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Abstract: This paper presents a method for extracting the digital elevation model (DEM) of forested
areas from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The method models
the ground phase as a Von Mises distribution, with a mean of the topographic phase computed
from an external DEM. By combining the prior distribution of the ground phase with the complex
Wishart distribution of the observation covariance matrix, we derive the maximum a posterior
(MAP) inversion method based on the RVoG model and analyze its Cramer–Rao Lower Bound
(CRLB). Furthermore, considering the characteristics of the objective function, this paper introduces a
Four-Step Optimization (FSO) method based on gradient optimization, which solves the inefficiency
problem caused by exhaustive search in solving ground phase using the MAP method. The method
is validated using spaceborne L-band repeat-pass SAOCOM data from a test forest area. The test
results for FSO indicate that it is approximately 5.6 times faster than traditional methods without
compromising accuracy. Simultaneously, the experimental results demonstrate that the method
effectively solves the problem of elevation jumps in DEM inversion when modeling the ground phase
with the Gaussian distribution. ICESAT-2 data are used to evaluate the accuracy of the inverted DEM,
revealing that our method improves the root mean square error (RMSE) by about 23.6% compared to
the traditional methods.

Keywords: digital elevation model (DEM); PolInSAR; maximum a posteriori estimation; Von Mises
distribution; RMSprop

1. Introduction

According to statistics, the world has a total forest aera of 4.06 billion hectares (ha),
which is 31% of the total land area [1]. The acquisition of forest understory digital elevation
model (DEM) has been a challenging problem. Accurate DEM data can assist decision
makers in effectively planning forest land utilization, afforestation, and logging activities,
thereby achieving the conservation and optimal utilization of forest resources [2]. Mean-
while, the forest understory DEM is crucial for identifying landslides and debris flows [3].
Through the analysis of accurate DEM data, we are able to pinpoint the location and path
of potential landslides and debris flows, aiding in the implementation of effective disaster
prevention measures.

Light Detection and Ranging (LiDAR) and Polarimetric Interferometric Synthetic Aper-
ture Radar (PolInSAR) are the primary means in remote sensing for obtaining DEM under
the forest. LiDAR can penetrate the forest canopy and has good accuracy in estimating
DEM [4–6]. However, it is limited by the atmosphere, mist and clouds. Due to high cost and
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spatial discontinuity, it is difficult to achieve global and long-term coverage [7]. PolInSAR
combines the sensitivity of InSAR to the spatial and height distribution of scatterers with
the sensitivity of PolSAR to the shape and orientation of scatterers. It has advantages
including all-weather and all-season functionality, as well as high temporal and spatial
resolution, making it widely used in obtaining DEM [8–14].

To obtain the required physical parameters, it is necessary to establish a model that
correlates the PolInSAR data with these parameters. In recent years, more and more models
have emerged for retrieving vegetation parameters from PolInSAR data. Yamada [15]
assumed that there were two uncorrelated scattering centers in the forest area, located
at the top of the canopy and on the ground, respectively. This assumption transformed
the problem into the direction-of-arrival (DOA) estimation. The interference phase of
the ground and canopy can be obtained by ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Technique) [16–19]. However, because of the strong volume
scattering component, the detection accuracy of this technique becomes worse for dense
forest regions [20,21]. Based on the theory of electromagnetic scattering, Treuhaft et al.
proposed the Random Volume over Ground (RVoG) model [22,23]. The model simplifies
the forest region into a layer of randomly oriented uniform particles on the ground and
derives the expression for complex interference coherence. It is a function of four physical
parameters: the forest height that determines the thickness of the volume layer; the mean
extinction coefficient that represents the attenuation of electromagnetic waves through the
canopy; the ground phase related to the underlying topography; and the ground-to-volume
amplitude ratio (GVR) that varies with polarization channels.

Solving the RVoG model parameters is a difficult problem, especially for the ground
phase, which is the basis for solving the other parameters and an important parameter
for inverting the DEM. In the RVOG model, the complex interference coherence can be
expressed as a line in the complex plane. This line intersects the unit circle with two
points, one of which represents the ground phase and the other has no practical physical
meaning. This phenomenon is known as the double-candidate effect of ground phase.
Based on this geometric property, Cloude et al. [24] propose a three-stage inversion (TSI)
method. This method divides the inversion process into three stages: (1) least squares line
fit; (2) vegetation bias removal; (3) height and extinction estimation. From the perspective
of estimation theory, Tabb et al. [25,26] proposed using a maximum likelihood estimation
(MLE) to retrieve forest parameters. This approach begins with the observation that
the covariance matrix of the PolInSAR data follows a complex Wishart distribution. By
maximizing the log-likelihood function, an objective function related solely to the ground
phase is obtained. MLE provides the ability to completely separate volume scattering
from surface scattering. However, the objective function regarding ground phase in MLE
usually presents two indistinguishable peaks, corresponding to the two intersections of
the coherence line and the unit circle in the TSI, making this method also suffers from the
double-candidate effect.

