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Abstract: This study aims to understand the spatiotemporal changes in patterns of tropical crop
cultivation in Eastern Thailand, encompassing the periods before, during, and after the COVID-19
pandemic. Our approach involved assessing the efficacy of high-resolution (10 m) Sentinel-2 dense
image time series for mapping smallholder farmlands. We integrated harmonic regression and
random forest to map a diverse array of tropical crop types between summer 2017 and summer
2023, including durian, rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen,
coconut, and other crops. The results revealed an overall mapping accuracy of 85.6%, with several crop
types exceeding 90%. High-resolution imagery demonstrated particular effectiveness in situations
involving intercropping, a popular practice of simultaneously growing two or more plant species in
the same patch of land. However, we observed overestimation in the majority of the studied cash
crops, primarily those located in young plantations with open tree canopies and grass-covered ground
surfaces. The adverse effects of the COVID-19 pandemic were observed in specific labor-intensive
crops, including rubber and durian, but were limited to the short term. No discernible impact was
noted across the entirety of the study timeframe. In comparison, financial gain and climate change
appeared to be more pivotal in influencing farmers’ decisions regarding crop cultivation. Traditionally
dominant crops such as rice and oil palm have witnessed a discernible decline in cultivation, reflecting
a decade-long trend of price drops preceding the pandemic. Conversely, Thai durian has seen a
significant upswing even over the pandemic, which ironically served as a catalyst prompting Thai
farmers to adopt e-commerce to meet the surging demand, particularly from China.

Keywords: crop cultivation; high-resolution image time series; Sentinel-2; COVID-19 pandemic;
smallholder farming; Eastern Thailand

1. Introduction

More than three years into the COVID-19 pandemic, the UN World Health Organiza-
tion (WHO) officially declared an end to this global health emergency on 5 May 2023 [1].
Over the past years, the immediate impact of the pandemic on the agricultural system
has been confirmed in a number of studies, including the loss of the workforce due to
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infection or quarantine [2], shortages of cultivation supplies [3], restricted transportation
and trade [4,5], and disruptions to retail business [6]. However, the long-term impact of the
crisis on agricultural systems remains to be well understood. In particular, crop cultiva-
tion is an integral part of the agricultural supply chain. While the pandemic apparently
disrupted cultivation temporarily, it is unclear whether there may be a slow recovery or a
permanent change in the cultivation landscape (e.g., crop acreage and types) during and
after the pandemic. Understanding the landscape change of crop cultivation is especially
critical for Thailand, whose agricultural sector contributed over 8% to the nation’s gross
domestic product (GDP), employed about 30% of the total workforce, and played a key
role in providing financial support to 6.4 million households [7]. Thailand’s agriculture not
only affects its domestic economy but also has a major influence on the global market. As a
world-leading food exporter, Thailand’s trade in agricultural products totaled 1.55 trillion
baht (~43 billion USD) in 2022, with major markets including China, Japan, India, South
Korea, Australia, New Zealand, Peru, and ASEAN (Association of Southeast Asian Nations)
members [8].

Thailand is located in the Indo-Burmese Region, a global hotspot of biodiversity [9].
A variety of crops are extensively cultivated in the country, including rice, rubber, durian,
eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen, and coconut. Particularly,
durian (Durio zibethinus), known as the ‘king of fruits,’ has become one of Thailand’s most
important exports. Even during the pandemic, Thailand reported exporting $2.2 billion
U.S. dollars’ worth of durian to China in 2020, a rise of 47% from the previous year [10].
However, the pandemic has had a lasting effect on the country’s agricultural sector, creating
a shortage of agricultural laborers, particularly migrant workers and workers who are
members of minority ethnic groups, which will take time to recover to pre-crisis levels [11].
In northern Thailand, COVID-19 dramatically increased the cost of planting by 57.4%
and the cost of agrochemicals and fertilizers by 69.9% [12]. To cope with such challenges,
farmers in Thailand have started to adopt new farming technologies or skills to improve
crop yield and resort to new business strategies, such as transitioning from onsite markets to
e-commerce [13]. Yet, there is a lack of understanding of the spatiotemporal change patterns
of crop cultivation through the pandemic. Policymakers and stakeholders have primarily
relied on field surveys to gain such information, which is time-consuming and lacks
spatiotemporal details to inform effective decision-making. To date, the post-pandemic
recovery of Thailand’s agriculture remains to be well investigated. For example, have
major crops recovered from the adverse effects of the pandemic? Has there been a shift in
cultivation from one crop type to another?

