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Abstract: Spatiotemporal assessment and a comprehensive understanding of cropland sustainability
are prerequisites for ensuring food security and promoting sustainable development. However,
a remote sensing-based approach framework that is suitable for large-scale and high-precision
assessment and can reflect the overall sustainability of cropland has not yet been developed. This
study considered a typical lateritic red soil region of Guangdong Province, China, as an example.
Cropland sustainability was examined from three aspects: natural capacity, management level, and
food productivity. Ten typical indicators, including soil organic matter, pH, irrigation guarantee
capability, multiple cropping index, and food productivity, among others, were constructed using
remote sensing technology and selected to represent these three aspects. Based on the indicator
system, we assessed the spatiotemporal patterns of cropland sustainability from 2010 to 2020. The
results showed that the natural capacity, management level, and food productivity of cropland had
improved over the 10 years. The cropland sustainability score increased from 67.95 to 69.08 over this
period. The sustainability scores for 68.64% of cropland were increased and were largely distributed
in the eastern and western region of the study area. The croplands with declining sustainability
scores were mostly distributed in the central region. The prefecture-level regions differed in cropland
sustainability, with Zhongshan, Zhuhai, and Qingyuan cities exhibiting the highest values, and
Zhanjiang the lowest. Exploring the underlying mechanisms of cropland sustainability and proposing
improvement measures can guide decision-making, cropland protection, and efficient utilization,
especially in similar lateritic red soil regions of the world.

Keywords: cropland sustainability; remote sensing; evaluation indicator; lateritic red soil; spatiotemporal
assessment

1. Introduction

Cropland, as the most important natural resource for agricultural production, forms
the material basis for human survival and development [1,2]. Evaluating the sustainability
of cropland is crucial to ensuring food security and achieving the UN Sustainable Develop-
ment Goal: Zero Hunger. However, with the continuous growth of the global population
and the rapid development of the social economy, the sustainable use of cropland in as-
pects such as soil quality and productivity are now seriously threatened [3,4]. Previous
studies have shown that one-third of the cropland in China’s protected areas could be
withdrawn due to inferior sustainability [5]. Thus, ways in which to improve cropland
sustainability have attracted increasing attention. Evaluating cropland sustainability can
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provide stakeholders with useful decision-making information and provide a theoretical
basis for sustainable utilization of cropland.

Cropland sustainability is a comprehensive and evolving concept [6]. Early cropland
sustainability assessments focused on the productive capacity of cropland. For example,
previous studies monitored the growth of crops at different growth stages and used the
results to predict crop yields, thereby providing a basis for assessing cropland sustain-
ability [7,8]. However, crop yield is only a limited representation of the productivity of
cropland, and it is difficult to infer sustainability from only this aspect. Constructing an
indicator system is also necessary for evaluating cropland sustainability [9–11]. In these
studies, satellite remote sensing, ground sensors, and other technical means can be used
to monitor dynamically and evaluate soil quality and the utilization capacity of cropland.
However, these existing frameworks only focus on one or a few aspects of cropland sus-
tainability, such as productivity [12,13] and soil quality [14,15]. As a semi-artificial and
semi-natural ecosystem, cropland sustainability is a complex concept that combines natural
conditions, management factors, the below-ground soil community, and above-ground crop
growth [16]. Therefore, there is an urgent need for a cropland sustainability assessment
framework that can reflect comprehensive information concerning the natural properties,
field management, and crop production capacity.

Selecting reasonable evaluation indices and constructing an index system are the keys
to evaluating cropland sustainability [17]. Many previous studies focused on exploring
indices that can represent cropland soil quality such as soil fertility [18], soil pH [19],
soil organic matter (SOM) [20], and other soil nutrient indicators [21]. Slope is also a
key indicator of whether cropland is suitable for farming; when the slope exceeds 25
degrees, the cropland is unsuitable for food production [22,23]. Irrigation and drainage
conditions are important indicators of the level of cropland management [24]. Land use
intensity has often been used to characterize the ecological environment of cropland [25].
Crop yield, land economic benefits, and farmer income are normally used to reflect the
socio-economic benefits of cropland [26]. Although existing studies have scientifically
revealed several important factors influencing the sustainable use of cropland, such as
natural conditions, soil fertility, and farmland productivity, a comprehensive assessment
of cropland sustainability is still lacking and the acquisition of key indicators is often
inefficient, especially at the regional scale.

At present, the evaluation methods for cropland sustainability include comprehensive
index methods [10,17], pressure–state–response frameworks [27,28], remote sensing-based
models [29–31], and fuzzy comprehensive evaluation models [32]. The comprehensive
index method can evaluate cropland sustainability using multiple factors, and it is conve-
nient to calculate and has strong applicability; however, it is easily affected by subjective
factors [16]. Fuzzy comprehensive evaluation models have a multilevel comprehensive eval-
uation function, but the calculation process is complicated [33]. Pressure–state–response
models can quantitatively evaluate cropland sustainability, but they lack mechanical ratio-
nality [27]. Remote sensing technology is a cost-effective, rapid, and reproducible method
for providing quantitative and spatial distribution information on soil properties [34]. Stud-
ies have shown that soil attributes are affected by both time-invariant factors (such as soil
type, topography, and slope) and time-variable factors such as precipitation, temperature,
vegetation type, and tillage practices [35,36]. Remote sensing technology can be used to
infer both invariant and variable factors. Previous studies emphasized that remote sensing
technology can significantly improve the efficiency and accuracy of soil attribute estima-
tion [37,38] and can overcome the influence of spatial variability of soil properties [39,40].
For example, a previous study selected 15 vegetation indexes to estimate the temporal and
spatial changes in soil pH in typical black soil areas of northeast China [41]. An existing
study selected 17 environmental covariates from the aspects of terrain, climate, soil type,
land use, land cover, crop growth, and productivity to examine the spatial distribution of
soil pH [42]. Most such studies only focused on the prediction of soil attributes of a single
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period in one area at a regional scale. Few studies have quantified the temporal variation
of soil attributes in multiple cropland plots at regional scales through remote sensing.