Due to the double-candidate effect, the solution of the ground phase becomes complex.
The three-stage method often uses some assumptions based on physical scattering to solve
this problem, such as selecting the intersection point that is far away from the complex
coherence under HV polarization as the ground phase [24]. However, these methods do not
fully meet the assumptions in practice. Therefore, the accuracy of parameter inversion is
limited. Some researchers propose solving the ground phase using the relationship between
the vertical wavenumber (kz) and two candidate phases [27], which performs well with
airborne data but is less effective with certain spaceborne data. For MLE, Huang et al. [28]
proposed the maximum a posteriori inversion method for the RVoG model by modeling
the ground phase as a Gaussian distribution (MAPG) with the mean of the topographic
phase computed from the external DEM. This method effectively suppressed the double-
candidate effect. However, the assumption of Gaussian distribution cannot satisfy the
circular data, which may lead to incorrect results when the topographic phase appears near
the phase jump point.
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To make the MAP method more robust, this paper proposes a maximum a posteriori
with the von Mises distribution as the prior (MAPV) method for solving the RVoG model.
The method models the ground phase as a Von Mises distribution [29–31], which effec-
tively addresses the problems caused by modeling the ground phase with the Gaussian
distribution, making the estimation of the ground phase more continuous and accurate.
Additionally, since the solution method for MAP requires exhaustive searching of the phase,
this will significantly decrease computational efficiency. This paper proposes a four-step
optimization (FSO) method for solving ground phase based on the characteristics of the
MAPV objective function, employing a gradient-based optimization approach [32,33]. This
method markedly improves solving efficiency without sacrificing accuracy.

This paper is organized as follows. Section 2 provides a detailed description of the
experimental materials. Section 3 introduces the RVoG model and provides a brief overview
of the three-stage inversion process. Section 4 presents the proposed MAPV method, and
analyzes and simulates its CRLB. Furthermore, a four-step optimization method is proposed.
Results and discussions are presented in Section 5. Finally, conclusions are given in Section 6.

2. Materials

The test area is located in the central region of Sardinia (39◦48′N and 8◦45′E), which
is in the southwest of Italy. The area is heavily forested, with the predominant vegetation
being holm oak woods. The test area consists of mountains and plains, with ground
elevations ranging from 0 to 760 m above mean sea level. Figure 1a depicts the Google
Earth optical image of the area projected onto the SAR coordinate system, with the dark
green area indicating vegetated regions.

(a) (b) (c) (d)

Figure 1. (a) Optical image of the test area in Google Earth. (b) L-band SAR image in the Pauli basis
(R: HH - VV; G: HV; B: HH + VV) (c) Alos DEM projected to SAR coordinates. (d) The topographic
phase estimated by Alos DEM.

Paired quad-polarized data used for interferometry were acquired by the SAOCOM-
1A and SAOCOM-1B satellites, respectively. The SAOCOM (Satélite Argentino de Obser-
vación COn Microondas) satellite series is developed by the Argentine Space Agency and
comprises two satellites: SAOCOM 1A and SAOCOM 1B. This mission provides L-band
(approximately 1.275 GHz) full polarimetric data with spatial resolutions ranging from 10
to 100 m in both real-time and stored modes, and an incidence angle between 20 to 50◦.
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Figure 1b displays a Pauli-based PolSAR image of the test area, with the RGB channels
representing HH-VV, HV, and HH+VV, respectively.

Height checkpoints are from Ice, Cloud and land Elevation Satellite-2 (ICESat-2)
data [34]. This satellite carries the Advanced Topographic Laser Altimeter System (ATLAS),
which introduced single photon detection technology for the first time in Earth’s elevation
measurement, significantly improving the data acquisition rate for terrain detection. This
article employs the land and vegetation height data (ATL08) from ICESat-2, with a vertical
uncertainty of 0.2 m for flat terrain and 2.0 m for mountainous terrain [35].

The external DEMs selected for the experiment are the ALOS Global Digital Surface
Model “ALOS World 3D - 30 m” (AW3D30) and the Shuttle Radar Topography Mission 30 m
(SRTM30), both datasets having an approximate resolution of 30 m. Figure 1c,d show the
Alos DEM projected to the SAR coordinate system and the topographic phase, respectively.

Figure 2 shows the flowchart of the proposed DEM inversion method. The entire inversion
framework consists of (a) ground phase estimation based on MAPV and (b) DEM generation.

Figure 2. The DEM inversion flowchart for spaceborne PolInSAR. (a) Ground phase estimation based
on MAPV. (b) DEM generation.

3. Scattering Model
3.1. PolInSAR Data Description

A single-baseline PolInSAR system acquires the complex scattering matrix of each
resolution element via dual-polarized antennas (h, v) from two slightly different look
angles. According to the reciprocity (Shv = Svh), the scattering matrix can be expressed in
the form of Pauli vector [36], defined as

k⃗i =
1√
2

[
Shhi

+ Svvi Shhi
− Svvi 2Shvi

]T , i = 1, 2 (1)

where the Spq represents the scattering coefficients, p, q ∈ {h, v}, and the superscript (·)T

denotes the vector transpose operation.
The 6× 6 covariance matrix can be defined as

R̂ =

〈[⃗
k1

k⃗2

][⃗
kH

1 k⃗H
2

]〉
=

[
T̂1 Ω̂

Ω̂H T̂2

]
(2)

where (·)H is the conjugate transpose, and ⟨·⟩ is the average operation in data processing.
T̂1 and T̂2 contain the polarimetric information of the two images, respectively, called
the polarimetric coherence matrix, while Ω̂ contains the polarimetric and interferometric
information of the two images, called the polarimetric inteferometry matrix.
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For any given non-zero scattering mechanism ω, the complex interferometric coher-
ence can be expressed as

γ(ω) =
ωHΩ̂ω

ωH T̂ω
(3)

where T̂ = (T̂1 + T̂2)/2.

