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Abstract: Earth system models (ESMs) are a common tool for estimating local and global greenhouse
gas emissions under current and projected future conditions. Efforts are underway to expand the
representation of wetlands in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)
by resolving the simultaneous contributions to greenhouse gas fluxes from multiple, different, sub-
grid-scale patch-types, representing different eco-hydrological patches within a wetland. However,
for this effort to be effective, it should be coupled with the detection and mapping of within-wetland
eco-hydrological patches in real-world wetlands, providing models with corresponding information
about vegetation cover. In this short communication, we describe the application of a recently
developed NDVI-based method for within-wetland vegetation classification on a coastal wetland
in Louisiana and the use of the resulting yearly vegetation cover as input for ELM simulations.
Processed Harmonized Landsat and Sentinel-2 (HLS) datasets were used to drive the sub-grid
composition of simulated wetland vegetation each year, thus tracking the spatial heterogeneity of
wetlands at sufficient spatial and temporal resolutions and providing necessary input for improving
the estimation of methane emissions from wetlands. Our results show that including NDVI-based
classification in an ELM reduced the uncertainty in predicted methane flux by decreasing the model’s
RMSE when compared to Eddy Covariance measurements, while a minimal bias was introduced due
to the resampling technique involved in processing HLS data. Our study shows promising results
in integrating the remote sensing-based classification of within-wetland vegetation cover into earth
system models, while improving their performances toward more accurate predictions of important
greenhouse gas emissions.

Keywords: HLS data; vegetation classification; wetland; methane; land surface models

1. Introduction

As emphasized in the 2021 IPCC report, methane is one of the most potent greenhouse
gases, and by itself, it accounts for 25% of the overall global warming [1]. Wetlands are
the largest natural emitters of methane and are estimated to account for 20–40% of global
methane emissions [2], while constituting the highest source of uncertainty in the global
methane budget [3]. The challenges in modeling methane budgets in wetlands are to a
large degree due to the small-scale temporal and spatial heterogeneity of wetland structure
and associated methane flux rates [4]. The ecological, hydrological, and biogeochemical
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conditions that determine methane production and oxidation vary strongly among different
ecological patch-types within a wetland. Methane transport occurs through three pathways:
diffusion through soil sediments and water columns, ebullition (bubbling) from the soil,
and transport through plant aerenchyma [5]. All have different characteristic rates as
functions of the vegetation type [6,7].

Earth system models (ESMs) represent a common tool for estimating and projecting
local and global greenhouse gas emissions [8]. However, such models function at a coarse
scale (10s of km), which is larger than that of the typical coastal wetland scale (100s of m),
and as a result, ESMs do not explicitly represent the different within-wetland patches (e.g.,
open water, submerged vegetation, emergent vegetation, etc.). Because the flux rates in
different patches can vary by orders of magnitude and because methane fluxes can be dom-
inated by hot spots of emissions, such a mean, “whole-wetland” representation often leads
to the underestimation of methane flux variability [9]. They also cannot resolve long-term
(interannual) changes in fluxes due to hydrological changes that lead to changes in the
vegetation composition within the wetland [10]. Currently, efforts involving the ELM—the
land surface model of the E3SM (Energy Exascale Earth System Model)—are underway to
expand the model representations of wetlands [2] to be more conceptually similar to hetero-
geneously vegetated ecosystems by resolving the simultaneous contributions from multiple,
different, sub-grid-scale functional type patches representing different eco-hydrological
patches within a wetland. This advanced “within-wetland patch-type” approach allows
for resolving different physical conditions (water elevation, soil column temperature) as
well as biogeochemical processes (rates of methanogenesis, methane oxidation, methane
transport) for each wetland patch-type. For example, cattails tend to grow in waters of
intermediate depth and could have higher aerenchyma transport rates than those of deeper
open water patches (which include no plants, and thus no aerenchyma transport), and mud
flats could have higher methane oxidation rates and stronger temperature dependences for
methane production than floating vegetation patches.

However, for this advancement to improve the global estimates of methane emissions,
modeling efforts must be able to incorporate global, high-resolution, observation-based
characterizations of the within-wetland distributions of patch-types. Such observations are
challenging due to the large spatial extent of wetlands globally, combined with the small
scale of individual wetlands and high spatial resolution (single-10s of m) of the variation in
patch-types, posing a difficulty in identifying the boundaries of eco-hydrological patches
within wetlands [11]. Furthermore, global climate change and the consequent changes to
sea levels (affecting coastal wetlands) and precipitation regimes (affecting all wetlands)
lead to changes in wetland water elevations, and drive further, rapid (months–decades)
changes in patch-type identity and distribution within wetlands [12], resulting in important
variations in the total methane fluxes [13–15].

