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Abstract: A tremendous number of landmines has been buried during the last decade. In recent
years, various autonomous platforms equipped with ground-penetrating radars (GPRs) have been
proposed for the detection of landmines. These systems have already demonstrated their performance
in controlled environments with known ground truth. However, it has been observed that the
influence of surface conditions in the form of vegetation and roughness as well as soil moisture
content significantly reduce the detection probability. The influence of these individual factors on
a ground-offset GPR is presented and discussed in this work. Each of these factors significantly
degrades the backscattered signal. With increasing soil moisture, the signal gets attenuated more
strongly; however, the signature is maintained in the phase of the C-Scans. An increase in surface
roughness deteriorates the target pattern making it difficult to detect buried objects unambiguously.
Vegetation, especially with irregular leaf structures, can appear as a ghost target and scatter the
electromagnetic waves. In most cases, the target is easier to detect in the phase of the B- or C-Scan.

Keywords: GPR; rough surface; soil moisture content; target pattern; landmines; buried objects;
vegetation; SFCW

1. Introduction

Today the amount of buried landmines has increased tremendously during the last
decade. In 2021, 5544 casualties were reported and at least 60 countries are contaminated
by antipersonnel mines (APMs). In contrast, only 132.52 km2 of land has been cleared and
become usable for civilians again [1]. This outlines the main problem of humanitarian
demining: it is very slow and the goals for mine clearance can not be achieved in an
acceptable time period. Therefore, various unmanned aerial vehicles (UAVs) equipped
with ground-penetrating radars (GPRs) were proposed to accelerate the process and make
the humanitarian demining process safer [2–4]. However, the final testing and confirmation
of the system performance in real environments is still pending. Thus, hand-held metal
detectors (MDs) or, in individual cases, dual sensors consisting of an MD and a GPR [5,6] are
mainly used in humanitarian demining today. Furthermore, there are various approaches
for improving the performance of MDs [7].

In particular, for the approaches published in [8,9], which use a GPR on a UAV,
the effort for the subsequent processing and focusing of the recorded data is very high.
Therefore, these systems are not capable of real-time processing combined with a high
degree of hardware complexity, which is a distinct disadvantage in a contaminated mine
field. These restrictions become even more stringent due to the fact that the antennas are
located at a relatively large distance from the ground surface in contrast to traditional
ground-based GPRs. From a safety point of view, ground-based systems cannot be used for
mine detection, as there is a risk of unintentional triggering due to the ground pressure
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or contact with trip wires. Thus, this paper investigates the potential of using a ground-
offset GPR at a distance of 30 cm to 50 cm above the ground surface for humanitarian
mine detection.

Specifically for subsurface detection, a relatively low frequency is necessary to pen-
etrate into the soil. However, for the above-mentioned small and shallowly buried ob-
jects, a large bandwidth with the consequence of a higher center frequency is required.
Therefore, various impacts such as the soil moisture content (Section 2.2) can have an
impact, causing increased attenuation, reduced transmission power and an enlarged trav-
eling time within the medium. Additionally, an enhanced scattering due to the surface
roughness (Section 2.4) leads to a frayed target response as a consequence of multi-path
propagation. Vegetation with a high water content (Section 2.3) also results in stronger re-
flections. These impacts will be discussed in the following, theoretically and on the basis of
laboratory measurements.

2. Theory

Prior to the presentation of results, a few radar principles and relations are pointed
out, being necessary for the following considerations.

2.1. Radar Principles

With a radar it is possible to measure the distance R and reflectivity of a target. The
distance corresponds to the measured time delay τ of the two-way traveled signal to
and from a target. Via the received amplitude the radar cross section (RCS) σ of targets
can be estimated. Considering an off-ground GPR, it is essential to take into account
its interaction with the ground surface. This includes the refraction and reflection of
electromagnetic waves at the interface between air and soil. The time traveled in a medium
with a higher permittivity ε′r than the permittivity ε0 of vacuum is increased due to the
reduced propagation velocity of light in a medium cm:

cm =
c0√
εrµr

(1)

τ =
2R
cm

. (2)

Due to refraction, the direction of the propagation of the electromagnetic waves at
the interface plane changes. This must be taken into account when observing subsurface
objects. According to the Fermat’s Principle, the travel time of a electromagnetic wave
through a medium is minimized, leading to the following equation:

R = min ∥
∫

n(r)dr ∥, (3)

including n(r) as the refractive index and dr as the path segment. By fulfilling Fermat’s prin-
ciple, Snell’s law of refraction is obtained (Equation (4)), resulting in the typical hyperbolas
in the radargram, as illustrated in Figure 1b.

sin(θt) =
n1

n2
sin(θi) (4)

cos(θi) =
A⃗1 I1 · n⃗

∥A⃗1 I1∥ · ∥⃗n∥
(5)

The · denotes the dot product, ∥A⃗1 I1∥ the magnitude of the incident vector (c.f.
Figure 1a), ∥⃗n∥ the magnitude of the surface normal vector, and θi denotes the angle
between the incident beam and the surface normal at the intercept I1, whereas θi is the
angle between the diffracted beam and the surface normal. The coefficients of reflection R
and transmission T can be derived from the Fresnel equations:
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Rp =

∣∣∣∣n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)

∣∣∣∣2 (6)

Rs =

∣∣∣∣n1 cos(θt)− n2 cos(θi)

n1 cos(θt) + n2 cos(θi)

∣∣∣∣2 (7)

Tp = 1 − Rp (8)

Ts = 1 − Rs (9)

with p representing the parallel and s the perpendicular plane of incidence.
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⃗I1 T

I1
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R2
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(a) Typical of ground-offset GPR scenario

R
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R
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(b) Resulting target hyperbola

Figure 1. Sketch of a typical ground-offset GPR scenario in (a,b) the resulting monostatic target
hyperbola (–) due to the increased two-way travel time from a buried target in a B-Scan.

Considering an incidence angle of θi = 0◦, Rp becomes equal to Rs. The reflectivity as
well as the transmission due to a varying ε̂r for different gravimetric water contents ωw of
the soil are sketched in Figure 2.
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Figure 2. Normalized reflection- and transmission coefficient as a function of gravimetric soil moisture
content. Input parameters are center frequency fc = 2.9 GHz and incident angle θi = 0◦.