Lateritic red soil is formed by rapid desilication and aluminum-enriching processes
under the influence of the monsoon climate of South Asia. The soil is characterized by
strong acidity, heavy viscosity, and low nutrient levels [43,44]. Lateritic red soil covers
an area of more than 400,000 square kilometers globally and is primarily concentrated in
China [45]. The lateritic red soil region is an important base for grain production in South
China because of its superior hydrothermal conditions; the cropland sustainability of this
area affects the survival and livelihoods of nearly 200 million people [46]. Improving the
cropland sustainability of lateritic red soil is particularly crucial for increasing farmers’
incomes and ensuring food security. However, the cropland in a lateritic red soil region has
not been researched in terms of sustainability.

This study considered the cropland in the lateritic red soil region of Guangdong,
China, as the study area. A comprehensive cropland sustainability evaluation system was
developed (ten typical indicators were selected from three aspects, including soil organic
matter, pH, irrigation guarantee capability, utilization intensity, and food productivity),
while remote sensing technology was adopted to quantify the spatiotemporal characteristics
of cropland sustainability from 2010 to 2020. The purpose of this study was as follows: (1) to
propose a universal assessment indicator system and a remote sensing-based framework
for cropland sustainability in a lateritic red soil region; (2) to reveal the spatial differences
in and temporal dynamics of changes in cropland sustainability in the lateritic red soil
region of Guangdong Province over the past decade; (3) to provide a scientific basis for the
sustainable development of cropland in a lateritic red soil region, ensuring the efficient use
of cropland and increasing grain yield.

2. Materials and Methods
2.1. Study Area

Lateritic red soil is distributed in Guangdong, Guangxi, Fujian, Yunnan, Hainan, and
other southern region of China (Figure 1a). Guangdong Province has the largest area,
accounting for 37% of the total lateritic red soil region in China [46]. Lateritic red soil is
mainly distributed in the middle part of Guangdong province, which covers 21 prefecture-
level cities and 76 counties (Figure 1b). The topographic characteristics of the lateritic red
soil region in Guangdong Province are generally described as “high in the north and low in
the south” (Figure 1c). The mean annual precipitation (MAP) is 1300–2500 mm (Figure 1d),
and the mean annual temperature (MAT) is between 20 and 24 degrees (Figure 1e), making
the area especially suitable for crop growth. As the main soil resource in Guangdong
Province, lateritic red soil has strong potential for agricultural production. However, due to
the continuous growth of the population, rapid development of the economy, and intensive
farming, the sustainability of cropland in the lateritic red soil region of Guangdong Province
is currently being threatened, leading to issues such as soil acidification, nutrient loss, and
the thinning of soil layers [43,44]. Therefore, it is essential to evaluate the spatiotemporal
patterns of cropland sustainability in a lateritic red soil region for managing and protecting
local agricultural resources.
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precipitation (MAP); (e) Mean annual temperature (MAT). CZ: Chaozhou; DG: Dongguan; FS: Fo-
shan; GZ: Guangzhou; HY: Heyuan; HZ: Huizhou; JM: Jiangmen; JY: Jieyang; MM: Maoming; MZ: 
Meizhou; QY: Qingyuan; ST: Shantou; SW: Shanwei; SG: Shaoguan; SZ: Shenzhen; YJ: Yangjiang; 
YF: Yunfu; ZJ: Zhanjiang; ZQ: Zhaoqing; ZS: Zhangshan; ZH: Zhuhai. 

2.2. Data Collection 
In this study, the spatial distribution data were derived from the China Land 
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on the land cover classification system, the dataset includes six first-level types of culti-
vated land, forest land, grassland, water area, construction land, and unused land. To en-
sure the classification accuracy of the dataset, a random sampling verification method and 
the Kappa coefficient were used [47]. The dataset utilized in this research is known for its 
scientific classification system and high accuracy and has been widely used in scientific 
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Figure 1. Overview map of the study area. (a) Lateritic red soil distribution in China; (b) Lateritic
red soil distribution in Guangdong province; (c) Digital elevation model (DEM); (d) Mean annual
precipitation (MAP); (e) Mean annual temperature (MAT). CZ: Chaozhou; DG: Dongguan; FS: Foshan;
GZ: Guangzhou; HY: Heyuan; HZ: Huizhou; JM: Jiangmen; JY: Jieyang; MM: Maoming; MZ: Meizhou;
QY: Qingyuan; ST: Shantou; SW: Shanwei; SG: Shaoguan; SZ: Shenzhen; YJ: Yangjiang; YF: Yunfu;
ZJ: Zhanjiang; ZQ: Zhaoqing; ZS: Zhangshan; ZH: Zhuhai.