Remote sensing has gained popularity in crop mapping over the past few decades.
Particularly after Landsat opened its data archive to all users at no charge on 21 April
2008 [14], there has been a substantial number of studies capitalizing on satellite image
time series to monitor the spatial distribution of crop cultivation. Recent sensor systems
offer an even higher spatial resolution than Landsat, such as Sentinel-2, with 10 m visible
and near-infrared image bands. These free and dense image time series have demonstrated
the potential to capture crop phenology, i.e., the physiological development stages of plant
growth from planting to harvest, and hence map crop types [15,16]. This helps address
the classic challenge of high spectral similarities among diverse crop types when using
single-date imagery. Moderate success has been reported at both local and regional scales
(e.g., [17,18]). However, medium- and low-resolution sensors (e.g., Landsat and MODIS,
respectively) have been utilized in the majority of studies for crop type mapping. This
has posed challenges in regions like Southeast Asia, especially Thailand, which has a long-
term tradition of family farming, and the vast majority of farmland is run by smallholder
farmers. Half of Thai farming households owned below 10 rai (1.6 ha) of farmland, with an
average size of 14.3 rai (2.3 ha; [19]). At a medium- or coarse-resolution, an image pixel may
contain one or more farming patches resulting in strong mixing spectral signatures. Such
a mixing effect is not only caused by the size of the land. To maximize economic returns
from smallholdings, Thai farmers often practice mixed cultivation or cropping (also known
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as intercropping), which involves growing two or more plant species simultaneously in
the same patch of land. For example, pineapples have a shallow root system and start
to produce fruits in two years in Eastern Thailand. Thus, in a young rubber plantation,
a mixed cultivation of pineapples and rubber trees (Figure 1) allows farmers to generate
income before rubber trees reach maturity and can be tapped in 6–7 years [18]. While dense
image time series can carefully capture crop growing stages, there is a lack of investigation
into the effect of mixed cultivation on crop mapping performance. We note that relatively
high-resolution data have been recently used in tropical crop mapping; however, previous
studies have been restricted to small geographic regions or to extracting single or a limited
number of crop types (e.g., [20–23]).
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Figure 1. A farmland showing mixed cultivation of pineapple (low plants) and young rubber trees
(photo credit: Gang Chen).

Based on the above considerations, the main objective of this study was to map
and analyze the spatiotemporal change patterns of tropical crop cultivation in Eastern
Thailand through (i.e., before, during, and after) the COVID-19 pandemic. We focused on
Eastern Thailand because it is particularly illustrative for its diversity of smallholder crop
production (including high-value export crops such as rubber, rice, durian, and rambutans)
and the rapidly evolving land use change due to the planned urbanization of land near
beaches and industrial corridors. The region also includes the Eastern Economic Corridor
(EEC), which has been promised strong government support to accelerate the country’s
economic growth in the new era of Thailand 4.0 [24]. Specifically, we ask two questions
in the study: (i) How accurate is it to use high-resolution (10 m), dense image time series
to map diverse types of tropical crops on smallholder farmlands? (ii) How did the crop
cultivation pattern change (i.e., shift in crop type and areal size) through the pandemic in
Eastern Thailand, and why?

2. Materials and Methods
2.1. Study Area

The study area is located in Eastern Thailand, which consists of seven provinces:
Chachoengsao, Chanthaburi, Chon Buri, Prachin Buri, Rayong, Sa Kaeo, and Trat. Bangkok
is adjacent to the region and borders the province of Chachoengsao (Figure 2). The entire
area of the region occupies approximately 34,000 km2, with a total population of over
4.8 million [25]. We did not include the islands (e.g., Koh Chang, Koh Kood, and Ko Mak)
located in the south of Trat due to the small presence of farmlands and logistical challenges
in field data collection. Though temperature and rainfall vary slightly by province, the
general climate of Eastern Thailand is characterized by three distinct seasons: the hot
season from March to May, the wet season from May to October, and the cool season from
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November to March. In recent years, however, the effects of climate change have made
Thai seasons less predictable, causing concern for agricultural growing seasons [26].

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 17 
 

 

hot season from March to May, the wet season from May to October, and the cool season 
from November to March. In recent years, however, the effects of climate change have 
made Thai seasons less predictable, causing concern for agricultural growing seasons [26]. 

 
Figure 2. The study area of Eastern Thailand, which consists of seven provinces: Chachoengsao, 
Chanthaburi, Chon Buri, Prachin Buri, Rayong, Sa Kaeo, and Trat. The Thai names in the backdrop 
image on the right figure represent locations and do not affect interpretation of field samples. 

The dominant crop types in the region are durian, rice, eucalyptus, oil palm, pineap-
ple, sugarcane, cassava, rubber, mangosteen, and coconut, which were the main focus of 
this study. However, each of the seven provinces in Eastern Thailand have different con-
centrations of crop types. For example, rice is more common in the eastern part of 
Chachoengsao, following the growing patterns of Central Thailand. The availability of 
water, influenced by rivers and coastlines, plays a role in crop planting decisions within 
the region. Overall, Eastern Thailand has a robust agricultural economy, where agricul-
tural land use for each of the seven provinces varies between 54.47% and 69.25% of the 
total land area [27]. 

Dominated by smallholder farming, the region has been influenced by both domestic 
and foreign investments aimed at expanding agricultural growth. The Thai government 
has long been involved in supporting or constraining agricultural production nation-
wide, especially for rice. A significant shift away from subsistence production to growing 
goods for the market took place after World War II, driven by international (US) influence 
in trade, government patronage, and the flow of credit and inputs into smallholder agri-
cultural communities [28]. Following protests in the 1990s, eventually consolidated under 
the umbrella of the Assembly of the Poor, the national government instituted several pol-
icies to reduce taxes on agriculture and provide subsidies for farmers. This included pro-
grams that supported the price of rice on the domestic market, sought to reduce the 
amount of land devoted to rice cultivation (to keep prices higher), and encouraged self-
sufficiency economies. Successive governments have implemented (sometimes contradic-
tory) programs to help small-scale farmers produce and market specific crops and gain 
better access to markets. 