The terms A-, B- and C-Scan are important for the terminology used in this work.
An A-Scan is a single measurement taken at a specific point (■ in Figure 1a) with a time-
dependent reflectivity. Multiple A-Scans in a line merge into a B-Scan. Recording several
B-Scans, a C-Scan is obtained by slicing the collected data at a certain depth parallel to the
surface. As outlined in Figure 1b, there are different principal reflection points. For the
monostatic case (–), the transmitting and receiving antenna are collocated (A1); therefore,
the main surface reflection (· · · ) impinges from the area directly under the antenna. The
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target response in the B-Scan, due to the decreasing and later increasing distance ⃗A1 I1T,
results in a hyperbola with the apex at the actual target position (c.f. Figure 1b).

In contrast to this is the bistatic arrangement with the measured distance being the
sum of the two partial distances ⃗A1 I1T and ⃗A2 I2T. The surface reflection also appears in
the middle between the antennas (· · · ). The apex of the target hyperbola in the bistatic
B-Scan is therefore centered between the two antenna positions on either side of the target.

Due to the characteristics of the surface topography, vegetation and soil composition,
the target hyperbolas may be deformed and under certain conditions attenuated making it
difficult to identify this characteristic pattern in a clutter dominated environment.

Table 1 lists various environmental factors and their related models. In particular,
most important is the frequency dependence of water, which has a significant impact on
soil and vegetation parameters.

Table 1. Models for various environmental factors.

Environmental Factor Influence Model Comment

water frequency dependence ε̂r(ω)
Debye Model [10]

Cole–Cole model [11,12] basic theory

soil parameters 2
frequency dependence ε̂r(ω)

attenuation α
reflection R, transmission T

Peplinski soil model [13]
CRIM 1

Topp equation [14]

semi-empirical model
for mixed-media
empirical model

surface roughness scattering of EM-waves Fresnel–Kirchhoff Diffraction [15] key parameter: σh/λ

vegetation 2
frequency dependence ε̂r(ω)

scattering of EM-waves
attenuation α

Tan formulation [16]
CRIM 1 for homogeneous layer [17]

3D structure/shape not considered

1 Complex Refractive Index Model; 2 Can be combined with a frequency dependence model for water.

2.1.1. SFCW-Radar

The Stepped Frequency Continues Wave (SFCW) radar modulates the transmit sig-
nal in a predefined frequency range with uniform frequency steps ∆ f . The transmitted
frequency fk of the system is given as:

fk = f0 + k∆ f k = 1, 2, . . . , K (10)

with f0 being the start frequency and k the number of frequency steps. This generates
a bandwidth B = K ∆ f , which defines also the range resolution δR and the theoretical
maximum measurement range Rmax.

δR =
cm

2B
(11)

Rmax = K · δR (12)

(e.g., with cm = c0 and B = 3 GHz leads to a distance resolution δR of 5 cm). The reflected
signal sk(t) from a target at one frequency can be expressed by the amplitude Ak and the
time delay τ of the target as:

sk(t) = Ak exp(−j2π fk(t − τ)). (13)

This signal is mixed down to the baseband with a quadratur–demodulator. The
output of the quadratur–mixer signals Gk (Equation (14)) yields the target reflectivity over
frequency. The output phase Φk(t) (Equation (15)) of the signal can be expressed in terms
of the target range R, neglecting the velocity, as discussed in [18]:



Remote Sens. 2024, 16, 1011 5 of 28

Gk = Ak exp(jΦk) (14)

Φk = −2π fk
2R
cm

(15)

In order to extract the range information, each burst of k complex samples is Fourier
transformed by a Inverse Discrete Fourier Transform (IDFT) to obtain range-delayed
reflectivity information. The IDFT is expressed as:

Hl =
K−1

∑
k=0

Gk exp
(

j
(

2π

K

)
lk
)

(16)

leading to a synthetic range profile that follows a sinc-shaped envelope [18].

2.1.2. SFCW Target Phase

For the results presented later, it is important to estimate the expected phase of the
target. For purpose of simplicity, the phase is derived using the continuous inverse Fourier
transform. By normalizing the synthetic response with Ak = 1 for all k and zero target
velocity, the signal only depends on the distance to the target R. Therefore, the phase
difference is ∆ϕ = −4π f R/cm. Applying the inverse Fourier transform (Equation (17))
leads to:

S(t) =
∫ fc+

B
2

fc− B
2

exp(j∆ϕ) · exp(j2π f t)d f (17)

= exp

(
j 2π fc

(
t − 2R

cm

)
︸ ︷︷ ︸

ϕt

) ∫ B
2

− B
2

exp
(

j2π f ∗
(

t − 2R
cm

))
d f ∗︸ ︷︷ ︸

sinc(π(t− 2R
cm )B)

(18)

with the expected phase ϕt of the target as

ϕt = 2π fc

(
t − 2R

cm

)
. (19)

With t = 2R/cm, the target phase ϕt becomes

ϕt = 0 (20)

and a sinc-shaped envelope at the target range. This implies that the phase of the target
response is always 0 at the correct target distance. Furthermore, the phase along the typical
hyperboloid is therefore constant.

2.2. Soil Properties

A radar can sense dielectric contrasts, being the fundamental principle to detect buried
objects. Therefore, the properties of the surrounding soil are of great importance. As the
radar transmits high-frequency electromagnetic waves, the frequency dependent properties
of the soil are of crucial significance. The influences can be divided in two main categories,
the velocity of light and the attenuation in the soil. Both factors are strongly dominated by
the water content in the soil. The velocity of light in the medium cm depends on the real
part of the permittivity ε̂r. Most dry soils exhibit a range of 2.5 to 8 (e.g., dry sand 2.5 to 5),
while the real part of water εr ranges up ro about 80, explaining the rapid decrease of the
velocity of light in the soil with increasing water content [14,19]. The complex permittivity
ε̂r is given by:

ε̂r(ω) = ε′r + jε′′r (21)
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with ω the angular frequency. The intrinsic attenuation α in the soil can be calculated
with [20]

α = 8.686 · ω

c0

√√√√√ ε′r(ω)

2

(√√√√1 +

(
ε′′r (ω)

ε′r(ω)

)2

+ 1

)
. (22)

For the soil, it is crucial to look at the resonance frequency of water in the range of
10 GHz to 11 GHz. In this range, the imaginary part (ε′′r ) of water increases and therefore
the attenuation becomes significantly stronger. The frequency dependence ε̂r(ω) of water
can be expressed by the Debye’s formula [10]:

ε̂r(ω) = εr(∞) +
εr(0)− εr(∞)

1 + jωτr
(23)

with the pole relaxation time τr. (The Debye relaxation time specifies the time required
of the polarization response to reach about 63 % of its steady-state value when exposed
to an external electric field.) Accepted parameters are τr ≈ 9.231 ps, εr(0) ≈ 80 and
εr(∞) ≈ 4.5 [21]. The frequency dependency for these specific values is illustrated
in Figure 3.