3.2. The Random Volume over Ground (RVoG) Model

Without considering other sources of decorrelation, such as system and temporal
factors, and focusing solely on the decorrelation effect induced by scatterers, the complex
coherence (3) can be expressed as the integral ratio form of the vertical distribution function
F(z) of the scatterers [37]

γ(ω) = ejkzz0

∫ hv
0 F(z)ejkzzdz∫ hv

0 F(z)dz
(4)

where z0 is the vertical position of the ground surface, hv reperesents the forest height, and
kz denotes the wavenumber.

The RVoG model assumes that the forested area is composed of randomly oriented
uniform particles, with an exponential vertical distribution function, and that the ground
layer is impenetrable with a delta function for its vertical distribution, defined as

F(z) = mv(ω)e
2σz

cos θ0 + mg(ω)δ(z) (5)

where mv and mg are the volume and the ground scattering amplitudes, respectively. θ0 is
the incidence angle, and σ represents the mean extinction coefficient. By inserting (5) into
(4), we can obtain

γ(ω) = ejϕ0
γv + µ(ω)

1 + µ(ω)
= ejϕ0(γv +

µ(ω)

1 + µ(ω)
(1− γv)) (6)

where γv denotes the volume coherence, ϕ0 denotes the ground phase, and µ(ω) represents
the GVR.

Notice that (6) represents the complex interference coherence as a straight line on
the complex plane. The three-stage inversion method mentioned above is based on this
geometric property. This method fits the complex coherence into a straight line that
intersects the unit circle at two points. The ground phase is then selected from these two
points based on the feature that the direct ground scattering signal is weak in the L-band
HV channel [24].

4. Maximum a Posteriori Estimation of the Ground Phase

Given the observed value R̂, the maximum a posteriori (MAP) estimate of the parame-
ter ϕ can be expressed as

ϕ̂MAP = arg max
ϕ

p(ϕ|R̂)

∝ arg max
ϕ

p(R̂|ϕ)p(ϕ)

∝ arg max
ϕ

{
log p(R̂|ϕ) + log p(ϕ)

} (7)

where p(R̂|ϕ) is the likelihood function, which represents the performance of the data set,
and p(ϕ) represents a prior distribution of ϕ.

It is known that the observed coherence matrix of PolInSAR after multilook (2) follows
a complex wishart distribution

p(R̂; R, N) = c(R̂)|R|−N exp(−N · tr(R−1R̂)) (8)
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where N is the number of looks, c(R̂) is a constant for normalization, | · | is the determinant
operator, and tr is the trace operator.

A priori knowledge about the ground phase is obtained by introducing an external DEM.

4.1. A Prior Probability Model of the Ground Phase

With InSAR geometry, the topographic phase can be solved by an external DEM [38]

ϕtopo = − 4πB⊥
λR sin θ

h. (9)

The ground phase in PolInSAR is the same as the topographic phase, both representing
the contribution of the underlying ground to the interferometric phase. Considering the
influence of vertical accuracy and resolution, there is an error between the topographic
phase calculated from an external DEM and the actual ground phase. The ground phase
can be represented as:

ϕ = ϕtopo + ϕe (10)

where ϕe denotes the error component. Some researchers modeled the ϕe as a Gaussian
distribution with zero mean and variance dependent on the external DEM. Therefore, the
ground phase follows a Gaussian distribution with a mean of the ϕtopo. The maximum a
posteriori estimation method was used to solve the RVoG model parameters. This method
effectively suppressed the double-candidate effect, making the two local maxima of the
objective function clearly distinguishable [28].

However, since the estimated ground phase is the principal value of the phase within
the [−π, π) interval after the periodic wrapping, π and −π differ numerically by 2π but
represent the same point in the complex plane. This point is called the phase jump point.
The assumption of the Gaussian distribution does not take into account the characteristic of
phase wrapping, so it is discontinuous near the phase jump point, which can lead to errors
in phase estimation.

Figure 3a,c show the Gaussian distribution curves in the Cartesian coordinate system
and on the unit circle of the complex plane, respectively, for one phase period. In the complex
plan, it is evident that among the two candidates (c1 and c2), c2 is closer to ϕtopo, so it should
have a higher probability of being the ground phase. However, in Figure 3a, the probability of
c1 being the ground phase is greater than that of c2, which is obviously incorrect.