Additionally, to protect smallholder farms from excessive foreign investment and 
conversion into corporate farms, Thailand has implemented the Foreign Business Act and 
its Amendments, preventing foreigners from buying land for farming [29]. This measure 
ensures the continued production of crops and maintains the significance of smallholder 
farms in Thailand’s agricultural sector. However, the EEC region is a government-spon-
sored development zone along Thailand’s Eastern seaboard, specifically the provinces of 

Figure 2. The study area of Eastern Thailand, which consists of seven provinces: Chachoengsao,
Chanthaburi, Chon Buri, Prachin Buri, Rayong, Sa Kaeo, and Trat. The Thai names in the backdrop
image on the right figure represent locations and do not affect interpretation of field samples.

The dominant crop types in the region are durian, rice, eucalyptus, oil palm, pineapple,
sugarcane, cassava, rubber, mangosteen, and coconut, which were the main focus of
this study. However, each of the seven provinces in Eastern Thailand have different
concentrations of crop types. For example, rice is more common in the eastern part of
Chachoengsao, following the growing patterns of Central Thailand. The availability of
water, influenced by rivers and coastlines, plays a role in crop planting decisions within the
region. Overall, Eastern Thailand has a robust agricultural economy, where agricultural
land use for each of the seven provinces varies between 54.47% and 69.25% of the total land
area [27].

Dominated by smallholder farming, the region has been influenced by both domestic
and foreign investments aimed at expanding agricultural growth. The Thai government
has long been involved in supporting or constraining agricultural production nation-wide,
especially for rice. A significant shift away from subsistence production to growing goods
for the market took place after World War II, driven by international (US) influence in trade,
government patronage, and the flow of credit and inputs into smallholder agricultural
communities [28]. Following protests in the 1990s, eventually consolidated under the
umbrella of the Assembly of the Poor, the national government instituted several policies
to reduce taxes on agriculture and provide subsidies for farmers. This included programs
that supported the price of rice on the domestic market, sought to reduce the amount of
land devoted to rice cultivation (to keep prices higher), and encouraged self-sufficiency
economies. Successive governments have implemented (sometimes contradictory) pro-
grams to help small-scale farmers produce and market specific crops and gain better access
to markets.

Additionally, to protect smallholder farms from excessive foreign investment and
conversion into corporate farms, Thailand has implemented the Foreign Business Act and
its Amendments, preventing foreigners from buying land for farming [29]. This measure en-
sures the continued production of crops and maintains the significance of smallholder farms
in Thailand’s agricultural sector. However, the EEC region is a government-sponsored
development zone along Thailand’s Eastern seaboard, specifically the provinces of Ray-
ong, Chon Buri, and Chachoengsao. Twelve key industries are specifically targeted for
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foreign investment within the EEC, including ‘advanced agriculture and biotechnology’
and ‘food for the future’ [24]. The EEC investments have spurred urbanization and changes
in land cover as well as sharp increases in water demands that now compete with nearby
smallholder agriculture [30].

2.2. Data
2.2.1. Field Data

In summer of 2023, we conducted a field survey in all seven provinces of the study
area to acquire crop types and their spatial location. We applied the stratified random
sampling strategy, where field samples were randomly distributed across the agricultural
lands. Due to logistical challenges, the samples were slightly adjusted to ensure that they
were within walking distance to a local road for easy access. Each sample point was located
within at least a 10 m × 10 m area of a single crop type or a significantly dominant crop
type, which was consistent with the spatial resolution of the satellite imagery used in
this study (see Section 3.2). A total of 886 sample points were collected, predominantly
consisting of major crop types, namely paddy rice (84), durian (57), eucalyptus (69), oil
palm (85), pineapple (58), sugarcane (47), cassava (53), rubber plantation (82), mangosteen
(29), and coconut (22). Additionally, samples were gathered for urban (61), water (40),
forest (33), grass/shrub (39), bare ground (51), and others (76). Please refer to Section 2.3.1
for details of the classification scheme. Overall, the number of samples for each crop type
roughly corresponded to its spatial coverage in the study area. However, we intentionally
included additional samples for certain crops due to their high variation in species type or
plantation style. For instance, Thailand boasts various durian types, such as Mon Thong,
Cha Nee, and Kan Yao. Although durian’s spatial coverage is much lower than several
other major crops, we added extra samples to capture its variation. See sample location
in Figure 2 and field photos in Figures 3 and 4. The samples also included less-prominent
crops, as well as non-agriculture land cover types (e.g., impervious surface and water). To
accurately identify crop types in such a diverse tropical environment, we capitalized on
both high-resolution Google Earth© satellite and street view imagery, as well as informal
interviews with local farmers. This ensured that our samples were representative of all
major crops, which were not only diverse in species type, but also showed high variation
in plantation age or the crop growing stage.
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Figure 3. (a1) A mature durian tree; (a2) durian fruit; (b1) a flooded rice paddy plantation; (b2) rice;
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other five crop types in Figure 4.
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Figure 4. (f1) A sugarcane plantation; (f2) sugarcane; (g1) a cassava plantation; (g2) young cassava;
(h1) a rubber plantation; (h2) a rubber tree that has been harvested for latex; (i1) a mangosteen tree;
(i2) mangosteen; (j1) a coconut tree; and (j2) coconut seedlings.