0 5 10 15 20 25
0

20

40

60

80

f in GHz

ε r

real
imag

Figure 3. Frequency dependency of ε̂r in water according to the Debye model (Equation (23)).

Another model published by Topp [14] concerning the volumetric water content θw
and the resulting εr of the soil leads to the following relation:

εr
′ = 3.03 + 9.3θw + 146θ2

w + 76.7θ3
w (24)

The composition or bulk density of the respective soil is not taken into account here,
which can lead to a variation of ε′r (details can be found in [22,23]). Additionally, the model
assumes, that the ε′r of the dry soil is always 3.03. In addition, it is easier to determine the
gravimetric water content ωw in the field, making it necessary to convert the gravimetric
water content ωw into the volumetric water content θw. This requires the bulk density ρ of
the soil and leads to θw = ωwρ.

Considering these aspects, it is more expedient to look at a Complex Refractive Index
Model (CRIM), which includes both the air content and the other constituents of the soil [13].
An illustrative formulation of the model would be:

ε̂r =
(
θair ε

β
r, air + θsoil ε

β
r, soil + θwater ε

β
r, water( f )

) 1
β , (25)

with β = 0.5. Combining the Debye model for the frequency dependency of water with
the CRIM model results in a typical representation of the ε̂r of the soil, see Figure 4.
Furthermore, the attenuation α can be determined via Equation (22), which is illustrated
in Figure 4c.
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(b) Imaginary part of soils ε̂r
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(c) Attenuation α of the soil

Figure 4. Frequency and water content dependent soil properties, calculated from the CRIM model
(Equation (25)) combined with the Debye formulation (Equation (23)) for εr, soil = 2.5 and β = 0.5.

Clearly, it can be derived that the real part rises sharply as the water content in-
creases. The imaginary part increases at a higher frequency and a larger water content. The
attenuation of the soil behaves in an equivalent way.

2.3. Vegetation

Plants can also play a decisive role for the detection of small buried objects. Tan
examined in [16] various plants with respect to their permittivity at a frequency of 9.5 GHz
and found the following formulation

ε̂r, veg = 1.5 +
(

ε′r,w(ω)

2
− j

ε′′r,w(ω)

3

)
ωw (26)

with ε′r,w(ω) and ε′′r,w(ω) being the real and imaginary part of ε̂r(ω) for water and the
gravimetric water content ωw, while the 1.5 represents the ε′r of dry vegetation. The
observed dependency of the water content is similar to the one in soil. However, it is not
the attenuation that is the critical factor here, but rather the scattering that occurs due to
the high ε′r, interfering with the target signal [24], as growing plants posess in particular a
high water content.

2.4. Surface Roughness

When an electromagnetic wave passes from one medium to another, the surface
roughness may lead to scattering. Scattering occurs when the reflected wave front is
deformed so that it propagates in different directions without having a preferred direction.
The polarization of the electromagnetic waves can also be affected. Thereby, the scattering
is a function of the incidence angle θi and the size of the surface elements (roughness). If
a surface is specular, nearly no scattering appears. In contrast, with increasing surface
roughness and incidence angle the scattering increases and becomes diffuse for a completely
rough surface. This scattering depends on the relationship between the wavelength λ of the
electromagnetic wave and the standard height deviation σh of the surface roughness [15].
Whether a surface is rough or not, is defined by two criteria:

1. Rayleigh Criterion:

σh <
λ

8 cos(θi)
(27)

2. Fraunhofer Criterion:

σh <
λ

32 cos(θi)
(28)

The Fraunhofer criterion can be applied in order to decide whether a surface can be
considered as rough. For this limit, the phase error remains smaller than pi/8 [25].

The theoretical height function z of a random rough surface is given by the folloing:

z = ξ(x, y) (29)
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The surface height distribution, being considered in this context, is statistically de-
scribed by a Gaussian distribution, which is valid for a wide range of surfaces [26]. The
height probability distribution defines the height deviation from a mean reference plane.
Hereafter, the ⟨ξ(x, y)⟩ = zsurf is the base for the following discussions and diagrams [27].
The Gaussian height probability is

ρh(ξ) =
1

σh
√

2π
exp(− ξ2

2σ2 ), (30)

with σh being the root mean square (RMS) height, which is equal to the standard height
deviation. The distribution along the surface of the height profile can be described by the
autocorrelation function

C(x, y) = exp(− x2

ℓx
− y2

ℓy
), (31)

where ℓx and ℓy are the correlation lengths in x− and y−direction. For the following
discussions we assume that the surfaces are isotropic and therefore ℓx = ℓy. This means
that the slope distributions will also be Gaussian. For the isotropic case, the RMS slopes w
in x and y are identical and given by Equation (32) [28].

w =
√

2
σh
ℓ

(32)

For reference measurements in the laboratory, the three-dimensional rough surfaces
were synthesized by a fast convolution and are defined by

ξ(x, y) = F -1
(
F
(

n(x, y)
)
· F
(

C(x, y)
))

(33)

as discussed in [15], with n(x, y) being white noise, which is multiplied in the frequency
domain by the correlation kernel C(x, y) and afterwards transformed back into the spatial
domain. These synthesized rough surfaces with defined correlation lengths ℓx, ℓy and
standard height deviation σh were 3D-printed and used as molds, illustrated in Figure 5, to
generate rough soil surfaces.
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(a) surface 1
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(b) surface 2
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(c) surface 3

Figure 5. Height map of three different 3D-printed surface molds, with a edge length of 0.25 m and
different correlation lengths ℓ and height deviation σh, compared in Table 2.
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Table 2. Parameters of the synthetically generated rough surfaces.

Parameter Surface 1 Surface 2 Surface 3

edge length 0.25 m 0.25 m 0.25 m

ℓ 26.25 mm 26.25 mm 13.125 mm

σh 3.75 mm 7.5 mm 3.75 mm

ω 0.202 0.404 0.404

2.5. Laboratory Measurements
2.5.1. Setup

Due to the given application of landmine detection, a GPR is investigated with the
antennas guided at a fixed distance dant = 0.28 m between the transmitter A1 and receiver
A2 and a defined distance hant = 0.3 m to the ground surface. To record a C-Scan, the soil
box (Figure 6b) is scanned with an equidistant grid of ∆x and ∆y of 0.03 m. A C-Scan
therefore consists of n × m data points, which are picked from the corresponding range
bin of the individual A-Scans, resulting in a slice parallel to the surface (xy-plane). While
a B-Scan parallel to the y-axis consists of m A-Scans and covers a length of m · ∆y with
m = 0, 1, 2, . . . , M, (the same is valid for a B-Scan parallel to the x-Axis, see Figure 7).
The Vector Network Analyzer (VNA) (Keysight handheld VNA [29]) measures a de-
fined frequency range at each position P(x, y). Horn antennas from Aaronia [30] have
been mounted. Table 3 gives an overview of the parameters.