The modeling of the ground phase must consider the characteristic of phase wrap-
ping while retaining the selectivity of the Gaussian distribution. At present, probability
models have not found much application to circular data. Common ones include: Uniform,
Cardioid, Wrapped Normal, Wrapped Cauchy, and Von Mises distributions [29,39]. This
paper employs the Von Mises distribution to model ground phase, offering significant
advantages in this context. Firstly, its circular nature enables better adaptation to periodic
data, akin to Cardioid and Wrapped Normal distributions, but more flexible than Wrapped
Cauchy distribution. Secondly, the Von Mises distribution possesses parametric flexibility,
enabling adjustment of its parameters to accommodate different degrees of data concen-
tration. Furthermore, the mathematical form of the Von Mises distribution is simple and
easy to understand, facilitating straightforward computation and interpretation, while
also possessing robust statistical properties such as mean, variance, etc., making it more
manageable and analyzable in practical applications [30,40] .

The probability density function of the Von Mises distribution is

p(ϕ; ϕtopo, κ) =
eκ cos(ϕ−ϕtopo)

2π I0(κ)
(11)

where κ represents the degree of concentration (similar to the inverse of variance), I0(κ) is
the modified Bessel function of the first kind of order 0, which is used for normalization.
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As can be seen in Figure 3b,d, the Von Mises distribution effectively solves the problem
of discontinuity at phase jump point in the Gauss distribution, making the ground phase
estimation more robust.

(a) (b)

(c) (d)

Figure 3. The difference between Gauss distribution and Von Mises distribution. Up: In the Cartesian
coordinate system. (a) Gauss distribution. (b) Von Mises distribution. Down: In polar coordinate.
(c) Gauss distribution. (d) Von Mises distribution. The hollow black point represents the position of
the topographic phase on the unit circle of the complex plane, and the asterisks correspond to the
phases at the two peaks of the MLE.

4.2. MAP with Von Mises Distribution as Prior

By changing mv(ω) and mg(ω) in (5) to matrix form

mv(ω) = ωHTvω

mg(ω) = ωHTgω
(12)

and inserting them into (4), we can obtain the matrix form of the RVoG model in the same
form of (3), and

T = I1Tv + aTg

Ω = ejϕ(I2Tv + aTg)
(13)

where a, I1, I2 are functions of the forest height hv and extinction coefficient, Tv and Tg are
the volume and ground coherence matrices, respectively. The volume only coherence can
be obtained by γv = I2/I1.

It is worth noting that R̂, T̂ , and Ω̂ are the ensemble averages of the data and should
be distinguished from the ideal mathematical expectations R, T , and Ω.

Combining the complex Wishart distribution (8) and the prior probability distribution (11),
the objective function of the MAPV estimation of the RVoG model is given by (7)

fMAPV = log p(R̂; R, N) + log p(ϕ; ϕtopo, κ) (14)

where the first term is the objective function of the MLE. Maximising it yields [25]
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log p(R̂; R, N) = N · (3 log(1− cos θ)− log |Aθ+ϕ| − log |Aϕ|) (15)

where
Aα = T̂ − 1

2
(e−jαΩ̂ + ejαΩ̂H) (16)

and θ represents the angle of the intersection of the unit circle with the extension of the line
segment connecting 1 and γv in the complex plane, geometrically.

Substituting (11) and (15) into (14), the objective function with respect to the ϕ and θ
is obtained as

fMAPV = 3 log(1− cos θ)− log |Aθ+ϕ| − log |Aϕ|

+
κ

N
cos(ϕ− ϕtopo).

(17)

Differentiating the objective function with respect to θ and ϕ, respectively, and setting
them to 0 yields

fθ =
3 sin θ

1− cos θ
− d

dα
log |Aα| = 0

fϕ = − d
dα

log |Aα| −
|Aϕ|′

|Aϕ|
− κ

N
sin(ϕ− ϕtopo) = 0.

(18)

Combining the two equations of (18), we can obtain the expression of θ with respect to ϕ

θ = 2 tan−1

 −3
|Aϕ |′
|Aϕ | +

κ
N sin(ϕ− ϕtopo)

. (19)

Figure 4 shows the difference between the objective functions of MAPG and MAPV. By
observing the positions of ϕtopo, c1, and c2 in the complex plane in Figure 3, it can be seen
that the expected peak of the objective function should appear near c2, which is consistent
with the MAPV objective function.

Figure 4. Illustration of the difference between MAPG and MAPV. The solid line, dotted line, and
dashed line represent the normalized objective functions of the MLE method, MAPG method, and
MAPV method, respectively.

According to (14) and (19), the ground phase is given by

ϕ0 = arg max
ϕ

{
(1− cos θ)3

|Aθ+ϕ||Aϕ|
e

κ
N cos(ϕ−ϕtopo)

}
(20)

which is related to the underlying topography. The DEM can be obtained from part (b)
of Figure 2.
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4.3. The Cramer–Rao Lower Bound Analysis

To evaluate the validity of the method, it is necessary to analyze its Cramer–Rao Lower
Bound (CRLB), which provides the minimum bound of variance if it is unbiased.