2.2.2. Sentinel-2 Image Time Series

All available Sentinel-2A and Sentinel-2B images collected from June 2017 to June
2023 were used in this study. The timeframe allowed us to conduct an in-depth analysis
of crop changes from a pre-pandemic and a post-pandemic perspective. The two-satellite
constellation has a short revisit interval of five days, which mitigates the negative impact of
heavy cloud cover on tropical crop mapping. Here, we selected the pre-processed spectral
reflectance product from four image bands at the 10 m resolution, including NIR, R, G, and
B, which are more suitable than the coarser resolutions to map heterogeneous, smallholder
farmlands. Utilizing all accessible Sentinel-2 data enabled us to gather an ample supply
of cloud-free, high-quality images for crop mapping through harmonic regression (see
Section 2.3 for details). This dense image time series has the capability to accurately depict
crop phenological stages (Wei et al., 2019 [16]), proving particularly effective for our study
in delineating various types of crops. Notably, some of these crops exhibited comparable
plant growth patterns across seasons.

2.3. Methodology
2.3.1. Classification Scheme

We designed a two-layer classification scheme, in which the first layer had broad land
cover types, including agriculture, urban, water, (natural) forest, grass/shrub, and bare
ground. The second layer included detailed crop types in the land cover—agriculture,
i.e., durian, rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen,
coconut, and others. To improve accuracy and map clarity, we focused the classification
system on the crops that were both pivotal to the Thai economy and were abundant in the
area. Some of the less recurrent crops such as corn, mango, and banana were included in
the ‘others’ class. For the selection of major crop types in the region, we also referenced the
official document ‘Agricultural Statistics of Thailand’ as developed by the Thai Office of
Agricultural Economics [27].

2.3.2. Crop Type Mapping

We capitalized on the open-access, high-performance computing platform Google
Earth Engine© (GEE) to map crop types and their spatial–temporal distribution. Using
the Sentinel-2 dense image time series, we fitted a harmonic regression model to each
of the four spectral bands (NIR, R, G, and B), and the popular vegetation index NDVI
(Normalized Difference Vegetation Index) to capture crop seasonal variation at the image
pixel scale. The coefficients of the harmonic regression models were treated as features
and were fed into the random forest (RF) algorithm for detailed crop type classification.
We repeated the process for each year (e.g., June 2017 to June 2018) in the six years during
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the study timeframe. More details about the methods are shown in Figure 5 and the
succeeding paragraphs.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

study timeframe. More details about the methods are shown in Figure 5 and the succeed-
ing paragraphs. 

 
Figure 5. Research workflow of crop type mapping using high-resolution image time series over 
tropical smallholder farmlands. 

Harmonic regression, also known as Fourier transform, is well suited for data pat-
terns that reappear at regular intervals [31]. The harmonic regression model was initially 
intended for use in meteorology [31]; however, it has also proved effective for the classifi-
cation of vegetation [32]. In this study, we fit a second-order harmonic regression to bal-
ance model complexity and computation, as large harmonics (i.e., high-order Fourier se-
ries) were determined not to be essential to explain data variance [32,33]. The following 
function was used for calculating the harmonic regression: 

f(t) = a1cos(2πt/n) + b1sin(2πt/n) + a2cos(4πt/n) + b2sin(4πt/n) + c0 (1)

where f(t) is the predicted value at the ordinal of the date t. c0 is the constant term. a1 and 
b1 represent the first order seasonal harmonic coefficients, while a2 and b2 represent the 
second order seasonal harmonic coefficients. n controls the periodicity of the harmonic 
basis, and a period of 365.2421891 days per tropical year was used as the length of the 
annual cycle. Five coefficients were estimated for each regression model. The model was 
applied to fit five bands—NDVI, NIR, R, G, and B, resulting in a total of 25 coefficients, 
i.e., a 25-band image stored for the succeeding classification. Figure 6 shows examples of 
time series observations and the corresponding fitted curves using harmonic regression 
for urban, forest, rice, durian, and rubber pixels. 

Figure 5. Research workflow of crop type mapping using high-resolution image time series over
tropical smallholder farmlands.

Harmonic regression, also known as Fourier transform, is well suited for data pat-
terns that reappear at regular intervals [31]. The harmonic regression model was initially
intended for use in meteorology [31]; however, it has also proved effective for the classifica-
tion of vegetation [32]. In this study, we fit a second-order harmonic regression to balance
model complexity and computation, as large harmonics (i.e., high-order Fourier series)
were determined not to be essential to explain data variance [32,33]. The following function
was used for calculating the harmonic regression:

f (t) = a1cos(2πt/n) + b1sin(2πt/n) + a2cos(4πt/n) + b2sin(4πt/n) + c0 (1)

where f (t) is the predicted value at the ordinal of the date t. c0 is the constant term. a1 and
b1 represent the first order seasonal harmonic coefficients, while a2 and b2 represent the
second order seasonal harmonic coefficients. n controls the periodicity of the harmonic
basis, and a period of 365.2421891 days per tropical year was used as the length of the
annual cycle. Five coefficients were estimated for each regression model. The model was
applied to fit five bands—NDVI, NIR, R, G, and B, resulting in a total of 25 coefficients,
i.e., a 25-band image stored for the succeeding classification. Figure 6 shows examples of
time series observations and the corresponding fitted curves using harmonic regression for
urban, forest, rice, durian, and rubber pixels.