(a) field measurements (b) scanning surface 3

Figure 6. Linear Rail System during field measurements (a) with the same setup as in the
laboratory (b).

Table 3. Laboratory setup parameters.

Parameter Value Comment

VNA Frequency Range 0.8 GHz to 5 GHz 1001 points

width of range bin ∆Rbin 4.4 mm zero padding of 8

Antenna Bandwidth 0.7 GHz to 18 GHz Double Ridge Horn [30]

Antenna Beamwidth ≈80◦ to 30◦ -

∆x, ∆y 0.03 m -

hant 0.3 m -

dant 0.28 m -

soil type loamy sand -
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Laboratory Setup

x

z
dt0

x

2.
5

m

1.2 m

0.4 m

y
0

x(n) = x0 + n · ∆x

y(
m
)
=

y 0
+

m
·∆

y

T1

T2

T3
∆y

dant

A1 A2

hant

VNA

x = 4.0 m

Figure 7. Sketch of the laboratory setup with the symbols used.

Loamy sand is taken as the test soil, making it possible to mold the rough surface
(Section 2.5.3). Furthermore, this type of soil can store more water than to pure sand, but
less than clayey soil. In addition, grass and other plants can be grown easily (Section 2.5.4).

2.5.2. Buried Test Objects

Two different types of targets have been used for the laboratory measurements. These
objects correspond to the size of an APM, see Figure 8. The aluminum cylinder (a) represents
a strong and therefore an easily to detect object and is well suited as reference object. In
contrast, the plastic cylinder (b) has a smaller RCS and is therefore a very challenging target.
These APM simulants are usually buried at 2 cm to 5 cm.

In the laboratory setting, the APM simulants were buried in three positions (T1
(4.0, 1.0), T2 (4.0, 1.62) and T3 (4.0, 2.2) in Figure 7), ensuring sufficient spacing around
to prevent mutual interference. Additionally, the simulants were also placed in vary-
ing depths, facilitating a comprehensive analysis of the impact of the burial depth on
the detectability.

(a) Aluminum cylinder (b) Plastic cylinder

Figure 8. Buried test objects in the laboratory. The red coin with a diameter of 3 cm can be used as
a reference. The aluminum cylinder in (a) and the plastic cylinder in (b) have a outer diameter of
0.08 m and a height of 0.04 m.

2.5.3. Rough Surface

Rough surfaces can lower the detection capability drastically. Therefore, the syntheti-
cally generated surfaces as described in Section 2.4 were 3D printed and used as a mold for
the soil surface, parameters in Table 2. Due to the limited print volume, the three different
surfaces, each with an edge length of 0.25 m, were placed next to each other to generate
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a structure on the entire surface. For this reason, the structure is repeated periodically,
see Figure 9.

(a) Periodically repeated pattern (b) Zoomed in section

Figure 9. Example image of Surface 2, showing the periodicity (a) and a zoomed in section (b).

For the frequency range of 0.8 GHz to 5 GHz used in the measurements, the limits
for the standard height deviation, whether a surface is considered as rough or not, are
calculated for the Fraunhofer and Rayleigh criteria, shown in Table 4. Based on the limits
of the Fraunhofer criterion Equation (28) compared to σh of the synthetically generated
surfaces in Table 2, the surfaces used are categorized as rough in the upper frequency range,
while none of the surfaces are classified as rough for the starting frequency.

Table 4. Rough surface criteria.

Wavelength Rayleigh Criterion Fraunhofer Criterion

λmax = 0.37 m 46.25 mm 11.56 mm

λc = 0.10 m 12.87 mm 3.22 mm

λmin = 0.06 m 7.5 mm 1.87 mm

2.5.4. Vegetation

The plants shown in Figure 10 were grown in the laboratory. They differ in their
structure and the water content of the individual leaf segments. The grass with a height
of 0.1 m (a) has an uniform distribution over the entire test area. The coltsfoot (c), on the
other hand, has larger leaves on individual stems with a higher water content, as well as a
stronger root system that forms branches. In contrast, the thistle (b) rises from a central
root, which also penetrates deep into the soil. The thistle also contains a lot of water in its
stems during growth, which is no longer present to the same extent in summer and fall.

(a) (b) (c)

Figure 10. Vegetation grown in the laboratory. (a) grass (lat. lolium perenne esquire), (b) thistle (lat.
carduus nutans), (c) coltsfoot (lat. tussilago farfara).

2.6. SFCW GPR Data Processing

The processing of the data is straightforward and is basically based on the steps
listed in Figure 11. The S-parameters, s11 and s21, are recorded with the VNA at each
approached position. This allows monostatic measurements s11, with antenna A1, and
bistatic measurements s21, with antenna A1 as transmitter and A2 as receiver. These are
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now combined with the corresponding antenna position P⃗ant of the two antennas A1 and
A2. The data are then transformed into the time domain using the inverse IDFT to obtain
the reflectivity over distance, Equation (16). Data are windowed with a Hanning window
to reduce the sidelobes [31,32]. The signal is zero-padded to the next power of two and
then oversampled eight times. This leads to a range bin resolution ∆Rbin = δRK/Nidft
of rounded 4.4 mm for the results presented in the following. The next step, distance
correction, is particularly important with respect to the following evaluation of the surface
and the target response. Thus, the cable length is compensated up to the phase center of
the antenna so that the surface appears at the correct distance [33].

VNA

Linear-
motionsystem

Combine Data IDFT

Range correction

Surface estimation

A-, B-, C-ScanSurface evaluation
2D-histogram

Target evaluation
SNR

s11, s21

P⃗ant

zsurf = 0

zsurf = 0

Figure 11. Overview of data processing.

The imaging is based on a narrow measurement grid, and no migration algorithm
or focusing was applied. To generate a C-Scan, the data point corresponding to a specific
depth is picked from each A-Scan, which is equivalent to a slice parallel to the surface.
These data points are displayed for the power C-Scan using an interpolating shader. For
the phase C-Scans, the respective phase at the data point is displayed without interpolation
to avoid discontinuities caused by the wrapped phase. The B-scans are presented using the
equivalent scheme.