NASA’s Harmonization of Landsat and Sentinel-2 (HLS) dataset provides moderately
high-resolution measurements of surface reflectance with a revisit time of several days [16],
which allows for the monitoring of the seasonal patterns of vegetation using derived NDVI
timeseries from the available surface reflectance [17]. Bohrer and Ju [10] demonstrated
that the seasonal timeseries of HLS-derived NDVI provide a distinct seasonal temporal
“fingerprint”, which could be used to classify HLS pixels to specific patch-types. Thus,
using HLS, it is possible to track the spatial heterogeneity of wetlands at a sufficient spatial
(~30 m) and temporal resolution (seasonal-annual) and provide the necessary input for
improving the global estimation of methane emissions from wetlands.

The goal of this study was to implement and validate an HLS-derived NDVI-based
classification of within-wetland eco-hydrological patch-types at a coastal brackish marsh in
Louisiana and use the resulting yearly vegetation cover as a driver of the wetland land-unit
in an ELM, which in turn simulates the resulting methane and carbon fluxes. We used
an updated version of the ELM that simulates the wetland land unit and corresponding
dynamics of the methane flux. We used ground observations of patch-level and whole site-
level fluxes from the simulated study site to evaluate the improvement in predicted methane
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flux and validate the effectivity of using the HLS-driven classification approach for the
estimation of whole-wetland methane emissions. Thus, through this short communication,
we would like to shed light on the efficiency of using remote sensing products for improving
the predictions of important greenhouse gas emissions in earth system models.

In the upcoming sections, we describe the HLS-based classification method used to
derive the NDVI timeseries and obtain the resulting within-wetland eco-hydrological patch
distribution for years 2016–2023 at our study-site. Then, we present and discuss all the
classification results and corresponding ELM simulations with which we validate our
classification using the high-resolution WorldView data and validate our ELM-modeled
flux using Eddy Covariance measurements performed at the site.

2. Materials and Methods
2.1. NDVI-Based Classification Overview

As a joint product of NASA/USGS Landsat 8 and ESA Sentinel-2A and Sentinel-2B
satellites, NASA’s HLS provides surface reflectance data at a 30 m resolution for up to
two to three days. Despite the limited spectral (7 bands) and spatial resolution of HLS
compared to very-high-resolution multi-spectral products, such as WorldView, a seasonal
timeseries of HLS-NDVI proved very effective at classifying patch-types within wetlands.
A marked advantage of HLS is the short revisit time, which even after discarding cloud-
obscured images, still resolves the seasonal temporal timeseries of NDVI for pixels within
the wetland [18]. We followed the approach developed by Ju and Bohrer [10]. The approach
is explained briefly in the sections below and illustrated in Figure 1. While the somewhat
coarse HLS resolution leads to a high number of mixed pixels (given that wetland spatial
heterogeneity could occur at a resolution of a few meters), it supports a high rate of correct
classifications of the dominant patch-type [10]. Consequently, we can classify the patch
structure within the wetland at the same spatial resolution as that of HLS, and during every
season and year.
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2.2. US-LA3 Wetland

NDVI-based classification and ELM simulations were implemented for a mesoha-
line marsh in the Barataria Basin of Louisiana. The site is a permanent wetland pri-
marily covered by Juncus roemerianus and Spartina alterniflora, and with coordinates of
(29.4936, −89.9153). The site’s terrain is flat with wind predominantly from the southeast.
The site is a microtidal marsh that is flooded 16.88% of the time; it has an annual average
salinity of 9.93 ppt, and 20–40% of its organic matter content is based on the Coastwide
Reference Monitoring System database, station CRMS 0224 [19]. In addition, it is an Ameri-
flux site (Site ID US-LA3, [20]), where Eddy Covariance flux measurements are taken in
addition to other ground-based measurements of aerenchyma conductance, chamber-based
measurements of fluxes from specific patch-types. The site’s mean annual temperature is
20.9 degree Celsius and annual precipitation is 1623 mm [20]. The Eddy Covariance data
include carbon fluxes and meteorological data (air temperature, relative humidity, pressure,
wind speed and direction, net radiation, photosynthetic active radiation, soil temperature,
and precipitation). The Gross Primary Production (GPP) and ecosystem respiration (ER)
were modeled from the observed net ecosystem exchange of CO2 (NEE) and additional
meteorological variables using an artificial neural network [21] and following standard
Ameriflux data processing [22]. The GPP and ER were used for model parameterization.
Water depth, vegetation cover fraction, and surface water depth data were retrieved from
the Coastwide Reference Monitoring System database, station CRMS 0224 [19], and used
as input for the ELM.