RF is an ensemble of decision trees, in which each tree is independently determined
using a bootstrap sample of the data set, and a simple majority vote is taken for final
prediction [34]. RF has been widely applied to map vegetation with proven success
(e.g., [35,36]). In this study, RF was applied as the classifier to estimate crop types and map
their extents. According to our previous experience in crop type mapping [16] and the
exploratory trials with the current data, two major parameters were specified in RF: 100
for the number of trees and 3 for the number of predictor variables for each tree. Here,
we combined harmonic regression and RF for the purpose of capitalizing on harmonic
regression’s strong ability to capture crop phenological stages and RF’s proven success in
vegetation classification.



Remote Sens. 2024, 16, 1035 8 of 17
Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 6. Sample time series observations and the corresponding fitted curves using harmonic re-
gression for urban, forest, rice, durian, and rubber pixels. 

RF is an ensemble of decision trees, in which each tree is independently determined 
using a bootstrap sample of the data set, and a simple majority vote is taken for final pre-
diction [34]. RF has been widely applied to map vegetation with proven success (e.g., 
[35,36]). In this study, RF was applied as the classifier to estimate crop types and map their 
extents. According to our previous experience in crop type mapping [16] and the explor-
atory trials with the current data, two major parameters were specified in RF: 100 for the 
number of trees and 3 for the number of predictor variables for each tree. Here, we com-
bined harmonic regression and RF for the purpose of capitalizing on harmonic regres-
sion’s strong ability to capture crop phenological stages and RF’s proven success in vege-
tation classification. 

2.3.3. Accuracy Assessment 
We randomly selected 70% of the field samples for training the model, while the re-

mainder were used for validating the model’s performance. In this study, we calculated 
and reported on four popular metrics—overall accuracy, users’ accuracy, producers’ ac-
curacy [37], and F1-score [38]. Because field samples were collected in summer 2023, ac-
curacy assessment was conducted for the 2023 map only. The trained model was then 
applied to the other years of the imagery to produce annual crop maps between 2017 and 
2022. 

3. Results 
3.1. Mapping Accuracies 

The overall accuracy using the 2023 validation samples was 85.6%, with the overall 
users’ accuracy being 87.2%, the overall producers’ accuracy 83.8%, and F1-score 85.5%. 
Figure 7 shows the users’ and the producers’ accuracy for each of the studied land cover 
types, including the 10 specific crop types. In general, the broad land cover types, such as 
urban, water, natural forest, and bare ground, were relatively well identified, with over 
80.0% accuracy in most cases. However, there were some discrepancies between the users’ 
and the producers’ accuracy for some classes. For example, while urban producers’ 

Figure 6. Sample time series observations and the corresponding fitted curves using harmonic
regression for urban, forest, rice, durian, and rubber pixels.

2.3.3. Accuracy Assessment

We randomly selected 70% of the field samples for training the model, while the
remainder were used for validating the model’s performance. In this study, we calculated
and reported on four popular metrics—overall accuracy, users’ accuracy, producers’ accu-
racy [37], and F1-score [38]. Because field samples were collected in summer 2023, accuracy
assessment was conducted for the 2023 map only. The trained model was then applied to
the other years of the imagery to produce annual crop maps between 2017 and 2022.

3. Results
3.1. Mapping Accuracies

The overall accuracy using the 2023 validation samples was 85.6%, with the overall
users’ accuracy being 87.2%, the overall producers’ accuracy 83.8%, and F1-score 85.5%.
Figure 7 shows the users’ and the producers’ accuracy for each of the studied land cover
types, including the 10 specific crop types. In general, the broad land cover types, such
as urban, water, natural forest, and bare ground, were relatively well identified, with
over 80.0% accuracy in most cases. However, there were some discrepancies between the
users’ and the producers’ accuracy for some classes. For example, while urban producers’
accuracy was as high as 95.2%, its users’ accuracy was barely close to 80.0%. The opposite
trend was found for bare ground, where its users’ accuracy was noticeably higher. Because
unpaved roads are common in the rural regions of Thailand, the high spectral similarity
between some unpaved roads and bare ground led to an overestimation of the urban area
at the fine scale. However, it did not affect our interpretation of croplands. The majority of
natural forests in tropical Eastern Thailand demonstrated a lower variation in phenology
than crops, and they were limited to reserved regions (e.g., national parks), which made
forest class identification a straightforward task. The only non-agriculture land cover that
introduced noticeable uncertainties to crop mapping was grass/shrub, with a high users’
accuracy but a low producers’ accuracy. Some crops take years to reach closed canopies
(e.g., rubber and durian). During the early growing years, the gaps and soil on the ground
are typically covered by grass, resulting in mixed spectral signatures. This is particularly
true when crops are grown at a relatively low density. However, the underestimation of
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grass/shrub did not cause major issues for crop mapping due to their small coverage (less
than 1%) of the study area.
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Mapping accuracies varied across crop types are shown in Figure 7. In general,
the majority of crop types reached over 75% of the producers’ and the users’ accuracy.
Particularly for rice, rubber, pineapple, oil palm, and coconut, the accuracies were above
90%. An exception was sugarcane, whose accuracy was lower than 50% of producers’/users’
accuracy. Due to the nature of sugarcane as a species of tall, perennial or semi-perennial
grass, it was easily misclassified as grass/shrub or other early-stage plantation with ground
surface covered by grass of similar phenological traits.