2.2. Data Collection

In this study, the spatial distribution data were derived from the China Land Use/Land
Cover Remote Sensing Monitoring data (CNLUCC) for 2010 and 2020. The CNLUCC
dataset is based on Landsat TM/ETM and Landsat OLI remote sensing images that are
generated by artificial visual interpretation with a spatial resolution of 30 m. Based on
the land cover classification system, the dataset includes six first-level types of cultivated
land, forest land, grassland, water area, construction land, and unused land. To ensure the
classification accuracy of the dataset, a random sampling verification method and the Kappa
coefficient were used [47]. The dataset utilized in this research is known for its scientific
classification system and high accuracy and has been widely used in scientific research [17].
In this study, the overall classification accuracy of the 2010 and 2020 classification datasets
exceeded 90% [47]. The details concerning the data used in this study are shown in Table 1.
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Table 1. Data sources and attributes.

Indicator Sources Year Attribute Resolution

Soil organic matter
(SOM) Ground measured soil data 2010/2020 Point —
Soil pH

Soil texture Basic soil property dataset of high-resolution China
Soil Information Grids (http://www.geodata.cn/

3 March 2023)
2010–2018 raster 1 km × 1 kmSoil thickness

Slope DEM (http://www.gscloud.cn/ 19 January 2023) 2011 raster
500 m × 500 m

Irrigation guarantee
capability

MOD 16 A2 data (https://earthdata.nasa.gov/
10 April 2023) Meteorological data
(http:/data.cma.cn/ 5 April 2023)

2010/2020 Raster/point

Centralized contiguity
Remote sensing monitoring data of land use/land
cover in China (CNLUCC) (https://www.resdc.cn/

12 December 2022)
2010/2020 raster 30 m × 30 m

Multiple-cropping
index

Annual dynamic dataset of global cropping
intensity

(https://doi.org/10.6084/m9.figshare.14099402
24 March 2023)

2010/2019 raster 250 m × 250 m

High food productivity MOD 09 A1
MOD 17 A3 (https://earthdata.nasa.gov/

15 August 2023)

2008–2012
2018–2022

raster 500 m × 500 mStable food
productivity

In this study, the spatial distribution of cropland in the lateritic red soil region of
Guangdong province was extracted from the CNLUCC dataset. We used the MODIS
Reprojection Tool to preprocess the MOD 09A1, MOD 16A2, and MOD 17A3 datasets to
obtain band reflectance, evapotranspiration data, and net primary productivity (NPP),
respectively. Using ArcGIS (version 10.6), the slope of the cropland was calculated based
on the digital elevation model (DEM) data. Soil property data and the multiple-cropping
index were extracted from the basic soil property dataset of high-resolution China soil
information grids and the annual dynamic dataset of global cropping intensity, respectively.
Fragstats (version 4.2) was used to calculate the centralized contiguity. In this study,
the meteorological data were preprocessed using an outlier test, after which they were
interpolated. To unify the evaluation unit, the spatial resolution of all data was resampled
to 500 m × 500 m.

2.3. Methodological Framework for Cropland Sustainability

This study evaluated cropland sustainability from three aspects: natural capacity,
management level, and food productivity (Figure 2).

Lateritic red soil is characterized by poor fertility, acidity, high viscosity, and a thick soil
layer [43,44]. Therefore, SOM, soil pH, soil texture, and soil layer thickness were selected
as indicators of the natural capacity of the cropland. SOM can affect the physical, chemical,
and biological properties of soil, and thus is the core index for evaluating soil quality [48].
Soil pH is closely related to the availability of soil nutrients in cropland [49]. Soil texture is
closely related to soil nutrient content, aeration, and water and fertilizer retention [50]. Soil
thickness can affect the cultivability of cropland [51]. In addition, slope is closely related to
soil erosion and affects the spatial differences in soil moisture and nutrients [23]. In this
study, a higher SOM content, neutral soil pH, finer soil texture, deeper soil thickness, and
lesser slope indicated a higher natural capacity of the cropland.

The management level of cropland was evaluated from three aspects: irrigation guar-
antee capability (IGC), centralized contiguity, and multiple-cropping index. The cropland
in the lateritic red soil region consists primarily of paddy fields. Therefore, we selected the
IGC as one of the indicators. The IGC represents the infrastructure level of the cropland.
The stronger the IGC of cropland, the more advanced is its infrastructure. The cropland in a
lateritic red soil region is usually fragmented, and small patches are often abandoned. Thus,

http://www.geodata.cn/
http://www.gscloud.cn/
https://earthdata.nasa.gov/
https://www.resdc.cn/
https://doi.org/10.6084/m9.figshare.14099402
https://earthdata.nasa.gov/
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the centralized contiguity was selected as one typical index to reflect cropland sustainability.
The centralized contiguity is used to represent the degree of spatial aggregation of cropland.
Centralized contiguity refers to whether cropland is contiguous and to what degree; a
measure that can be calculated by Contig landscape indexes, i.e., indices that can effectively
evaluate the spatial connectivity of target objects [52]. The Contig landscape index ranges
from 0 to 1. The larger the Contig landscape index, the more concentrated and continuous
the cropland. In a lateritic red soil region, cropland is often overutilized due to the favorable
hydrothermal conditions. Multiple cropping indices can represent the utilization intensity
of cropland [53]. The greater the multiple cropping index, the higher is the intensity of
cropland utilization and the lower is the cropland sustainability.
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imaging spectroradiometer, NDVI: normalized difference vegetation index, EVI: enhanced vegetation
index, NPP: net primary production.