2.3. Classification of the Reference Patch-Types at the US-LA3 Site

Following Ju and Bohrer [10], we used a WorldView-3 multi-spectral image for day
18 August 2018 to develop a reference for the ground truth of the patch-type among the
coarser HLS pixel locations. The WorldView-3 multi-spectral image was requested through
the Commercial Smallsat Data Acquisition (CSDA) Program as Pansharpened (level 2A).
The Image ID is 10400100408C8100. The image resolution was 1.24 m, and it fitted the
quality-check requirements for most pixels included within the image, which overlap
with the wetland area. The supervised classification of the high-resolution WorldView
image during peak growing season was used as reference for the ground truth patch-type
observation. We used reflectance data in several spectral bands at once to group pixels
with similar values. Red, green, blue, and red edge and NIR bands were used as input
data for cluster analysis, applying the K-means approach and using Euclidean distance
as the metric. The image pixels were classified using a predetermined number of classes,
which for US-LA3 were three: Juncus-dominated, Spartina-dominated, and open water
(Figure 2a). This classified image was rasterized and upscaled to match the HLS resolution.
Each HLS-matching pixel in this upscaled WorldView image was reclassified based of the
dominant (>50%) type among all pixels of the original high-resolution WorldView image
within that upscaled pixel. We identified 10 “pure pixels” of Spartina and 5 of Juncus (Juncus
is much less present than Spartina). “Pure pixels” are defined such that at least 80% of the
original WorldView high-resolution pixels within a single upscaled HLS-matching pixel
belonged to the same patch-type (Figure 2b). Satellite data was processed using GDAL
3.6.4 and the corresponding calculations for the site classification were performed using
Python 3.11 code relying on open-source packages. In particular, tslearn 0.6.3 package was
applied for cluster analysis. Site classification was visualized using QGIS 3.22.

2.4. Seasonal NDVI Timeseries-Based Classification of Patch-Types at US-LA3 from HLS

We used HLS data containing two main surface reflectance products: (1) Setntinal-2A
and Sentinel-2B and (2) Landsat (https://lpdaac.usgs.gov/products/hlsl30v002/ (accessed
1 August 2023) and https://lpdaac.usgs.gov/products/hlss30v002/ (accessed on 1 August
2023) for Landsat and Sentinel datasets, respectively). Our site falls within tile 16RBT.

https://lpdaac.usgs.gov/products/hlsl30v002/
https://lpdaac.usgs.gov/products/hlss30v002/
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For each pixel, the Normalized Difference Vegetation Index was calculated using the
HLS-retrieved red and NIR bands:

NDVI = (NIR − Red)/(NIR + Red) (1)

Using Equation (1), we calculated the NDVI index for each pixel of the HLS dataset
and retrieved a timeseries for each year in the range of 2016–2023.
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Figure 2. Result of patch-type classification using K-means approach: (a) WorldView-3 initial high-
resolution classification (1.24 m grid) and (b) WorldView-3 upscaled classification to HLS resolution
(30 m grid). Circular dots represent examples of “pure pixels” of uniform land cover used to derive
the standard NDVI timeseries. The yellow square indicates a 480 × 480 m2 area centered at the flux
tower, corresponding roughly with the area sampled by the flux tower observations.

