrain conditions. Differently from previous studies, this study was
conducted based on a large number of field surveys and remote sensing to improve the
model’s input data and reduce uncertainties. The results show the following:

(1) The average soil erosion rate and erosion ratio of cropland are significantly higher
than those of other land use types, and huge spatial differences in erosion were found
within each land use type. In addition, soil erosion rates are generally more sensitive
to slope than slope length for all land use types. The soil conservation measures
adopted in croplands are highly effective in controlling soil erosion, and they can
change the spatial pattern of soil erosion significantly.

(2) In the past 20 years, due to the Grain for Green Policy, population growth and rapid ur-
banization expansion, the areas of cropland and grassland in Yunnan have continued
to decrease, with the reduction ratios both exceeding 10%, while the area of built-up
impervious land has increased by 300%. The conversions between cropland and grass-
land were mainly concentrated in the Jinsha River Basin and northern parts, while the
conversion between cropland and woodland was widely distributed throughout the
province, especially in the southern region. Cropland-related conversions accounted
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for 74.02% of all LUCC scenarios and showed significantly different transformation
intensities for each period.

(3) Significant changes in land use at the landscape scale have huge impacts on cropland
erosion in Yunnan. During 2000–2020, the amount of cropland soil loss decreased
by 0.32 × 108 t, with a decrease rate of 12.12%. The net soil loss change varied
significantly in the six major river basins in different periods and LUCC scenarios.
Excluding the reclamation of cropland in the lower reaches of river basins and south-
ern Yunnan, which induced a large increase in net soil loss, soil erosion in other
areas was significantly reduced due to the sharp reduction in cropland area. This is
the first long-term quantitative study of cropland soil erosion in this area, featuring
multiple national investigations, and it is of great significance for understanding the
soil erosion patterns of cropland and clarifying the directions and focus of prevention
activities, as well as protecting precious cropland resources to ensure food security in
mountainous areas.
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