2.6.1. Surface Evaluation

Following these steps, the final surface position is estimated in the data by searching
for the first dominant peak in the range data of each A-Scan. Based on this, the A-, B- and C-
Scans are extracted and displayed. The different targets and the characteristics of the surface
are also evaluated based on this concept. In order to determine the influence of various
rough surfaces and vegetation on the surface signal, various parameter distributions are
determined from the images. First, the distribution of the maximum response over the
entire surface is determined, resulting in two parameters. Firstly, the distribution of the
signal strength and secondly the position of the peak, from which a bivariate histogram
with the distribution of the signal strength over the position can then be created. This can
be used to evaluate and compare the influence of the respective surface under investigation.

2.6.2. Target Evaluation

For the target evaluation the signal-to-noise ratio (SNR) is determined for the targets in
the individual experiments. In general, the SNR measures the intensity of the signal power
PSignal in comparison to the background noise or clutter PBackground. It is expressed as:

SNR =
PSignal

PBackground
. (34)

2.7. Determination of Environmental Parameters

Determination of separate environmental parameters is of major importance, par-
ticularly the gravimetric water content ωw of the soil and vegetation. Additionally, the
vegetation density dv (in mass per unit area) and height hv represent key parameters. The
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3D-structure of individual plants varies depending on the species and cannot be described
by a simple model. Surfaces with defined roughness parameters are synthesized by a
molding technique, characterized by correlation length ℓ and standard height deviation σh
as listed in Table 2. Table 5 provides an overview of the considered parameters.

Table 5. Environmental parameters.

Parameter Formula Unit Comment

gravimetric soil
moisture content ωw = mw−md

md
[%] ISO 11465

dryed at110 ◦C

surface roughness parameters Table 2,
criteria in Table 4

molds are
synthetically

generated

vegtation mass
per area dv = mv

A

[
kg
m2

]
-

gravimetric
vegetation moisture

content
ωw = mw−md

md
[%] dryed at 110 ◦C

vegetation height hv [m] -

vegetation structure - different for each
plant species

3. Results

The measurements recorded in the laboratory will be presented and discussed in the
following chapters. The influence of the soil moisture content is evaluated first, followed by
the surface roughness and the vegetation. In the B-Scans, the y-target positions are marked
with a ( ) at the bottom.

3.1. Influence of the Soil Moisture

In the following, the influence of the gravimetric soil water content will be evaluated.
An increased travel time in the medium combined with a stronger surface reflection,
as a result of an increased ε′r can be predicted. This leads to the consequence that less
power penetrates the ground and that the surface reflection dominates the target response
of shallowly buried targets. Furthermore, attenuation α increases based on the ε′′r rise,
resulting in an attenuated signal for deeper targets.

Soil samples were taken during the individual measurements and used to determine
the gravimetric soil moisture content ωw. The ε′r was determined from the distance between
the soil surface and the target in the A-Scan centered above the target. The results are given
in Figure 12. The investigated gravimetric soil moisture content ωw of 0.012 to 0.1 leads
to a variation of ε′r from 2.5 to 8.4. In this range, the relationship can be assumed to be
linear. Deviations can be attributed to measurement tolerances of the weight, as well as
to an eventually inhomogeneous moisture distribution within the soil. For the presented
observations, the accuracy is still sufficient and matches well to the theory, c.f. Figure 4a.

Looking at the B-Scans with different soil moisture contents in Figure 13, it can be
observed that the surface reflectance increases with the soil moisture content, varying
from −60 dB for the dry soil up to an increased response of −54 dB for a gravimetric soil
moisture content of 0.1, which is a rise of 6 dB, being in the range predicted by theory,
c.f. Figure 2. A more detailed analysis is presented in Figure 14 for three different soil
moisture contents. In the histograms the probability density function (pdf) for the power
over position distribution is given. In the surface position a small variation is visible, which
is caused by a not perfect smooth surface. The main focus here should be put on the power
distribution, which in all three cases is approximately 3dB wide for the majority of the
reflected power. The average value increases with increasing soil moisture content. This
relationship is given for other moisture contents in Figure 15a (•) and behaves accordingly.
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Figure 12. ε′r dependency on the gravimetric soil moisture content ωw of sandy loam, measured with
a center frequency fc of 2.9 GHz.
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Figure 13. B-Scans at x = 4.00 with different soil moisture content from a buried aluminum cylinder
(Figure 8a) at (4.00, 2.20, −0.1) and a plastic cylinder (Figure 8b) at (4.00, 1.65, −0.1).
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(c) ωw = 0.098

Figure 14. Surface power vs. position distribution histograms for different soil moisture contents
illustrating the dependency of the mean surface response from the soil moisture content without a
wide spreading in position.

Another observation in the B-Scans implies that the clutter pattern is the same for all
B-Scans, leading to the assumption that this is not directly influenced by the humidity and
is rather dominated by the experimental setup, e.g., the antenna ringing. However, as a
consequence this leads to the superposition of the target signal with a varying background
signal level.

The buried aluminum cylinder at (4.00, 2.20, −0.1) is visible in all B-Scans (Figure 13)
with a decreasing intensity. Especially in the B-Scan with the highest soil moisture content,
it is only recognizable due to the hyperbolic negative contrast pattern, as the signal level is
in the range of the background level.

In Figure 15a the reflected power from the target is displayed (•) depending on the
soil moisture content. The graph implies a falling curve for an increasing moisture content.
However, there is a slight increase in the target response for a water content of 0.08, which
is due to a constructive interference with the previously described clutter.
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Figure 15. Reflected power and SNR of sandy loam against the gravimetric soil moisture content ωw,
measured at a center frequency fc of 2.9 GHz.

For further analysis, the SNR in Figure 15b is taken into consideration. The influence
of the background noise is even more apparent. As the object response appears deeper
(c.f. Figure 13), due to the increased ε′r, the response is superimposed with another part
of the “static” clutter. Therefore, the phase progression of the clutter is also important
for the target response. As an example, two points will be analyzed in more detail, the
first for a soil with ωw = 0.012 and the second with 0.062. For the dryer soil, the target
range coincides with a minimum of the clutter and resulting in a high SNR of 20 dB, c.f.
Figure 15b. On the other hand, for an increased soil moisture content, the target response is
reduced. Additionally, for ωw = 0.062, the target response coincides with a local maximum
of the clutter and results in a very low SNR of 3 dB, which is not sufficient to detect a target
in a B-Scan without the occurrence of negative contrast hyperbola.

Taking a closer look at the buried plastic cylinder, it is only detectable in the two
B-Scans of the dryer soil, Figure 13a,b.