We matched each pixel locations in the HLS images during the growing season sur-
rounding August 2018 to the corresponding pixels in the upscaled WorldView image. We
further identified the locations selected as “pure pixels”. For each pure pixel, we extracted
the seasonal timeseries of the NDVI during that growing season. We averaged these time-
series per patch-type (keeping all the temporal points within the season and averaging
over all pure pixel locations of the same patch-type within each time frame). This average
timeseries was defined as the characteristic NDVI seasonal “standard” per patch (Figure 3).
We then used the Dynamic Time Warping (DTW) approach [23] to calculate the similarity
between the seasonal timeseries of each of the other HLS pixels (including locations that
were not selected as “pure” during the growing season of 2018, and all pixel locations in the
HLS images of other years) and these characteristic seasonal standards. We identified the
dominant patch-type as the type with the characteristic timeseries that is the most similar to
the one observed in each pixel location, each year. The area of interest for ELM simulations
is the vegetation cover within the fetch of the Eddy Covariance tower, which was ~250 m
in our case. Thus, the area within the tower’s observation footprint can be roughly defined
as a 480 m × 480 m square centered at the tower. This area was included in the patch-type
classification used as an input for the ELM. This classification was conducted for each of
the years of 2016–2023. Figure 3 shows the timeseries of HLS-classified patch-types for
US-LA3.
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2.5. ELM Overview and Simulation Set-Up

The ELM is a well-established land model that has been used in many studies [24–31],
with some focusing on wetlands [4,32]. The ELM wetland methane module was derived
from CLM4Me [2], wherein the model is capable of simulating methane production and
oxidation, while also accounting for the three key pathways of methane transport: diffusion,
ebullition, and plant aerenchyma. Recent developments targeting the wetland land unit
in the ELM focused on representing the different vegetation types within a wetland at the
sub-grid level. Such improvements helped represent the within-wetland biogeochemical
and hydrological heterogeneity of eco-hydrological patches forming a wetland and im-
proved the resulting methane flux and soil concentration estimations by reducing their
corresponding uncertainties.

US-LA3 was simulated using an ELM. Simulations were spun-up according to pro-
tocols in [33]. Spin-up was divided into a 400-year-period of accelerated spin-up that
allowed the accumulation of carbon to reach an equilibrium state, followed by a regular
spin-up for another 400 years, when normal decomposition parameters were applied [27].
After spin-up, the model was run from year 1850 until 2023 using the Global Soil Wetness
Project forcing and historical CO2 concentrations [24,34]. Carbon flux measurements are
available on-site for years 2021–2022. These data were used to parameterize the model so
that it was more representative of the site’s methane and CO2 dynamics. Parameterization
included the parameters controlling photosynthesis and respiration. The objective function
was set to minimize the root mean square error between modeled and observed EC flux
timeseries, namely the Gross Primary Production (GPP) and ecosystem respiration (RECO).
The Bayesian Optimization for Anything (BOA) workflow was used in the optimization
process [35]. Observation-based vegetation-specific parameter values for the conductance
of methane (in the soil and plant aerenchyma) and surface water elevation were prescribed
as input and forcing for the model, respectively. ELM results processing was performed
using Matlab 2018b.

2.6. Field Data

Many ground-based field measurements were used to parametrize the model. Flux
data were derived from the US-LA3 Eddy Covariance tower measuring carbon fluxes in ad-
dition to meteorological variables (air temperature, relative humidity, pressure, wind speed
and direction, net radiation, photosynthetic active radiation, soil temperature, and precipi-
tation) for years 2021 and 2022. Surface water depth data (used as a forcing in the model)
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were retrieved from the Coastwide Reference Monitoring System database, station CRMS
0224 (CPRA 2023). Chamber flux and porewater samplings were conducted for methane
flux and methane soil concentrations, respectively, over years 2021 and 2022 [36], which in
return were used to calculated the vegetation-specific conductance for methane flux.

3. Results
3.1. US-LA3 Classification

Since we considered the classification based on the WordView-3 data to be close to the
truth based on the field observations, we evaluated the accuracy of the HLS classification
through a confusion matrix of the WorldView-3 classification and the HLS classification
results (Table 1). According to the HLS NDVI timeseries classification, open water and
Spartina patches were recognized quite successfully (86.74% and 93.45%, respectively),
while the Juncus classification had an accuracy of only 55.66%.

Table 1. Confusion matrix of the WorldView-3 classification and the HLS classification results for
year 2018.

HLS Classification Patch-Type, Number of Pixels Total
(WorldView-3)

% HLS Pixels
Matching

WorldView-3Open Water Juncus Spartina

WorldView-3
classification
patch-type,
number of

pixels

Open water 2178 4 329 2511 86.74%

Juncus 0 123 98 221 55.66%

Spartina 0 102 1456 1558 93.45%

Total (HLS) 2178 229 1883

Using the NDVI-based method, the patch distribution for the years 2016 through
2023 were derived. Figure 4 shows the yearly classification for each of the three distinct
patch-types in the wetland, and Table 2 summarizes the vegetation cover under the tower
footprint based on the NDVI-based classification used as input for the ELM to derive the
corresponding methane and carbon flux.