Food productivity is the indicator most directly related to and reflective of cropland
sustainability. Given the serious impact of natural disasters on grain production in the
lateritic red soil region, high food productivity and stable food productivity were selected
as key indicators for evaluating cropland sustainability. High food productivity refers to
the average productivity in successive years. Stable food productivity was defined as the
coefficient of variation (CV) of productivity in consecutive years. Larger values of highly
stable food productivity indicate stronger overall food productivity of cropland.

The grading and scores of evaluation indicators are shown in Table 2. The analytic hier-
archy process (AHP) was adopted to build an AHP model, and then the weight coefficients
of the indices were calculated by the Delphi method. The results of the weight calculation
should pass the consistency test (CR value < 0.1). SOM and soil pH were graded according
to the six-level system of international unified classification [23,54]. The classification of
surface soil texture was based on the Chinese soil texture classification standards. The
grading of soil layer thickness, slope, and irrigation assurance ability referred to the na-
tional standard “Croplands Sustainability Grade (GBT33469—2016)”. The classification via
the multiple cropping index was based on existing research results [54]. The classification
and grading of the degree of concentrated contiguous land, high yield, and stable yield of
cropland adopted the natural breakpoint method to minimize the differences within classes
and maximize the differences between classes [55].



Remote Sens. 2024, 16, 1069 7 of 19

Table 2. Indicators and level scores for cropland sustainability.

First-
Level

Indicator

Second-
Level

Indicators

Third-Level
Indicators (Unit)

Weights
The Scores for Different Levels

100 90 80 70 60 50 40 30 20 10

Cropland
sustain-
ability

Natural
capacity

SOM (g/kg) 0.1486 >40 30–40 20–30 10–20 6.0–10 <6.0

Soil pH 0.1199 6.5–7.5 5.5–
6.5 4.5–5.5 3.5–4.5

Soil texture 0.0862 medium
loam

light
loam

heavy
loam

sandy
loam clay sand

Soil thickness 0.0757 >150 100–150 60–
100 30–60 <30

Slope 0.0641 0–2 2–5 5–8 8–15 15–25 >25

Management
level

irrigation
guarantee
capability

0.1225
Fully
satis-
fied

satisfied
basically

satis-
fied

not
satis-
fied

Centralized
contiguity 0.0538 ≥0.5 0.3–0.5 <0.3

Multiple-
cropping index 0.0719 once twice three

times

Food pro-
ductivity

High food
productivity 0.1511 very

high high general
high low very

low

stable food
productivity 0.1062 very

stable stable general
stable unstable

very
unsta-

ble

2.4. Cropland Sustainability Evaluation Based on Remote Sensing
2.4.1. Natural Capacity Evaluation Based on Remote Sensing

In this study, 34 environmental variables were selected from remote sensing, climate,
terrain, and soil properties. Four machine learning models, decision tree (DT), adaptive
enhanced decision tree (AdaBoost), random forest (RF), and support vector regression (SVR),
were used to estimate SOM and soil pH. The feature relative importance of the selected
explanatory variables was evaluated using the four machine learning models. According to
the results, 15 environmental variables were identified as predictors of SOM and pH (Table 3).
A grid search and cross-validation were used to calibrate the parameters of the four machine
learning models. The parameter values of each model are shown in Table 4.

Table 3. Environmental variables for SOM and soil pH estimation of cropland.

Type Environmental Variables Abbreviation Data Sources Select

Remote
sens-
ing

Band reflectance of MODIS B1 B1_mean

MOD 09 A1 https:
//earthdata.nasa.

gov/
15 August 2023

No
Band reflectance of MODIS B2 B2_mean Yes
Band reflectance of MODIS B3 B3_mean No
Band reflectance of MODIS B4 B4_mean No

First derivative of reflectance for MODIS B1 band B1_1st No
First derivative of reflectance for MODIS B2 band B2_1st No
First derivative of reflectance for MODIS B3 band B3_1st Yes
First derivative of reflectance for MODIS B4 band B4_1st Yes

Second derivative of reflectance for MODIS B1 band B1_2nd No
Second derivative of reflectance for MODIS B2 band B2_2nd No
Second derivative of reflectance for MODIS B3 band B3_2nd No
Second derivative of reflectance for MODIS B4 band B4_2nd No

Annual mean of NDVI (Normalized Difference
Vegetation Index) NDVI_mean No

Annual maximum value of NDVI NDVI_max No
Annual mean of EVI (Enhanced Vegetation Index) EVI_mean No

Annual maximum value of EVI EVI_max Yes
Annual mean of RVI RVI_mean No

Annual maximum value of RVI (Ratio Vegetation
Index) RVI_max No

Annual mean of DVI (Difference Vegetation Index) DVI_mean No
Annual maximum value of DVI DVI_max No

Annual mean of SAVI (Soil-adjusted Vegetation
Index) SAVI_mean No

Annual maximum value of SAVI SAVI_max Yes

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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Table 3. Cont.

Type Environmental Variables Abbreviation Data Sources Select

Terrain
Slope Slope DEM http://

www.gscloud.cn/
19 January 2023

Yes
Aspect Aspect Yes

Topographic Wetness Index TWI Yes

Climate
Mean annual precipitation MAP http:

/data.cma.cn/ 5
April 2023

Yes

Mean annual temperature MAT Yes

Soil

Soil Texture STT

http://www.
geodata.cn/ 3

March 2023

No
Soil Bulk Density SBD Yes

Cation Exchange Capacity CEC Yes
Soil silt content STC No

Soil sand content SDC Yes
Soil clay content SCC Yes
Soil Thickness ST Yes

Table 4. Parameters of the four machine learning models.