Note that the above derivation of MAPV is done under the noise-free assumption.
In practice, the PolInSAR system inevitably introduces noise, the noise-affected R can be
expressed as [41]

Rn =

[
T Ω

ΩH T

]
+

[
N1 0
0 N2

]
(21)

where N1 and N2 are the noise covariance matrices of the receivers at each end of the
baseline. Assuming that the noise between channels is uncorrelated, Ni (i = 1, 2) can be
expressed as

Ni =
1
2

σ2
hhi

+ σ2
vvi

σ2
hhi
− σ2

vvi
0

σ2
hhi
− σ2

vvi
σ2

hhi
+ σ2

vvi
0

0 0 σ2
hvi

+ σ2
vhi

 (22)

where σ2
pq, p, q ∈ {h, v} denotes the noise variance of each channel. Note that since the

noise of the two receivers is uncorrelated, the noise has no effect on Ω.
The CRLB can be derived from the inverse of the Fisher information. The derivation

of the Fisher information is presented in Appendix A for clarity, which can be expressed
as [42,43]

IF = Ntr
(

R−1
n

∂Rn

∂ϕ
R−1

n
∂Rn

∂ϕ

)
+

κ I1(κ)

I0(κ)
. (23)

Therefore, the CRLB is

Var
[
ϕ̂
]
≥ 1

IF
=

1

Ntr
(

R−1
n

∂Rn
∂ϕ R−1

n
∂Rn
∂ϕ

)
+ κ I1(κ)

I0(κ)

. (24)

Figure 5 shows the simulation results using the data from [44] with N = 50 and
κ = 3.65 (approximately equivalent to 30◦).

It is worth noting that the variance of the TSI method falls below the theoretical CRLB
curve when the SNR is reduced below about −14 dB. This is due to the fact that the phase
error is calculated in the sense of phase wrapping, whereas the CRLB is calculated using
the local curvature of the distribution function [45]. From Figure 5, it can be seen that the
inclusion of the prior effectively reduces the CRLB, and also demonstrates the superiority
of the MAPV method over the TSI method for ground phase estimation.

Figure 5. (a) Evolution of the CRLB with signal-to-noise ratio (SNR). (b) A detail extracted from (a).
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4.4. Four-Step Optimized Solution for MAPV

To determine the ground phase, which corresponds to maximizing the objective
function (17), the typical approach involves conducting an exhaustive search (ES) over
ϕ. Although this ensures accuracy in finding the solution, it leads to high computational
complexity and low computational efficiency.

Since the objective function of MAPV with respect to ϕ is a continuous curve, as shown
in Figure 4. Based on this property, this paper employs the gradient optimization method
to enhance the efficiency of solving ground phase. The gradient of the MAPV objective
function is presented in Appendix B.

Given the significant variations in the objective function for each pixel, the method
requires addressing two distinct problems:

1. Initial phase: Due to the presence of two peaks in the objective function, a single initial
point is prone to fall into the local maximum. Therefore, it is necessary to choose an
appropriate strategy to ensure that the results converge to the global maximum.

2. Global learning rate: Because of the large differences between the objective functions
of different pixels, it is very important to choose the global learning rate so that the
method can adapt to all objective functions.

4.4.1. Initial Phase

Taking into account the characteristics of the MAPV objective function depicted in
Figure 6, this paper introduces a four-step solving approach.

• Step 1: Gradient descent using ϕtopo as initial phase. Get the ϕvally between the two peaks.
• Step 2: Give the ϕvally a ∆ϕ in the opposite direction to ϕtopo as a ϕseed.
• Step 3: Perform gradient ascent separately using this ϕseed and ϕtopo to obtain the two

peak values and their respective phases.
• Step 4: Compare the magnitudes of these two peak values and select the phase

corresponding to the larger peak value as the final result.

Figure 6. Illustration of the four-step optimization procedure for solving the ground phase.

4.4.2. Global Learning Rate

In the FSO method, we employed both gradient ascent and gradient descent algo-
rithms. For convenience, this paper converts the gradient ascent process into a gradient
descent process, with the specific conversion procedure given below.
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The gradient descent algorithm is based on the Root Mean Square Propagation (RM-
SProp) [33]. Although RMSprop adjusts the learning rate during iterations, the global
learning rate determines the speed, convergence, and eventual performance of the model
during training. If the learning rate is too high, it may lead to an unstable training process
and difficulties in convergence. Conversely, a low learning rate might result in slower
training speed, requiring more iterations to converge to an optimal solution.

Due to significant differences in the objective functions of various pixels, selecting
a uniform global learning rate poses a challenge. Therefore, this paper proposes im-
provements to RMSprop to reduce the model’s reliance on the global learning rate to
accommodate all objective functions, as shown in Algorithm 1.

When the current gradient g has opposite signs with the minimum gradient gmin, or
when the current function value f (ϕ) is greater than the minimum function value fmin,
it indicates that the step size might be too large, causing oscillations. In such cases, the
minimum phase is necessarily situated between ϕ and ϕmin, closer to the side with the
lower function value. In the fourth line of Algorithm 1, a weighted computation based on
function values is applied for this condition, assigning higher weight to the lower function
value when updating the phase. As the updated phase is very close to the minimum phase,
it is advisable to moderately decrease the learning rate for better convergence.