Table 2. Summary of vegetation cover within the EC tower footprint derived from NDVI-based
classification.

Year Vegetation Pixel Count Percent Cover

2016
Juncus 6 2.3

Spartina 250 97.7

2017
Juncus 32 12.5

Spartina 224 87.5

2018
Juncus 84 32.8

Spartina 172 67.2

2019
Juncus 117 45.7

Spartina 139 54.3

2020
Juncus 108 42.2

Spartina 148 57.8

2021
Juncus 59 23.0

Spartina 197 77.0

2022
Juncus 91 35.5

Spartina 165 64.5

2023
Juncus 109 42.6

Spartina 147 57.4
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Figure 4. Results of US-LA3 within-wetland eco-hydrological patch-type classification using the
NDVI-based classification method for years 2016–2023 using HLS data.

3.2. ELM Results

Two different sets of ELM simulations of US-LA3 were run from years 2016–2023. The
first one used a constant vegetation coverage where the site was assumed to be 50% Spartina
and 50% Juncus. The second one used the HLS-classification results listed in Table 2 to
prescribe the yearly vegetation patch-type distribution. Our analysis focused on comparing
the results from the two ELM simulations regarding aerenchyma flux (plant-mediated
methane transport), which is one of the three components of total methane flux, and the
most sensitive to vegetation type. Figure 5 shows that, when using HLS classification for
vegetation cover to run the model, the aerenchyma flux shows high interannual variability,
with high fluxes in years 2016–2017, followed by a significant decrease around years
2018–2021, and further followed by an increase in the following years.

In order to assess the impact of HLS data on the ELM’s methane estimations, we
evaluated both simulations against the observed methane flux at the Eddy Covariance flux
tower at US-LA3. The EC tower provides the data of the total methane flux over years
2021–2022 at a half-hourly timescale. As presented in Figure 6, model validation results
(using a linear regression between the observed and modeled total methane flux) showed a
slight improvement in R2, while a more significant improvement is observed in the Root
Mean Square Error (RMSE) of the regression, which was decreased by 7.5% when using
HLS-classified vegetation cover.
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Figure 6. Regression of modeled vs. observed total methane flux over the years 2021–2022 (where
flux observations were available) for ELM simulations using average vegetation coverage (left panel)
and HLS-classified vegetation cover. The black line represents the regression fit, and the red line
represents the ideal 1:1 line.

4. Discussion

The confusion matrix results show that Spartina-dominated patches were better classi-
fied than Juncus-dominated ones, where the base-year HLS classification for Spartina had
a 93.45% match with the WorldView classification compared to 55.66% for Juncus, which
was often misclassified as Spartina. This is largely due to the fact that both species’ NDVI
timeseries are close in terms of absolute values, with a difference in that Juncus shows a
distinct NDVI peak in July, i.e., an increase in the early growing season, that is then followed
by a browning period at the end of the season, while Spartina is more constant over the year
(Figure 3). The site is dominated by Spartina, where Juncus patches are dispersed within
Spartina-dominated areas. As shown in Figure 7b, most of the misclassified pixels for both
Juncus and Spartina are present in the middle of the wetland (away from water edges). We
suspect that these pixels present a true near-equal mix of both vegetations, which led to this
apparent misclassification. The abundance of these misclassified pixels (yellow and green
pixels in Figure 7b) is similar for both vegetation types in that central area, but since Juncus
is much less abundant than Spartina, they represent a large portion of the Juncus, leading to
the high percentage of misclassified Juncus pixels. As for misclassified open water pixels,
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most were misclassified as Spartina and were mostly present at the vegetation–water edge
(Figure 7b).
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Our results correspond with those of several studies that made use of reflectance data
to obtain NDVIs and use them as a tool for land cover classification [37,38], with a special
focus on vegetation classification in inundated areas [39,40]. Ouyang et al. [41] showed
that the differences in saltmarsh communities’ spectral characteristics is a function of their
phenological stages, while Gao et al. [42] has showed that spectral characteristics across
seasons improve saltmarsh vegetation classification. Thus, the inclusion of NDVI timeseries
instead of relying on NDVI point measurements plays an important role in improving
wetland mapping [43]. A similar approach to our NDVI-based classification of within-
wetland vegetation type was presented by Sun et al. [44], where the HuanJing 1 (HJ-1)
satellite was used to build monthly NDVI timeseries and classify saltmarshes in the coast
of Jiangsu in east China, which resulted in accurate classifications of vegetation types, thus
emphasizing the promising role that NDVI timeseries has in classifying within-wetland
eco-hydrological patches [45].