Model Parameter Value Range Step Size Value

DT

max_depth 10–100 10 40
min_samples_split 1–5 1 1
min_samples_leaf 1–5 1 1
max_leaf_nodes 1–5 1 2

AdaBoost
n_estimators 10–100 10 80
learning_rate 0.1, 0.01, 0.001, 0.0001 - 0.01

RF

n_estimators 50–200 50 150
max_depth 10–100 10 80

min_samples_split 1–5 1 2
min_samples_leaf 1–5 1 1
max_leaf-nodes 1–5 1 1

SVR
kernal Linear, Poly, RBF, Sigmoid - RBF

gamma 0.1, 0.01, 0.001, 0.0001 - 0.01
C 1–10 1 10

2.4.2. Management Level Evaluation Based on Remote Sensing

Based on MOD 16 A2 remote sensing evapotranspiration data and meteorological data,
the effective irrigation amount (EIA), and the irrigation water demand (IWD) of cropland
were calculated by the crop coefficient method and the Penman formula, respectively. The
irrigation guarantee capability (IGC) can be used as an evaluation indicator. The calculation
formula is as follows:

IGC = EIA/IWD (1)

where IGC is the irrigation guarantee capacity of cropland; EIA is the EIA of cropland
(mm); IWD is the irrigation water requirement of cropland (mm). The value of IGC is in
the range of 0–1. The greater the IGC value, the stronger is the irrigation guarantee ability
of cropland. When the EIA of cropland is equal to the irrigation water requirement, the
IGC value is equal to 1, indicating full irrigation ability. When the EIA of cropland is equal
to 0, the IGC value is equal to 0, indicating that the cropland has no irrigation capacity.

2.4.3. Food Productivity Evaluation Based on Remote Sensing

Vegetation indices can effectively characterize plant growth [56,57], and the spatiotem-
poral variation characteristics of cropland productivity can be determined by using long
time series vegetation indexes [8]. Among these, NDVI, EVI, and NPP are the most com-
monly used indices [58,59].

The MOD 09 A1 surface reflectance data product was used to calculate NDVI and EVI,
and then the annual maximum (NDVI_Max) and mean values (NDVI_Mean) of NDVI, the

http://www.gscloud.cn/
http://www.gscloud.cn/
http:/data.cma.cn/
http:/data.cma.cn/
http://www.geodata.cn/
http://www.geodata.cn/


Remote Sens. 2024, 16, 1069 9 of 19

annual maximum (EVI_Max) and mean values (EVI_Mean) of EVI time series of cropland
in the lateritic red soil region of Guangdong Province during 2008–2012 and 2018–2022
were calculated by the maximum synthesis method [12] and the average value method. In
addition, based on the MOD 17 A3 remote sensing product data, the interannual NPP time
series data of cropland in the lateritic red soil region of Guangdong Province for 2008–2012
and 2018–2022 were obtained. Then, the interannual time series data of NDVI_Max,
NDVI_Mean, EVI_Max, EVI_Mean, and NPP of cropland in Guangdong Province after
smoothing year by year were obtained by Savitzky–Golay filtering.

Linear regression [12] was used to construct a time series model between NDVI_Max,
NDVI_Max, NDVI_Max, NDVI_Max, and NPP of cropland and the food production capacity
based on provincial statistical data, and a spatial relationship model between these indicators
and the ground measured yield data was constructed. According to the correlation test results,
the cropland productivity evaluation indicators were screened for significant temporal and
spatial relationships to facilitate the conversion of vegetation index values to cropland
productivity. The strongest correlation was used to evaluate the cropland productivity of the
lateritic red soil region in Guangdong Province in 2010 and 2020.

2.4.4. Comprehensive Index for Cropland Sustainability

The comprehensive index method was used to calculate sustainability. The method
comprises three steps: (1) determining the weight coefficients of third-level indicators;
(2) assigning values for the third-level indicators; (3) calculating the weighted sum of the
third-level indicators. The calculation formula is as follows:

CSS = ∑n
i=1 Wi × Si (2)

where CSS is the cropland sustainability score; Wi is the weight coefficient of the evaluation
index; Si is the score of the evaluation index; n is the number of evaluation indicators.
The value range of the cropland sustainability index is [0, 100]. The larger the index, the
stronger is the cropland sustainability.

2.5. Accuracy Evaluation Method

In this study, the coefficient of determination (R2), the root mean square error (RMSE),
and the mean absolute error (MAE) [15] were used to evaluate the accuracy of predictions
for SOM and pH by the four machine learning models. The model with the highest
prediction accuracy was selected to estimate the spatial distributions of SOM and pH in the
cropland of the study area. The nearer the R2 value is to 1, the closer the RMSE and MAE
values are to 0, indicating a higher prediction accuracy of the machine learning model.

Based on the calculated IGC values, this study first measured the IGC values of the
measured cropland to determine the classification thresholds of different IGC levels and
grade the IGC. In this study, user accuracy (UA), producer accuracy (PA), and overall
accuracy (OA) [47] were used to evaluate the accuracy of remote sensing results of IGC
of cropland. The closer the UA, PA, and OA values are to 1, the higher is the prediction
accuracy of the machine learning model.