In Figure 16, B-Scans of a shallowly (dt = 0.03 cm) buried aluminum cylinder are
shown. The surface reflection increases to the same level as described before. In the dry
soil, the shallowly buried aluminum cylinder is recognizable, but the typical hyperbola
are not clearly visible due to the insufficient distance resolution δR. This behavior is also
clearly observable in the corresponding A-Scan in Figure 17a (–). The target only forms a
saddle point in the declining surface response. If the traveled time in the soil is increased
as a result of the higher ε′r, the target becomes more distinctly visible, c.f. Figure 13b. The
separation between the surface and the target response clearly appears in the A-Scan (–).
Another important point to be noted is that the surface response directly above the target is
reduced based on the complex interference, which leads to a constructive or destructive
superposition. With further increase of the soil moisture, the buried object is no longer
visible due to the increased surface reflection. However, if we compare the surface peak of
the presented A-Scans (–) for the soil moisture content ωw = 0.051, it becomes obvious that
the surface response directly above the shallowly buried aluminum cylinder is reduced by
3 dB in comparison to the other A-Scans. A more detailed analysis will be discussed later.

In the A-Scans, the afore-mentioned clutter pattern is also apparent. For the aluminum
cylinder buried at −0.1 m the influence of the ε′r and the resulting elongation, as well as the
attenuation due to the increasing ε′′r , is obvious.

With respect to the clutter pattern and the resulting SNR, detection based on A- and
B-Scans appears very difficult. In particular, the appearance of a hyperbola in the B-Scan
is strongly influenced by the clutter level, which varies due to the increased travel time
in the medium. However, a C-Scan can be created on the basis of a further measurement
dimension which can be used for further evaluation to detect these objects.
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Figure 16. B-Scans at x = 4.00 with different soil moisture content with a shallowly buried aluminum
cylinder at (4.00, 1.0, −0.03) (Figure 8a).
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Figure 17. A-Scans from three different objects with different soil moisture content.

Looking at the C-Scans (Figure 18) for two extreme cases—the shallowly buried
aluminum cylinder and the plastic cylinder—it is still possible to identify the targets in
both cases based on the circular signature, despite the high soil water content. From the
known relationship of the expected target phase (Equation (20)) at the correct target range
a circular ring pattern with a phase equal to 0 appears, c.f. Figure 18b. However, the
case in Figure 18b also implies that under certain circumstances the clutter at the depth
of the target has almost the same phase, which can lead to a deterioration in detection
capability. The shallowly buried aluminum cylinder is also not visible in the B-Scan or the
respective A-Scan. However, in the C-Scan in Figure 18c, a circular shape appears with a
relatively high SNR. For this particular measurement, the major problem originates from
the limitation that only in a few A-Scans the target response has a high SNR. Therefore,
it is possible that in a single B-Scan no visible hyperbola is formed. Thus, it is absolutely
necessary to take a B-Scan at the appropriate position above the object in order to detect the
target at all. In Figure 18d the corresponding phase of the C-Scan is given and the expected
circular 0 phase ring is easily visible and exhibits a phase difference to the background of π.
In contrast, the stronger signal in the bottom left corner is easily identifiable as clutter, due
to the random phase.
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(c) Aluminum cyl. at −0.03 m, ωw = 0.098
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(d) Aluminum cyl. at −0.03 m, ωw = 0.098

Figure 18. Phase and power C-Scan comparison for two different object for soil with high water
content. The respective C-Scan is slightly below the depth corresponding to the real depth.

Conclusions

The measurements principally exhibit the expected behaviour: an increased water
content leads into an enhanced surface reflection and simultaneously in an elongation of
the path in the medium. This results in a weaker target response for deeper object, whereas
the shallowly buried object is hard to perceive especially for the dry soil. Looking at the
C-Scans offers a significant improvement. Clear patterns with distinct signatures appear
which can be readily identified.

3.2. Surface Roughness

The roughness of the surface is the second important factor influencing the detectability
of buried objects. The scattering at the surface increases with enhanced surface roughness.
The target response is also frayed, as no more plane waves are received from the object
due to multi-path propagation. Therefore, in the following section this influence will be
investigated using synthetically generated rough surfaces with the parameters in Table 2.

As a reference, the C-Scan of a smooth surface in Figure 19a is taken. A mean reflected
power of 60 dB with a variation of 3 dB from the surface can be determined. This variation
can also be seen in the probability density function (pdf) of the bivariate histogram in
Figure 20a. Furthermore, a variation in the position of three range bins can be extracted,
whereby the majority is limited to two range bins and a power variation of 2 dB. Some of
the bins with lower intensity are due to the upper left corner in the C-Scan.

The first investigated surface is surface 1, with parameters listed in Table 2. In the
C-Scan in Figure 19b, the periodically repeated pattern of the surface molds is clearly
observable in the reflected power, leading to a broader power distribution and larger
spreading in the position, c.f. Figure 20b.

Surface 2 as given in Figure 19c, has the highest roughness considered in this work.
The same periodicity as for surface 1 can be observed, due to the same orientation of the
molds and the identical correlation length ℓ. Only the standard height deviation σh is
doubled, with respect to surface 1. The power and position deviation spreading is much
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wider in comparison to the other surfaces. The power is distributed over 13 dB while the
position simultaneously varies over 10 range bins, Figure 20c.
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Figure 19. C-Scans at z = 0 from four different rough surfaces.

In contrast, surface 3 exhibits a smaller variation due to the smaller correlation length
ℓ and σh. The major variation in the position ranges over three bins while the spreading of
the power is limited to 3 dB.

Based on these observations, a coarse estimation of the correlation between the rough-
ness and the distribution of the range bins can be derived, 6σh ≈ nrbins∆rbin. As the
relationship between the power distribution and the respective surface parameters is not
straightforward, reference is given to the literature [34].

The influence of the surface on the target response is essential for detection. The B-Scan
in Figure 21a of the flat surface serves as a reference. All buried aluminum cylinders (at
−0.03, −0.1 and −0.2 m) are visible and can be easily detected. Also the shallowly buried
aluminum cylinder appears, despite the above-mentioned insufficient range resolution δR.
Also in the corresponding C-Scans in Figure 22a–c, all objects possess a distinct circular
pattern, with a high SNR.

For the wavy surface 1, all three targets are also observable. However, the wavy
surface response is not as equally distributed as in the case of the flat surface. The target
power of the individual targets is slightly reduced in comparison to the targets buried
under the smooth surface. The pattern of the shallowly buried target is slightly disturbed
and deformed, additionally the clutter level is increased due to the surface inhomogeneity,
while the targets buried at −0.1 and −0.2 m exhibit almost the same pattern as in the case
of the smooth surface.