Algorithm 1 assumes the objective function to be positive, but neglecting certain
constant terms during derivation may result in the objective function potentially becoming
negative. This could result in an error on line 4 during execution. This problem can be
solved by preprocessing the coherence matrix, let

T = E−
1
2 TE−

1
2

Ω = E−
1
2 ΩE−

1
2

(25)

where E is the diagonal matrix formed by the eigenvalues of T .

Algorithm 1: Framework of improved RMSprop algorithm.
Require: Global learning rate ϵ, Decay rate ρ, Initial phase ϕ
Initialize: r ← 0, fmin ← inf, ϕmin ← 0, gmin ← 0, n← 0, δ← 10−6

1 while stopping criterion not met do
2 Compute gradient: g← ∇ f (ϕ);
3 if g · gmin < 0 | f (ϕ) > fmin then
4 ∆ϕ ← ϕmin/ fmin+ϕ/ f (ϕ)

1/ fmin+1/ f (ϕ) − ϕ;

5 if fmin > f (ϕ) then
6 fmin, ϕmin, gmin ← f (ϕ), ϕ, g;

7 ϕ← ϕ + ∆ϕ;
8 ϵ← ϵ

2+log(n) ;

9 else
10 fmin, ϕmin, gmin ← f (ϕ), ϕ, g;
11 r ← ρ · r + (1− ρ) · g · g;
12 ∆ϕ ← ϵ√

r+δ
· g;

13 ϕ← ϕ− ∆ϕ;

14 n← n + 1;

In FSO, the gradient ascent process can be converted into a gradient descent process. In
the gradient ascent task, calculate the function value f and gradient g at that point, then let

g = −g/ f 2

f = 1/ f .
(26)
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Then, Algorithm 1 can be used for solving.
Although the method requires performing three iterations of gradient descent, the

improvement made in RMSprop based on the characteristics of the objective function allows
each gradient descent to converge to the extremum within ten iterations. Furthermore,
the precision obtained by this algorithm often surpasses that achieved through exhaustive
search (<1 degree).

5. Results
5.1. Evaluation Indicator

The evaluation indicators are mean error m, root mean square error (RMSE) r, and
accuracy ασ

m =
1
N

N

∑
n=1

(x̃n − xn)

r =

√√√√ 1
N

N

∑
n=1

(x̃n − xn)2

ασ =
1
N

N

∑
n=1

I|x̃n−xn|≤σ

(27)

where I|x̃n−xn|≤σ is the idicative function, defined as

I|x̃n−xn|≤σ =

{
1, if |x̃n − xn| ≤ σ

0, otherwise.
(28)

5.2. Efficiency of FSO for MAPV

As mentioned above, the discrepancy in the objective function between pixels poses
a challenge in the selection of the global learning rate when using traditional RMSprop.
Algorithm 1 proposed in this paper is an improvement specifically designed to address this
issue, and it is necessary to discuss its convergence here.

Figure 7 presents the convergence performance of RMSprop and Algorithm 1 under
different global learning rates. As depicted in Figure 7a,d, under conditions of a relatively
small global learning rate, both methods exhibit robust convergence. However, this comes
at the cost of requiring more than 20 iterations. As the global learning rate increases,
Algorithm 1 demonstrates a pronounced acceleration in convergence. In contrast, the
RMSprop fails to converge to extrema due to oscillations.

While a larger ϵ appears to contribute to faster convergence in this experiment, it is
important to note that, due to the potentially steep peaks in the MAPV objective function,
excessively high global learning rates may cause the algorithm to jump out of these peaks.
Therefore, it is also not advisable to set the global learning rate too high.

Table 1 presents the efficiency of the four-step optimization method for the ground
phase of the test area. Here, ’ES’ denotes achieving 1-degree accuracy through exhaustive
search. It is evident that the proposed method is 5.6 times faster than exhaustive search
while ensuring accuracy. On average, convergence is achieved in only 24.5 steps per pixel.

Table 1. Efficiency assessment of four-step optimization method.

Size
Time (s) Iterations

α1◦ α2◦
ES FSO ES FSO

7015 × 2673 6880.0 1235.1 360 24.5 99.97% 99.99%
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(a) (b) (c)

(d) (e) (f)

Figure 7. The convergence of the improved RMSprop. The top (a–c) and bottom (d–f) rows, respectively,
depict the convergence of phase and objective function values when the global learning rate ϵ = 0.1, 0.4,
and 0.7.

5.3. Results of DEM Inversion in the Test Area

Given that the Gaussian distribution is not suitable for modeling the ground phase,
MAPG encounters discontinuities when solving for ground phase. These discontinuities
are propagated to the DEM during phase inversion, resulting in discontinuities within the
DEM. This section will employ the Alos DEM as a benchmark to evaluate the extent of this
discontinuity. Despite vertical accuracy differences between Alos DEM and actual values,
it remains an essential reference in assessing DEM continuity.

As shown in Figure 8, the phase estimated by MAPG and MAPV show similar fringes
that are basically consistent with the topographic phase computed by the external DEM.
However, the comparison shows that there are significant differences between the two
methods in the vicinity of the phase jump point (the blue and red boundary region in the
phase diagram). In this region, the MAPG typically transitions with an intermediate value,
resulting in a phase discontinuity that causes elevation jumps when inverting the DEM.