3.2. Cropland Changes

We generated annual land cover maps from summer 2017 to summer 2023 (Figure 8).
In general, urban areas increased by 1799.31 km2, which was expected given the continued
urbanization in the region. However, it occurred at the expense of losing open water
(303.58 km2) and natural forest lands (570.03 km2). One exception was the overestimation
of urban areas for the eastern part of Chanthaburi in the 2022/2023 map due to cloud
contamination, which occurs frequently in the tropics. Grass/shrub had only a slight
decrease, with a loss of 1.18 km2. There was an increase in bare ground by 449.84 km2,
much of which was related to land clearing for imminent agricultural use.

Agricultural lands also showed variation in acreage changes across the pandemic
(Figure 9). For example, rice farms had land loss, with a change in land area of 878.15 km2,
a 10.6% decrease. A significant decrease in the oil palm farm area was present with the
loss of 4132.58 km2 being measured, a 69.3% decrease. A small yet noticeable decline in
rubber farming was present with a loss of 51.35 km2 corresponding to a 1.46% decrease.
On the other hand, several crop types were found to increase in area size. There was a
significant increase in the area occupied by durian orchards with the addition of 323.96 km2,
a 158.2% increase. An increase in the area of eucalyptus land was present with the addition
of 695.74 km2, a 44.1% increase, as well as a 168.2% increase in pineapple farm area with
an additional 939.70 km2. There was also a 62.5% increase in sugarcane farming area
with the addition of 423.39 km2. An increase in the cassava farming area was measured
with an increase of 917.45 km2, a 133.5% increase. Mangosteen orchards also increased
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by 118.1% with 101.06 km2. Lastly, land covered by coconut trees increased by 91.50 km2,
a 39.6% increase. Throughout the pandemic, the change trends varied across different
types of crops. For example, durian and mangosteen showed a decreasing trend during
and even before the pandemic (e.g., 2019). However, they recovered quickly from the
pandemic, and their acreage is now above the pre-pandemic level. In contrast, rice and
oil palm which are the major crops in the region continued to decline over the years.
Eucalyptus, pineapple, sugarcane, cassava, and coconut showed a relative upward trend
during the studied timeframe. Rubber production was slightly affected at the beginning of
the pandemic but was able to recover to the pre-pandemic level.

In our study area, rice cultivation was primarily concentrated in the northern regions,
specifically within three provinces: Chachoengsao, Prachin Buri, and Sa Kaeo. While the
cultivation of rice remained consistent in this area over the years, both its spatial coverage
and density experienced a gradual decline. Regarding tree plantations, rubber trees were
extensively distributed throughout the study area, particularly in Chachoengsao, Chan-
thaburi, Rayong, Chon Buri, and Trat. Although the spatial coverage of rubber plantations
exhibited fluctuations during the study period, the overall spatial pattern remained rela-
tively stable. In contrast, the spatial distribution of durian plantations presented a distinct
pattern. Particularly noteworthy is the significant increase in durian plantation coverage
observed in Rayong, Chanthaburi, and Trat provinces since 2022. Given that durian trees
typically require 3–6 years to mature and produce fruit, it is plausible that the surge in
durian cultivation began several years prior to being accurately captured by remote sens-
ing. This phenomenon may also elucidate some spatial inconsistencies observed in durian
plantation regions before 2022 when trees were small. Furthermore, it is worth noting that
the variability in measurements of crop distribution over the years could also be influenced
by atmospheric noise, a challenge often encountered in tropical regions and difficult to
completely eliminate from the data.
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4. Discussion
4.1. Effectiveness of Fine-Scale Image Time Series in Tropical Crop Type Mapping