The situation for the roughest surface is totally different, as the shallowly buried
object in Figure 22g is only visible due to an area with higher intensity, without a typical
pattern. The typical hyperbola is also not present for the shallowly buried aluminum
cylinder in the B-Scan in Figure 21c,d. Additionally, the surface power and the shape itself
vary significantly, as already discussed. The B-Scan at x = 4.0 m exhibits a surface with
a small power spreading. However, below the surface, a periodically repeating clutter
area appears, which interacts with the target response of the shallowly buried aluminum
cylinder. This behavior is even more pronounced in the B-Scan at x = 4.09 m, as the surface
response is reduced by 5 dB to 10 dB in comparison to the B-Scan at x = 4.0 m, and therefore
the target disappears. Likewise, the intensity of the deeper buried targets is reduced
and no clear pattern is visible in the C-Scans. In contrast, in the B-Scan at x = 4.0 m, the
two hyperbolas are clearly distinguishable from the background clutter. If the phase of the
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B-Scans Figure 23 is considered, the deeper aluminum cylinders are identifiable due to the
hyperbolas with a phase equal to 0. Here, also, the shallowly buried object is detectable,
even if the surface structure leads to a periodical pattern with smaller hyperbolas.
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Figure 20. Bivariate histograms showing the corresponding spreading in position and power for four
different rough surfaces, with parameters in Table 2. The spread of the distribution of both variables
increases with increasing surface roughness.

Surface 3 is the final surface under investigation with the smallest correlation length
ℓ. This leads to a more homogeneous surface response and therefore the circular pattern
of the shallowly buried target is visible. Likewise the circular shape of the deeper targets,
with a slightly reduced response, are present. In the corresponding B-Scan (Figure 21e) the
clutter level directly below the surface peak is reduced and in combination with the slightly
reduced surface response, the shallowly buried aluminum cylinder is relatively easy to
detect compared to the others. This behavior is also expressed in the SNR (•) in Figure 24.

The SNR shown in Figure 24 represents the ideal case of a homogeneous soil compo-
sition with a periodic surface structure. Unfortunately, this assumption does not always
apply in the real world, where irregular structures with an inhomogeneous soil composition
and the presence of stones and debris occur. As a result, the background clutter increases
and the SNR will deteriorate.

However, there are several important observations for the SNR behavior. On one side,
the SNR for the deeply buried target changes only slightly over the investigated surfaces.
The identical SNR appears for the “wavy” roughness (surface 1), as for the plane surface.
Surface 3 with the short correlation length has the lowest SNR due to the increased clutter
level at this depth. On the other hand, the aluminum cylinder buried at −0.1 m exhibits the
expected behavior: with an increase of the RMS slope ω in combination with the absolute
roughness depth and correlation length the SNR decreases. The same behavior is generally
observed from the shallowly buried object, with an exception for surface 3. The random
coincidence of the target response with an area of low clutter increases the SNR significantly
and exceeds that of the smooth surface.
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(b) surface 1, x = 4.0 m
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(c) surface 2, x = 4.0 m
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(d) surface 2, x = 4.09 m
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Figure 21. B-Scans from buried aluminum cylinders (Figure 8a) at (4.0, 1.0, −0.2), (4.0, 1.65, −0.1)
and (4.0, 2.25, −0.03) with different surface roughnesses.
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Figure 22. C-Scan comparison of the influence of different burial depths and rough surface parameters
on the response of buried aluminum cylinders.

Conclusions

As the surface roughness increases, the impact on the received target response is
enhanced. The object pattern, especially of the shallowly buried object, appears frayed and
detection becomes more difficult. An improvement can be seen by considering the phase
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of the B-Scan, which still exhibits clear hyperbolas that contrast significantly from other
surface artifacts.
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Figure 23. Phase of the B-Scan from three buried aluminum cylinders at (4.0, 1.0, −0.2), (4.0, 1.65,
−0.1) and (4.0, 2.25, −0.03) (rough surface 2).
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Figure 24. SNR of aluminum cylinders buried in various depths in dry sandy loam with different
surface roughnesses.

3.3. Vegetation

Another main influencing factor reflects the local vegetation, as already discussed in
theory. An increase in water content leads to stronger reflections from plants. These are
also dependent on the structure of the plant in terms of water content, the structure of the
stems and the foliage. As a result, the surface reflection and target response is affected
by the particular plant species. The experiments presented below involve a plane surface
on which grass was seeded and reached a height hv of 0.1 m, with a vegetation mass of
0.25 kg

m2 and a gravimetric water content of 7. Finally a coltsfoot and a thistle were planted
to investigate and understand the influence of various vegetation. Due to the watering, the
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soil had a soil moisture content ωw of 0.07. In the B-scans, the y-vegetation positions are
marked with a ( ) at the top.

The power vs. position histograms exhibit a clear difference compared to the unvegetated
flat surfaces in Figure 25a. Based on the correlation of the gravimetric water content with the
surface reflection already presented, it should result in a reflected mean power of −56 dB, c.f.
Figure 12. The mean reflected power is around −60 dB at the surface (z = 0.01 m) shown in
Figure 25b. The spreading of the position and of the reflected power is much wider as compared
to the unvegetated surface. Also some slightly weaker reflections occur above the main surface
reflection. This leads to the assumption that the electromagnetic waves are scattered by the
vegetation. This behavior is intensified by the coltsfoot and thistle for the monostatic antenna
arrangement as implied by the histogram in Figure 25c. A larger spreading of both parameters
occurs with no main scattering power and no dominant position.
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Figure 25. Histograms of a plane surface with vegetation.

The identical scenario is presented for a bistatic antenna arrangement in Figure 25d.
Due to the bistatic arrangement the spreading in both directions is reduced and the center
of gravity exhibits a slightly reduced reflected power and appears slightly deeper.

Comparing the B-Scans in Figure 26 in detail, the influence of the coltsfoot, c.f.
Figure 10c, at x = 2.0 m is immediately apparent. The coltsfoot with its areal root sys-
tem and many individual stems with plate-like leaves, leads to a scattering volume, with a
few small target like hyperbolas. The same behavior is clearly visible in the phase of the
B-Scan in Figure 27a. Here, the plant leads to a disturbed clutter above the surface, with a 0
phase pattern. The surface reflection below the plant is also reduced due to the scattering
within the plant. Compared to the bistatic arrangement, the reduced surface reflection is
clearly observable in the B-Scan. Additionally, there are no strong reflections from the plant
that can be interpreted as ghost targets.