The DEM inverted by the two methods are shown in Figure 9a,b. Due to the large
elevation range in the test area, it is not easy to observe differences over an entire image.
Therefore, we select two areas for comparison, corresponding to the two areas in Figure 8.
Different scales are set for the two areas. As shown in Figure 9, the MAPG-inverted DEM
shows a strong discontinuity in some regions that are highly correlated with the vicinity of
the phase jump point in Figure 8a. From the elevation change curves of the marked line
segments in Area 1 and Area 2 shown in Figure 10a,b, it can be seen that the jump between
adjacent pixels in the MAPG-inverted DEM reaches 20 m in some areas, which does not
correspond to the actual situation. On the other hand, the MAPV-inverted DEM shows
better results without significant elevation jumps.

Table 2 evaluates the continuity of Area 1 and Area 2. The criterion used is the
accuracy α, where discrepancies greater than the set threshold compared to the Alos DEM
are deemed as discontinuities. It is evident that compared to the MAPG-inverted DEM, the
MAPV-inverted DEM exhibits better continuity.
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Table 2. Differential comparison of DEM continuity in inversion methods.

ID
α15

MAPG MAPV

Area 1 87.48% 99.06%
Area 2 89.13% 99.14%

(a) (b)

Figure 8. Ground phase estimated by (a) MAPG. (b) MAPV.

(a) (b)

Figure 9. (a) MAPG-inverted DEM. (b) MAPV-inverted DEM.
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(a) (b)

Figure 10. (a) Section elevation change curve of marked line segment in Area 1. (b) Section elevation
change curve of marked line segment in Area 2.

5.4. Performance Assessment of the Proposed Method

In this section, IceSat-2 data are used to confirm the effectiveness of MAPV in generat-
ing DEM for forested areas.

Figure 11 shows the distribution of IceSat-2 data in the test forest area, where the color of
the dots indicates the magnitude of the difference between the calculated elevation at that
point and the LiDAR data. Figure 11a,b show the difference between the Alos and SRTM
DEM with the LiDAR DEM, respectively. With reference to the colorbar on the right, it can
be seen that the Alos and SRTM DEM are generally higher than the LiDAR DEM. Figure 11c
shows the difference between the TSI-inverted DEM and the LiDAR DEM. It is worth noting
that, as mentioned above, the assumptions made by TSI in solving the double-candidate effect
cannot satisfy all conditions, and errors will occur in some low-coherence regions, resulting in
elevation jumps in these regions when inverting the DEM. Figure 11d shows the difference
between the MAPV-inverted DEM and the LiDAR DEM, and it can be seen that the DEM
obtained by this method is closer to the LiDAR DEM.

Table 3 shows the mean error (ME) and the root mean square error (RMSE) of the
different source DEM compared to the LiDAR DEM. Compared to the DEM of Alos and
SRTM, the RMSE of the MAPV-inverted DEM is improved by 23.1% and 24.1%, respectively.
It should be noted that due to the elevation jumps in the TSI-inverted DEM, the elevation
in some areas may differ significantly from the LiDAR DEM, resulting in a large RMSE.

Table 3. Assessment of the elevation accuracy of DEM.

DEM ME (m) RMSE (m)

TSI −13.2407 73.7140
ALOS 2.6370 7.7956
SRTM 2.1311 7.8972
MAPV 0.2111 5.9944

Figure 12 shows a histogram of the distribution of elevation differences between
different source DEM. Obviously, compared to the DEM of Alos, SRTM, and TSI, the error
center of MAPV-inverted DEM is closer to 0.

The method proposed in this paper validates the feasibility of using spaceborne L-
band PolInSAR for retrieving forest understory DEM. The rapid development of spaceborne
PolInSAR technology has expanded the coverage and increased the update speed of PolInSAR
data, enabling the generation of large-scale, accurate DEM. High-precision, rapidly updated
DEM plays a crucial role in fields such as environmental monitoring and disaster monitoring,
providing precise data support for assessing forest coverage and terrain changes, among
other issues. However, solving for the ground phase requires high-quality data, with the
interferometric pair needing suitable temporal and spatial baselines, as well as good coherence.
Low-quality data can result in inaccurate phase solutions, leading to errors in the inverted
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DEM. Furthermore, future research needs to further explore the applicability of this method
under different climatic conditions or forest types and address potential challenges, such
as considering the impact of varying climatic conditions on data quality and investigating
interference effects and L-band penetration depth in different types of forests.

(a) (b)

(c) (d)

Figure 11. The geocoded DEM maps and the difference between the LiDAR DEM and the DEM from
different sources. (a) Alos-30m. (b) SRTM-30m (c) TSI. (d) MAPV.