3. Results
3.1. Accuracy Verification of Cropland Sustainability Indicators
3.1.1. Accuracy Verification of SOM and Soil pH

The performance results of the four machine learning models for predicting SOM and
soil pH are shown in Table 5. The RF model showed the largest R2 value and the smallest
RMSE and MAE values. The R2 value of the AdaBoost model was also high, greater than
0.6, while the R2 value of the DT model was the lowest. Overall, the RF model could predict
the spatiotemporal patterns of SOM and soil pH in the study area more accurately.
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Table 5. Comparison of model performance for SOM and soil pH remote sensing estimation.

Model Indicator R2 RMSE MAE

DT
SOM 0.48 3.84 g/kg 2.25 g/kg

Soil pH 0.48 0.41 0.32

AdaBoost
SOM 0.63 2.69 g/kg 1.62 g/kg

Soil pH 0.61 0.33 0.24

RF
SOM 0.65 2.63 g/kg 1.57 g/kg

Soil pH 0.64 0.29 0.22

SVR
SOM 0.58 3.21 g/kg 1.71 g/kg

Soil pH 0.53 0.38 0.27
Note: DT: decision tree, AdaBoost: adaptive enhanced decision tree, RF: random forest, SVR: support vector
regression, SOM: soil organic matter, R2: coefficient of determination, RMSE: root mean square error, MAE: mean
absolute error.

3.1.2. Accuracy Verification of IGC

The confusion matrix results of the IGC remote sensing evaluation are listed in Table 6.
In terms of UA and PA, the accuracy result of “fully satisfied” was the highest, while the
accuracy result of “basically satisfied” was the lowest. The OA of IGC between the remote
sensing evaluation and the ground measurement results was 0.75. Overall, the evaluation
results of cropland IGC calculated by MOD16A2 remote sensing evapotranspiration data
and meteorological data were reliable.

Table 6. Confusion matrix of IGC remote sensing estimation.

Irrigation Grade

Evaluated Results

UA PA OAFully Satisfied Satisfied Basically
Satisfied

Not
Satisfied Total

Measured
results

Fully satisfied 376 50 32 20 478 0.79 0.90

0.75
Satisfied 26 123 14 7 170 0.72 0.62

Basically satisfied 9 16 112 32 169 0.66 0.60
Not Satisfied 6 10 28 99 143 0.69 0.63

Total 417 199 186 158 960

Note: UA: user accuracy, PA: producer accuracy, OA: overall accuracy.

3.1.3. Accuracy Verification of Food Productivity

The correlations between the annual maximum and mean values of NDVI and the
annual maximum and mean values of EVI, NPP, and food production capacity are shown
in Table 7. The annual mean of EVI had a strong temporal correlation with statistical
food yield (R2 = 0.60) and had the strongest spatial correlation with measured food yield
(R2 = 0.58), and thus the annual mean of EVI was adopted to reflect food productivity.
The annual mean of EVI for five consecutive years was used to characterize the high food
productivity of cropland, and the CV of the annual mean of EVI for five consecutive years
was used to characterize the stable food productivity of cropland.

Table 7. Comparison of the performance of the vegetation indexes and NPP to estimate food productivity.

Index Temporal Correlation with
Statistical Yield (R2)

Spatial Correlation with
Measured Yield (R2)

NDVI_Max 0.51 0.56
NDVI_Mean 0.62 0.43

EVI_Max 0.50 0.55
EVI_Mean 0.60 0.58

NPP 0.45 0.36
Note: NDVI_Max: annual maximum value of NDVI; NDVI_Mean: annual mean of NDVI; EVI_Max: annual
maximum value of EVI; EVI_Mean: annual mean of EVI; NPP: net primary production; R2: coefficient of
determination.
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3.2. Spatial Patterns of Cropland Sustainability in the Lateritic Red Soil Region of Guangdong
3.2.1. Spatial Heterogeneity of Cropland Sustainability

There was a clear change trend in cropland sustainability from 2010 to 2020. The scores
for the natural capacity of cropland increased from 30.58 to 31.02. The spatial patterns
of the natural capacity of cropland were consistent. The natural capacity of cropland in
the northern region was high, while that of cropland in the southern and western region
was low (Figure 3a,b). The score for the management level of cropland increased from
18.08 to 18.68. The management level of cropland in the east and west was high, while the
management level in the central area was low (Figure 3c,d). The score for food productivity
of cropland increased from 19.32 to 19.43; it was high in the eastern and western region,
but low in the central region (Figure 3e,f). The score for cropland sustainability increased
over the 10 years, from 67.95 to 69.08. Cropland sustainability in the east and northwest
was high while being low in the central region (Figure 3g,h).
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in 2010; (b) natural capacity of cropland in 2020; (c) management level of cropland in 2010;
(d) management level of cropland in 2020; (e) food productivity of cropland in 2010; (f) food productivity
of cropland in 2020; (g) cropland sustainability in 2010; (h) cropland sustainability in 2020.

3.2.2. Cropland Sustainability in Different Prefecture-Level Regions

There were differences in cropland sustainability among prefecture-level regions. The
score for the natural capacity of cropland in MZ was high, while those in JM and ST were
low in 2010. In 2020, the scores for the natural capacity of cropland in ZS and ZH were
high, while that of cropland in ZJ was low. In 2010 and 2020, the scores for the management
levels were high in CZ, but low in FS and ZJ; the score for food productivity in ZS was
higher than that in other regions, and in ZJ was the lowest. The scores for sustainability
were highest in ZS and lowest in ZJ (Figure 4a,b).
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3.3. Temporal Dynamics of Cropland Sustainability in the Lateritic Red Soil Region of Guangdong
3.3.1. Dynamic Changes in Cropland Sustainability from 2010 to 2020

The natural capacity of 62.13% of cropland increased in 2020 compared with 2010
and was widely distributed throughout the study area. The natural capacity of 37.87% of
cropland decreased, largely in the eastern and northern regions (Figure 5a). There was
an improvement in the management level of 95.21% of cropland (Figure 5b). The food
productivity of 79.20% of cropland improved, generally in the eastern and western regions.
The food productivity of 20.80% of cropland declined, primarily in the central region
(Figure 5c). The sustainability of 68.64% of cropland improved, being largely distributed
in the eastern and western parts of Guangdong Province. The sustainability of 31.36% of
cropland declined, mainly in the central region (Figure 5d).
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cropland sustainability (d) from 2010 to 2020.