Considering the signal response of the buried aluminum cylinders, the shallow one
can be easily detected due to the small influence of the uniformly grown grass. On the
other hand, for the deeper aluminum cylinder in the monostatic case, the target pattern is
recognizable in the B-Scan, especially due to the occurrence of a hyperbola with a negative
contrast. This object is no longer visible in the monostatic power B-Scan, when a plant, in
this case the coltsfoot, grows in the immediate vicinity above the target. The same applies
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to the bistatic power B-Scan. If, additionally, the corresponding phase of the B-Scans is
considered, small, barely recognizable 0 phase hyperbolas occur for the monostatic case. For
the bistatic arrangement, the two-phase hyperbolas of the targets are easily recognizable.
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Figure 26. B-Scans from aluminum cylinders buried at (4.0, 1.05, −0.03) and (4.0, 2.2, −0.1) with
growing vegetation at (4.0, 2.05, 0.1).
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Figure 27. Phase of the B-Scan from aluminum cylinders buried at (4.0, 1.05, −0.03) and (4.0, 2.2,
−0.1) with vegetation of grass and coltsfoot at (4.0, 2.05, 0.1).

Conclusions

The evenly distributed grass scatters the electromagnetic waves, reducing the surface
reflection. The shallowly buried object remains visible and can be detected. Plants with
individual strong stems that contain water, on the other hand, result in significant scattering.
As a result, these plants can be eventually interpreted as targets and the objects below are
no longer detectable in the intensity B-Scan. An improvement can be achieved by looking
at the bistatic phase of the B-Scan.

3.4. Comparison of the Various Influences

For each of the investigated scenarios certain parameters impose challenges for the
detection of buried targets. An increase of the ε′r due to the water content is responsible for
a change in the measured target depth. Also, the reflected power at the surface increases,
leading to a reduction in transmission, further enhanced by the increase of the ε′′r . Due to
the homogeneity of the soil moisture prevailing in the tests, nevertheless it is possible to
identify the specific target pattern up to a gravimetric water content of 0.1.

The surface roughness generally leads to a deterioration of the target response and
blurs the specific target pattern. This is especially true for shallowly buried objects in
combination with a high surface roughness. Similar results were obtained for the vegeta-
tion: the shallowly buried object is detectable for an uniform distribution of grass. If the
structure of the plants changes with respect to the shape of the foliage and the stems with a
simultaneous increase of the water content (coltsfoot), the impact increases considerably
and significantly worsening the detection capability, especially of the shallowly buried
objects. The clearest appearance of deeply buried objects in the presence of plants could be
observed for the phase of the B-Scan in a bistatic setup.
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4. Discussion and Conclusions

In this contribution challenges and concepts for a GPR-based detection of buried
objects, especially for landmines, are presented and discussed. A major issue related to field
measurements is the radar response to vegetation and soil properties leading to undetected
objects with respect to the ground truth (false negatives) but also to false alarms (false
positives). Our approach can be characterized by the following items:

• Separation and quantification of environmental impact parameters;
• Identification of critical paths for landmine detection;
• Optimization of data representation for a robust detection.

4.1. Separation of Environmental Impact Parameters

A major challenge for the interpretation of field measurements, specifically with
respect to the impact of soil properties, surface topography and vegetation, is the lack of a
well-characterized and defined measurement environment resulting in an only qualitative
correlation between detection robustness and environment parameters. In our approach,
we separated the impact of soil moisture, surface roughness and vegetation, however, using
the identical radar setup. By watering the surface of our loamy sand in several steps and
measuring the gravimetric water content prior to and after each measurement, the obtained
GPR data could be correlated accurately to the moisture. Based on our molding technique
we could generate a surface topography defined by the lateral correlation lengths, rms-
roughness and the resulting slopes. Growing grass on the surface and planting single plants,
the impact of an homogeneous or inhomogeneous vegetation could be analyzed. Another
important aspect is the generation of regular reading points based on an equidistant grid
which is essential for the appearance of signatures for buried objects.

4.2. Identification of Critical Paths for Landmine Detection

An enhanced moisture content in the soil affects surface reflections and the attenuation
of electromagnetic waves in the soil. Through an enhanced attenuation the detection depth
can be significantly reduced. This issue is reinforced by a reduced surface penetration of
radar waves as a consequence of an augmented surface reflectivity. An eventually even
more limiting factor arises for shallow objects such as APMs. Due to the radar bandwidth
and a resulting limited range resolution, a strong surface reflection cannot be separated
from the shallow object. With respect to the surface roughness, only the “roughest” surface
deteriorated the GPR-data to a significant degree, blurring the pattern and signatures
of buried objects (Figure 22). Again, shallow objects are affected to a larger amount, as
it becomes more and more difficult to distinguish blurred patterns of relevant objects
from similar patterns from a rough and heterogeneous surface topology. With respect to
vegetation, a homogeneous natural vegetal cover with green grass could not deteriorate
the detection of buried objects tremendously. However, the implanting of plants with an
irregular leaf and root structure affected the detection of buried objects by locally enhanced
scattering and shading of the area under these plants. Such “heterogeneities” especially
enhance the rate of false alarms as it appears hard to distinguish relevant objects from
these plants.

4.3. Optimization of Data Representation for a Robust Detection

Despite these issues and challenges, all buried objects (even the plastic cylinders
in combination with the largest moisture content) could be observed and recognized
from the radar data! A key issue is the observation of distinct patterns and signatures
which, however, appear only for certain data representations and images. These signatures
include hyperbolas, circles and rings which, of course, only become apparent for 2D cross
sectional images (vertical—B-Scan, horizontal—C-Scan). Single vertical distance scans
(A-Scan) cannot reflect such signatures, limiting this data representation to rather “easy”
environments. The interference of reflections from objects with clutter or the surface can
even improve the visibility of the above described signatures by the formation of “dark”
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hyperbolas or rings resulting in a higher contrast within the corresponding radar images.
A major outcome of this work is the importance of phase images. In these phase images,
certain patterns (e.g., hyperbolas) are clearly visible whereas in the intensity image the
corresponding signature cannot be distinguished from a heterogeneous background clutter
or from strong surface reflections (compare Figure 26d and Figure 27b). However, there
is no general recipe how to represent GPR data for a robust and reliable detection of
buried landmines under different environmental impacts. We could see all buried objects.
However, it appears to be essential that a data representation is selected exhibiting these
typical signatures with a sufficient contrast. A final remark addresses the issue of false
alarms, pointing out that the combination of different radar images can result in a high
detection rate and reduce false alarms. In the phase image of Figure 27b, the hyperbolas
of two buried objects appear clearly. However, at the position of the coltsfoot another
hyperbola can be seen making it difficult to judge if another relevant object is present.
Looking at the corresponding intensity B-Scan (Figure 26d), only one buried object becomes
apparent. Nevertheless, at the position of the coltsfoot the surface appears distorted and
disturbed, implying a high local scattering which is typical for such kind of plants. Thus,
the proposed combination of data facilitates the classification of detections leading to a
high detection rate of relevant objects in combination with moderate false alarm rates.
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