Figure 12. Histogram of the difference between the DEM obtained through different methods and
the LiDAR DEM.
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6. Conclusions

This paper proposes a MAPV inversion algorithm for RVoG model, and generates high-
precision radar DEM data in forested area. The method is based on maximum a posteriori
estimation and models the ground phase as a Von Mises distribution, with its mean
derived from the topographic phase computed from external DEM. This method effectively
overcomes the double-candidate effect, addresses the phase jump issue caused by modeling
ground phases as a Gaussian distribution, and ensures the continuity and accuracy of
ground phase solutions. Additionally, this paper derives, analyzes, and simulates the CRLB
for MAPV. The results indicate that the introduction of prior information significantly
reduces the CRLB of this method. In response to the characteristics of the MAPV objective
function, this paper proposes a FSO method to enhance the efficiency of ground phase
determination. FSO obtains two candidate phases separately based on the gradient descent
algorithm and selects the one with the higher function value as the ground phase, as the
gradient descent algorithm requires setting a global learning rate and there exist significant
differences in the objective functions among different pixels. This paper improves the
traditional RMSprop algorithm by reducing its dependency on the global learning rate,
enabling it to handle various objective functions.

In this paper, the L-band spaceborne SAOCOM data are used to estimate the PolInSAR
understory DEM to evaluate and verify the effectiveness of the method. The results
demonstrate that:

1. Compared to the traditional exhaustive search method, FSO significantly improves
computational efficiency without compromising accuracy.

2. The MAPV method effectively addresses the issue of elevation jumps in DEM caused
by the discontinuity in ground phase solutions by MAPG.

3. Using IceSat-2 data as a benchmark, the DEM of the test forest area is compared with
the DEMs of Alos, SRTM, and TSI. The results show that MAPV has better estimation
performance, with improvements in both mean error (ME) and root mean square
error (RMSE).
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Abbreviations
The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
PolInSAR Polarimetric Interferometric Synthetic Aperture Radar
Lidar Light Detection and Ranging
RVoG Random Volume over Ground
TSI Three-Stage Inversion
MAP Maximum a Posteriori
MAPG Maximum a Posteriori with Gaussian distribution as prior
MAPV Maximum a Posteriori with Von Mises distribution as prior
CRLB Cramer–Rao Lower Bound
FSO Four-Step Optimization
ME Mean Error
RMSE Root Mean Square Error

Appendix A. The Fisher Information of MAPV

It can be inferred from (14) that the Fisher information consists of two parts, with the
first part provided by the RVoG model,

IFRVoG = −E
[

∂2 log P(R̂; Rn, N)

∂ϕ2

]
= −E

[
∂2(log C(R̂)− N log |Rn|− Ntr(R−1

n R̂))
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and the second part being the information incorporated from the prior,

IFVM = −E

[
∂2 log p(ϕ; ϕtopo, κ)

∂ϕ2

]

= −E
[

∂2(− log 2π I0(κ) + κ cos(ϕ− ϕ0))

∂ϕ2

]
= −E[−κ cos(ϕ− ϕ0)]

=
∫ π

−π

1
2π I0(κ)

κ cos(ϕ− ϕ0)eκ cos(ϕ−ϕ0)dϕ

=
κ I1(κ)

I0(κ)
.

(A2)

Thus, the Fisher information for the ground phase ϕ can be expressed as

IF = IFRVoG + IFVM

= Ntr
(

R−1
n

∂Rn

∂ϕ
R−1

n
∂Rn

∂ϕ

)
+

κ I1(κ)

I0(κ)
.

(A3)

Appendix B. Gradient of the MAPV Objective Function

From (17), we have

∂ f
∂ϕ

=
3 sin θ

1− cos θ
· ∂θ

∂ϕ
− 1
|Aθ+ϕ|

·
∂|Aθ+ϕ|
∂(θ + ϕ)

· ∂(θ + ϕ)

∂ϕ
− 1
|Aϕ|

·
∂|Aϕ|

∂ϕ
− k sin(ϕ− ϕ0)/N (A4)

where [46]
∂|Aα|

∂α
= |Aα|tr

(
A−1

α
∂Aα

∂α

)
(A5)

and from (16),
∂Aα

∂α
=

j
2

(
e−jαΩ̂− ejαΩ̂H

)
. (A6)

From (19),
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where |Aϕ|′′ represents the second derivative of |Aϕ| with respect to ϕ,

|Aϕ|′′ = |Aϕ|′tr
(

A−1
ϕ

∂Aϕ

∂ϕ

)
+ |Aϕ|tr

(
∂A−1

ϕ

∂ϕ

∂Aϕ

∂ϕ
+ A−1

ϕ

∂2 Aϕ

∂ϕ2

)

= |Aϕ|tr2
(

A−1
ϕ

∂Aϕ

∂ϕ

)
+ |Aϕ|tr

(
−A−1

ϕ

∂Aϕ

∂ϕ
A−1

ϕ

∂Aϕ

∂ϕ
+ A−1

ϕ

∂2 Aϕ

∂ϕ2

) (A8)

and
∂2 Aϕ

∂ϕ2 =
1
2

(
e−jϕΩ̂ + ejϕΩ̂H

)
. (A9)

Substituting (A8) into (A7), we can obtain that

∂θ

∂ϕ
=

6
(

tr
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−A−1

ϕ
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Therefore,

∂ f
∂ϕ

=
3 sin θ

1− cos θ

∂θ

∂ϕ
− tr

(
A−1

θ+ϕ

∂Aθ+ϕ
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− tr
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the gradient of the MAPV objective function can be obtained by substituting (A6), (A9),
and (A10) into (A11).
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