Including the classification results as input in the ELM simulations led to substantial
improvements in the plant-mediated methane flux, known as aerenchyma (Figure 5),
whereby in including the yearly vegetation classification, the methane flux was then a
function of the vegetation cover and the impact of the latter is shown in the ELM-output
methane flux. Spartina is more conductive to methane flux compared to Juncus [36]; thus,
whenever more Juncus is present on-site, a lesser total of aerenchyma flux should be
emitted from the site. Note that this does not necessarily mean that more total methane flux
would be emitted. Indeed, as shown in Figure 5, the increase in the Juncus presence over
years 2018 and 2019 was reflected in a reduced aerenchyma flux when using HLS-derived
classification, which was not the case when using a constant average vegetation cover over
all simulated years.

The validation results using methane flux observations show that using HLS-derived
classification reduced the estimation error of the predicted total methane flux by around
7.5%. It must be noted that the EC tower measures the total flux, which includes contribu-
tions from the three methane transport pathways: diffusion, ebullition, and aerenchyma.
Using the HLS-derived classification is expected to particularly improve the representation
of the dynamics of methane aerenchyma transport. In our version of an ELM, we resolved
each vegetation as a separate soil column, where minimal feedback existed between the
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two simulated vegetation types. Therefore, the effect that HLS-derived classification had
on the total methane flux was mostly through correctly weighting the methane transport
dynamics (mostly ebullition and aerenchyma) between the different vegetations when
deriving the total methane flux.

HLS-Classification Uncertainty and Its on Impact Simulated Methane Flux

There is a significant gap between the small scale of vegetation heterogeneity (scale
of a few 10s of cm) and the HLS resolution (30 m × 30 m). Therefore, HLS NDVI-based
classification will assign each pixel to the majority of its vegetation cover, thus over-
representing the dominant patch-type and under-representing less common types that do
not form large patches, which could provide a source of bias in the classification results. In
addition, another source of uncertainty is attributed to the increased cloud presence during
the early growing season. A main component of the NDVI-based classification method is
the NDVI timeseries derived from the “pure pixels” used as a standard to classify all other
pixels to their dominant patch-type. It is common to have missing NDVI observations in
the early growing season due to increased cloud cover, which coincides with the increase in
the vegetation NDVI, defining the trend or signature of this specific patch-type compared to
others. These high-cloud-cover data points are usually filtered out during data processing,
which would contribute to the uncertainty coupled with the NDVI-based classification.

In order to further analyze the uncertainty introduced with the use of the HLS-derived
classification method, we compared its results to those of the WorldView-derived classifica-
tion for year 2018 within our area of interest, i.e., 480 × 480 m2 around the EC tower. Using
the supervised classification of the WV data, we obtained the high-resolution (1.24 m),
high-accuracy classification (WVHigh-Resolution). Then, we upscaled the WV high-resolution
grid to the HLS resolution (30 m × 30 m) and counted the majority patch-type in each
upscaled pixel to obtain a WVUpscaled classification, matching the HLS resolution, but
accounting for high-accuracy data. We compared these two classification results to those
of the HLS-derived classification. Table 3 shows the results of the classification of each
method and the difference (∆) or mismatch between the three different methods. Figure 8
shows the corresponding classification map of the three techniques. The results show that
upscaling to the HLS resolution leads to an underestimation of open water patches in the
area of interest (where open water patches are rare and small), but with a minimal effect on
the final overall results (Table 3).

Table 3. Patch-type classification for year 2018 under tower footprint using the three different
classification methods while evaluating the mismatch between them.