3.3.2. Changes in Cropland Sustainability in Different Prefecture-Level Regions

Figure 6 shows the changes in cropland sustainability in different prefecture-level regions
between 2010 and 2020. The natural capacity of cropland in ZH, ZS, ST, SG, SZ, and FS signifi-
cantly increased while slightly decreasing in the ZQ, SW, and ZJ regions. The management
level cropland in JY, ZJ, ST, QY, and GZ improved significantly while declining slightly in the
MM, ZH, DG, and SG regions. The food productivity of cropland in ZH and YJ improved
significantly while declining in SZ and DG. Cropland sustainability improved significantly in
the ZH, ST, ZS, and YJ regions while declining in the DG, SZ, and SW regions.
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HY: Heyuan; HZ: Huizhou; JM: Jiangmen; JY: Jieyang; MM: Maoming; MZ: Meizhou; QY: Qingyuan;
ST: Shantou; SW: Shanwei; SG: Shaoguan; SZ: Shenzhen; YJ: Yangjiang; YF: Yunfu; ZJ: Zhanjiang; ZQ:
Zhaoqing; ZS: Zhangshan; ZH: Zhuhai.

4. Discussion
4.1. Constructing Comprehensive Evaluation Indicators for Cropland Sustainability via
Remote Sensing

A comprehensive and efficient assessment framework is the key to determining the
spatiotemporal patterns of farmland sustainability. However, previous studies focused
on soil quality [14,15], natural conditions [51], or the productivity of cropland [9,12],
ignoring other factors such as cropland management. In this study, according to the
typical characteristics of lateritic red soil such as low nutrient levels, strong acidity, high
viscosity, and a thick soil layer, 10 key indicators, including SOM, soil pH, soil texture,
and soil layer thickness, were selected from three aspects—natural capacity, management
level, and food productivity—to characterize the sustainability of cropland. The evaluation
framework proposed can reflect the sustainability of cropland. The results can aid efforts to
improve soil quality and increase food productivity in the lateritic red soil region.

Traditional cropland sustainability evaluation methods tend to over-rely on ground-
measured soil data, a process that is time-consuming and labor-intensive and is not suitable
for a regional scale [32,60]. Remote sensing technology can improve the efficiency and
accuracy of cropland sustainability assessment, especially at large regional scales [17].
However, previous studies focused on monitoring cropland soil fertility or productivity
based on remote sensing images [10–12] but the advantages of multi-source remote sensing
data have not yet been fully exploited. In this study, multi-source remote sensing data,
including MOD 09A1, MOD16A2, and MOD17A combined with ground monitoring site
data, soil attribute data, and meteorological data, were used to estimate key indicators of
cropland sustainability at a regional scale. The analysis revealed the spatiotemporal pattern
of cropland sustainability in the lateritic red soil region of Guangdong Province.

The comprehensive index method is often used in the evaluation of indicators, as it
can consider multiple indicators or factors to reflect various aspects of a situation [16,49].
By adding the weights of different indicators, a more comprehensive evaluation result can
be obtained, avoiding the possible one-sidedness or bias of a single indicator [30,61]. In this
study, the weight coefficient of each evaluation index was determined by the expert scoring
method and AHP, and thus a more comprehensive index of cropland sustainability in the
lateritic red soil region was obtained. The results of this study were consistent with those
of existing studies, indicating that the proposed cropland sustainability assessment system
was reasonable and feasible; the methodology framework was reliable, and the evaluation
results were accurate.

4.2. Underlying Mechanisms of Cropland Sustainability in Lateritic Red Soil Region

Compared with other soil types, lateritic red soil has apparent differences in formation
conditions, nutrient content, soil pH, water regulation, and agricultural adaptability [45].
Understanding these differences is key to the rational use of lateritic red soil resources
and increasing cropland sustainability. The factors influencing cropland sustainability in a
lateritic red soil region are complex, and include soil quality, rational use, economic input,
and support of cropland protection policies [62]. Previous studies found that soil fertility
and natural conditions in the lateritic red soil region of Guangdong Province had gradually
improved [17]. In recent years, Guangdong Province has implemented land improvement
projects that have improved the cultivability of cropland and promoted natural conditions
of cropland.

Improved management has also contributed to improved cropland sustainability. Opti-
mizing crop planting layout and appropriate land use intensity are potential driving factors
for improving cropland sustainability (http://g.mnr.gov.cn/ 20 July 2023). The continuous
improvement of road accessibility, irrigation and drainage facilities, and centralized contigu-
ous land has resulted in the improvement of cultivated land quality in the red soil region [17].

http://g.mnr.gov.cn/
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Previous studies found that the multiple cropping index of cropland in the lateritic red soil
region decreased significantly from 2010 to 2019 [53], indicating that the intensity of cropland
use (and thus the potential for sustainable development) had increased.