Satellite image time series have gained increasing popularity in mapping Asian crop-
ping patterns over the past decade. This trend has benefited from the availability of openly
accessible satellite datasets (e.g., MODIS, Landsat, and Sentinel imagery), the maturity of
remote sensing algorithms simulating plant phenological cycles, and fast-growing com-
puting capabilities. In Asia, particularly Southeast Asia, the majority of crop mapping
activities have employed medium- or low-resolution Landsat or MODIS image time series
(e.g., [16,39–42]). With the recent availability of Sentinel-2′s 10-m resolution imagery, it has
become easier to address the spectral mixing issue over smallholder farmlands. To date,
most studies have focused on identifying individual crop types, such as sugarcane [43],
mung bean [44], and paddy rice [45], with reported accuracies typically higher than 90%.
Some other studies have attempted to map multiple, but limited numbers of, crop types
(equal to or fewer than five) in one modeling framework (e.g., [46–48]). The reported
accuracies were typically lower than mapping one single crop type, due to the similarity in
phenology among the studied crops, making inter-class variation challenging to capture.
However, their accuracies were mostly higher than 70%.
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In our endeavor to map a diverse array of crop types across smallholder farmlands, we
observed significant variation in model performance, ranging from less than 50% to 100%.
Notably, rice, as the predominant crop in the region, achieved a relatively high accuracy.
Rice paddies, characterized by partial flooding, allow for up to three harvests annually
in Thailand. Despite governmental advisories urging farmers to forgo one crop due to
recent drought events [49], the distinct phenology of crops within paddy fields facilitates
differentiation from those with lower water requirements. For high-value cash crops
such as rubber, pineapple, eucalyptus, coconut, durian, and oil palm, phenology proved
effective in mapping mature plantations using high-resolution image time series. However,
we observed overestimation in the majority of these cash crops, primarily attributed to
young plantations with open tree canopies, where the ground surface is covered by grass
and shrubs, leading to spectral confusion. This phenomenon also contributed to the
high underestimation of the non-crop land cover grass/shrub. While object-based image
analysis demonstrated effectiveness in mapping individual crop types, such as rubber
plantations [18], determining the optimal object size becomes challenging in regions with a
diverse mix of crop types at various growth stages. Deep learning presents another potential
solution (e.g., [48,50]), though logistical challenges often hinder the collection of large
volumes of field samples for model training. In contrast to urban mapping, where human
photo interpretation can efficiently provide large sample volumes, accurate crop type
identification often necessitates on-site assessments. Despite these challenges, our study
achieved an overall mapping accuracy of 85.6%, with some crop types surpassing 90%,
which was comparable to recent studies on multi-crop mapping. Furthermore, the use of
high-resolution imagery demonstrated effectiveness in situations involving intercropping,
such as durian or rubber plantations mixed with pineapple or cassava. Compared to the
use of medium- or low-resolution data, young plantations in smallholder farmlands can be
more accurately identified, providing crucial insights for effective policymaking. While it
is possible to consider combined classes in crop mapping owing to mixed cultivation, they
do not align with the popular classification schemes employed in Thailand or many other
countries in Southeast Asia. In addition, the presence of mixed croplands can exacerbate
spectral variation considerably due to the diverse growing stages of individual crops.
Obtaining a substantial number of additional field samples posed logistical challenges for
achieving precise mapping of the combined classes.

When compared with the data sourced from the Office of Agricultural Economics
of Thailand [27], our study revealed a blend of consistent trends and distinctive insights.
Specifically, our findings confirm the reported increases in durian plantations, with Chan-
thaburi experiencing a 51% rise, Trat a 102% surge, and Rayong a 41% expansion from 2018
to 2022. This aligns with our observations (see Figure 9), in which we too detected a notable
uptick in the spatial coverage of durian trees. Similarly, our study noted the stability of
rubber plantation dynamics over time, consistent with the aforementioned report. An
intriguing divergence emerges in regions like Chanthaburi and Rayong, where extensive
rubber plantations have undergone a substantial transition to durian cultivation—a trend
mirrored in both the government’s findings and our own. Nevertheless, an inconsistency
arises concerning rice cultivation trends. Our analysis identified a 10% decrease in rice
cultivation from 2018 to 2022, contradicting the government’s portrayal of a relatively
stable trend. This disparity could be attributed to uncertainties inherent in field surveys
to complete the government report or remote sensing techniques. From the remote sens-
ing perspective, recent drought events [49] have affected crop phenology within paddy
fields and/or their surface spectral characteristics, possibly causing modeling errors using
remote observations.

4.2. Impact of COVID-19 and Other Factors on Crop Choice

The COVID-19 pandemic markedly disrupted both international and domestic tourism,
primarily attributed to stringent travel restrictions. These limitations extended beyond
affecting traditional tourists; in Thailand, they also impacted migrant workers who found
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themselves unable to traverse borders or even move between provinces. For instance,
in Chanthaburi, a directive was issued prohibiting the entry of migrant workers from
other provinces, necessitating authorization for agricultural workers to move within the
region [51]. Given the essential role played in the Thai agricultural economy by migrant
laborers, who constitute a substantial portion of the sector’s workforce [52], many farmers
were compelled to pivot away from or suspend activities related to labor-intensive crops
(e.g., rubber and durian). Instead, there was a discernible shift towards cultivating less
labor-intensive crops, such as mangosteen and pineapple. This adjustment in agricultural
practices may elucidate the observed marginal decline in rubber and durian production in
the year 2020.