Percent of Pixels (%) Classification Mismatch ∆ (%)

Patch-type WVHigh-Resolution WVUpscaled HLS ∆ (WVUpscaled −
WVHigh-Resolution)

∆ (HLS −
WVHigh-Resolution)

∆ (HLS −
WVUpscaled)

Open Water 4.92 2.34 0 −2.58 −4.92 −2.34

Juncus 32.98 31.25 32.8 −1.73 −0.18 1.55

Spartina 62.1 66.41 67.2 4.3 5.1 0.79

In order to further investigate this impact on the total methane flux, we ran the ELM
for 2018 using the WVHigh-Resolution classification results and obtained the RMSE between
simulated methane flux using WVHigh-Resolution as input for the vegetation cover and simu-
lated methane flux using HLS as input for vegetation cover. The RMSE between these two
simulations is 3.14 nmol m−2 s−1, which we consider to be the error introduced to the total
methane flux using the HLS-derived classification method. To have a better understanding
of the uncertainty introduced by the HLS method, we compare it to the estimated error of
the EC flux measurement, which in our case was 27 nmol m−2 s−1 at US-LA3 for the two
years when measurements were available (2021–2022). Thus, the error introduced to the
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methane flux simulation results due to the HLS classification error is minimal, especially
when compared to the existing uncertainty of methane flux observations.
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Figure 8. Results of the different classification methods for year 2018. The upper row shows the
results for the whole plot, and the lower row shows the results for the 480 m × 480 m square around
the tower. The left column corresponds to the classification based on high-resolution WorldView data
((a) for whole plot and (d) for plot within tower footprint), i.e., expert-supervised classification with
no resampling, and the second column corresponds to the classification based on WV data as well but
upscaled to the HLS resolution by summing up all high-resolution pixels’ patch-types to determine
the majority patch-type of each upscaled, low-resolution pixel ((b) for whole plot and (e) for plot
within tower footprint), and the right column shows the results of the HLS classification method
((c) for whole plot and (f) for plot within tower footprint).

Although NDVI-based classification using HLS data showed to be a good estimate
of yearly vegetation cover at the wetland site and improved the estimation of methane
flux, there are gaps that need to be addressed in order to further reduce the uncertainty
in methane flux estimations. Our NDVI-based classification provides information about
the vegetation cover map without accounting for the inundation dynamics at the site.
We effectively assumed that the vegetation cover in a given pixel remains the same for
the whole year, and that there are no other sources of environmental variability among
patches of the same type (e.g., all open-water patches have the same depth). However, these
vegetation covers are changing from a diurnal/weekly level due to daily changes in surface
water elevation to other slower effects such as saline intrusion and herbivory, which should
to be taken into consideration for more accurate estimations of the effects of vegetation
cover on surface fluxes [46]. Although our version of the ELM uses observed water surface
elevations to force the water dynamics of the wetland, we did not include high-resolution
bathymetry information, which could help define the dynamics of intra-annual vegetation
cover, and account for additional spatial heterogeneity. In addition, it must be noted that
methane estimations in LSMs are subject to many sources of error other than those related
to the accurate representation of the within-wetland eco-hydrological patch-types. These
limitations include the bulk representation of methane production in LSMs, which is usually
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set to be a function of upland biogeochemistry while not representing the different path-
ways for methane production [47,48]. In addition, the lack of representation of lateral flow
between grid-cells, which limits the ability of LSMs in resolving reactive transport, which
in turn will result in biases with modeling methane oxidation and inundation dynamics.
Many efforts are underway to overcome these limitations and have a better representation
of methane dynamics in wetlands [49], and improved patch-type observations will serve
these efforts well.

5. Conclusions

In this study, we implemented a within-wetland eco-hydrological patch classification
using the NDVI-based technique using NASA’s Harmonized Landsat-Sentinel open-source
dataset. The classification was applied on a coastal wetland in Louisiana, a brackish marsh
dominated by intermittent Juncus and Spartina vegetation with sparse open water patches.
The classification results were then used as input for the E3SM Land Model to provide the
model with necessary information about the wetland’s vegetation cover over the simulated
years and used to improve methane flux estimations from the site. Classification showed
very good results for Spartina and open water that were mostly, successfully classified,
while Juncus had a lower performance due to the close range of the NDVI compared to
that of Spartina. The ELM simulations showed that accounting for the observed vegetation
cover change over the years improved the representation of methane flux dynamics, while
reducing the uncertainty of the total methane flux estimations. The error introduced by
resampling WorldView data to the HLS resolution showed to have minimal effect on the
classification and, consequently, the methane flux results. The NDVI-based classification
approach offers a substitute for ground observations of vegetation patch-type distribution
in wetlands worldwide. Using the processed remote sensing observations of vegetation
patch-types will allow us to account for vegetation distribution impacts on the plant-
mediated methane flux from wetlands, usually responsible for the significant methane
emissions from coastal wetlands. Our study shows promising results for integrating the
remote sensing-based mapping of land cover change into land surface models, which
would significantly improve their performance and lead to more accurate predictions.
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