Social and economic development have also improved cropland sustainability [63].
Economic growth allows the government to have more funds for implementing cropland
protection systems and improving the cropland production environment [64]. For exam-
ple, in recent years, the Guangdong provincial government introduced an agricultural
subsidy program, and economic incentives have stimulated farmers’ awareness of pro-
tecting cropland, an important factor driving the improvement of cropland sustainability
(http://dara.gd.gov.cn/ 12 October 2023). In addition, the construction of well-facilitated
cropland has greatly improved the production environment and production capacity of
cropland, thereby increasing cropland sustainability. In recent years, Zhuhai City has
continued to promote the construction of well-facilitated cropland, which has increased
agricultural productivity sustainability (https://www.zhuhai.gov.cn/ 4 October 2023).

4.3. Management Measures and Policy Implications for Improving Cropland Sustainability in a
Lateritic Red Soil Region

The low nutrient content is a major feature of lateritic red soils, thus increasing the
SOM is conducive to enhancing cropland sustainability. Previous studies showed that
applying biofertilizers and biochar modifiers can improve soil structure and properties,
enhance soil fertility, and thus increase cropland productivity [65,66]. Strong acidity (low
soil pH) is an obstacle limiting productivity in the lateritic red soil region [17]. Excessive
use of chemical fertilizers and inefficient planting patterns are the main reasons for the
decrease in soil pH [43]. Applying lime and green fertilizer and controlling nitrogen
fertilizer consumption can reduce soil acidification and improve soil quality [67].

Efficient cropland management can improve the sustainability of cropland in the
lateritic red soil region (http://www.gd.gov.cn/ 24 September 2023). Previous studies
showed that the construction of water conservancy facilities and the improvements in
the effective utilization of irrigation water can improve cropland sustainability [68,69].
The results of this study demonstrate that the improvement in IGC enhanced cropland
sustainability. Vigorously carrying out land leveling projects and building field roads can
effectively improve agricultural production conditions and facilitate the implementation
of agricultural mechanization, thus enhancing cropland sustainability [70,71]. In addition,
reasonable crop rotation is conducive to reducing land use intensity and is an effective
measure for ensuring cropland sustainability [7].

Previous studies emphasized that formulating strict cropland quality protection poli-
cies and related planning are important measures for increasing cropland sustainabil-
ity [72,73]. The cropland sustainability in the lateritic red soil region of Guangdong Province
improved from 2010 to 2020. One of the reasons is that local governments, having attached
increased importance to the protection and improvement of cropland, implemented a series
of strict protection measures [74]. In recent years, the Guangdong provincial government
issued a series of agricultural machinery purchase and subsidy programs that not only
enhanced farmers’ awareness of cropland protection but also improved the level of agri-
cultural mechanization, thus becoming an important factor driving the sustainable use of
cropland (http://dara.gd.gov.cn/ 12 October 2023). Therefore, we recommend continuing
the existing policies to ensure the continuous improvement of cropland sustainability.

4.4. Limitations and Future Work

Cropland sustainability is a comprehensive concept. In future studies, additional indi-
cators should be further integrated to build a more comprehensive cropland sustainability
evaluation system. For example, adding more indicators to the evaluation system, such
as total nitrogen, available phosphorus, available potassium, ecological environment, and
biodiversity, would enhance the evaluation of cropland sustainability. Due to limitations in
terms of data availability, this study only analyzed the spatiotemporal patterns of cropland

http://dara.gd.gov.cn/
https://www.zhuhai.gov.cn/
http://www.gd.gov.cn/
http://dara.gd.gov.cn/
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sustainability in 2010 and 2020 in the lateritic red soil region of Guangdong Province. The
intermediate pattern of changes in cropland sustainability was unclear, and it was difficult to
confirm whether the changes in cropland sustainability were a definite trend or were part of
a weaker trend with large variation. In the future, we plan to carry out a longer time series
analysis and more refined assessments, which will allow us to comprehensively reveal the
spatiotemporal evolution of cropland sustainability. Simultaneously, we are committed to
further exploring the driving mechanisms of cropland sustainability to provide more targeted
measures and guidance that can improve cropland sustainability for various stakeholders.

5. Conclusions

In this study, we constructed a comprehensive evaluation indicator system for crop-
land sustainability from three aspects—natural capacity, management level, and food
productivity—and adopted a remote sensing approach to the analysis of spatiotemporal
patterns of cropland sustainability in the lateritic red soil region of Guangdong Province
from 2010 to 2020. The results showed that the natural capacity of cropland increased over
this period from 30.58 to 31.02. The management level score of croplands increased from
18.08 to 18.68, and the food productivity score increased from 19.32 to 19.43. The score
for cropland sustainability increased from 67.95 to 69.08. The sustainability of 68.64% of
cropland, which had improved in 2020 compared with 2010, was largely distributed in the
eastern and western parts of the study area, while in 31.36%, the cropland sustainability
scores declined, primarily in the central part of the study area. There were differences
among the prefecture-level regions in cropland sustainability, with the highest values lo-
cated in Zhongshan, Zhuhai, and Qingyuan and the lowest values located in Zhanjiang.
This study provides a practical evaluation system and methods for dynamic monitoring of
cropland sustainability, and the research results can provide a decision basis for cropland
protection. Management measures such as the application of green fertilizer, improvement
of field infrastructure, and implementation of stricter cropland protection systems can
effectively contribute to cropland sustainability.
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