However, financial gain (e.g., crop market price) emerged as a pivotal factor influenc-
ing farmers’ decisions regarding crop cultivation. An illustrative instance is the surge in
durian cultivation. The export of Thai durians has witnessed a significant upswing in recent
years, primarily driven by the burgeoning demand from China. While the industry initially
grappled with a shortage of labor and supplies during the pandemic, it swiftly adapted. No-
tably, some individuals, under the misconception that durian contains sulfur and can help
prevent COVID-19 [53], increased their consumption of the fruit from Thailand. To counter
the challenge of losing intermediaries or distributors due to border closures and travel
restrictions, along with the associated disruption in business connections with customers,
many Thai farmers have embraced online sales channels. They leveraged established
platforms such as Alibaba©, eBay©, or their own online stores [13,54]. The success of
e-commerce, shifting away from traditional wholesale markets, has not only mitigated
the negative impact of the pandemic but has also substantially elevated durian sales to
unprecedented levels [55]. This success aligns with our findings of the rapid expansion of
durian cultivation in Eastern Thailand. In contrast, crops like rice and oil palm, traditionally
dominant in the region, have experienced a noticeable decline in cultivation over the years.
Rice prices dropped from over $600 U.S. dollars per metric ton in 2011 to $400 in 2019, and
palm oil prices exhibited an even more dramatic decline from over $1100 per metric ton
in 2011 to $500 in 2019, according to Federal Reserve Economic Data [56]. These trends
mirror the changes in cultivation acreage observed in this study, where rice farmlands
decreased by 10%, and nearly 70% of oil palm farmlands vanished (Figure 9). Meanwhile,
the lucrative financial returns offered by crops like durian have further fueled this shift
in cultivation. However, Thai farmers now face stiff competition from their international
counterparts in Vietnam, Malaysia, and the Philippines, with durian prices unexpectedly
plunging to a low level in 2023 [57]. This trend may affect future cultivation patterns.

Climate change plays a crucial role in agriculture, and Thailand has witnessed a no-
table rise in temperatures over the last four decades, with the mean temperature escalating
by 0.95 ◦C between 1955 and 2009 [58]. Specifically, during the 2019/2020 season, an
abnormally brief monsoon period and a 15% reduction in annual rainfall triggered a severe
drought in the country [49], resulting in substantial crop yield losses. To address this, the
Thai government implemented restrictions on rice irrigation [59]. Our findings underscore
the impact of these climate challenges, revealing a 16.12% decrease in rice cultivation
between 2019 and 2020. In addition to drought, irregular and intensified extreme climate
events, such as hurricanes, have adversely affected the region over the past decade, as
reported by local farmers in our informal communications with them. While the pan-
demic exacerbated these challenges, it also served as a catalyst for Thai farmers to embrace
innovative technologies. For instance, some farmers have adopted drone-assisted crop
management for plant health monitoring and pesticide spraying, proving its effectiveness
for smallholder farming (see Figure 10).
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olution (10 m) Sentinel-2 dense image time series. These data, incorporated into harmonic 
regression and random forest methodologies, were employed for mapping various crops, 
including durian, rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, man-
gosteen, coconut, and others. Our approach demonstrated efficacy in mapping the major-
ity of the studied crop types, particularly in situations involving intercropping—an estab-
lished practice of cultivating multiple plant species simultaneously in the same patch of 
land. However, when attempting to map multiple crop types within a single framework, 
notable variations in accuracy were observed. Overestimation occurred, notably in young 
plantations characterized by open tree canopies and grass-covered ground surfaces. Fur-
thermore, we identified the short-term impact of the pandemic on labor-intensive crops, 
such as rubber and durian. Nevertheless, no discernible impact was observed throughout 
the entire study period. In contrast, farmers’ decisions regarding crop cultivation ap-
peared more influenced by factors such as financial gain and climate change. There was a 
significant increase in durian cultivation even during the pandemic, which ironically 
prompted Thai farmers to adopt e-commerce to meet the escalating international demand, 
particularly from China. 
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Figure 10. Left: A drone spraying pesticide. Right: Drone-captured NDVI of durian tree health
monitoring, presented by a farmer. Photos taken in summer 2023 (credit: Gang Chen).

5. Conclusions

While numerous studies have explored the immediate ramifications of the COVID-19
pandemic on agricultural systems, only a limited number have delved into the enduring
effects of this global health crisis. This study assessed the spatiotemporal patterns of change
in tropical crop cultivation in Eastern Thailand across periods preceding, during, and subse-
quent to the pandemic. Additionally, we sought to evaluate the role of COVID-19 in driving
such changes. Given the traditional cultivation of a diverse array of tropical crops on small-
holder farmlands in Thailand, we examined the effectiveness of a high-resolution (10 m)
Sentinel-2 dense image time series. These data, incorporated into harmonic regression and
random forest methodologies, were employed for mapping various crops, including durian,
rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen, coconut,
and others. Our approach demonstrated efficacy in mapping the majority of the studied
crop types, particularly in situations involving intercropping—an established practice of
cultivating multiple plant species simultaneously in the same patch of land. However,
when attempting to map multiple crop types within a single framework, notable varia-
tions in accuracy were observed. Overestimation occurred, notably in young plantations
characterized by open tree canopies and grass-covered ground surfaces. Furthermore, we
identified the short-term impact of the pandemic on labor-intensive crops, such as rubber
and durian. Nevertheless, no discernible impact was observed throughout the entire study
period. In contrast, farmers’ decisions regarding crop cultivation appeared more influenced
by factors such as financial gain and climate change. There was a significant increase in
durian cultivation even during the pandemic, which ironically prompted Thai farmers to
adopt e-commerce to meet the escalating international demand, particularly from China.
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