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Abstract: The health of coniferous forests in the western U.S. is under threat from mega-drought
events, increasing vulnerability to insects, disease, and mortality. Forest densification resulting from
fire exclusion increases these susceptibilities. Silvicultural treatments to reduce stand density and
promote resilience to both fire and drought have been used to reduce these threats but there are few
quantitative evaluations of treatment effectiveness. This proof-of-concept study focused on such an
evaluation, using field and remote sensing metrics of mature ponderosa pine (Pinus ponderosa Doug.
Laws) in central Oregon. Ground metrics included direct measures of transpiration (sapflow), branch
and needle measures and chlorosis; drone imagery included thermal (TIR) and five-band spectra
(R, G, B, Re, NIR). Thermal satellite imagery was derived from ECOSTRESS, a space-borne thermal
sensor that is on-board the International Space Station (ISS). All metrics were compared over 2 days at
a time of maximum seasonal drought stress (August). Tree water status in unthinned, light, and heavy
thinning from below density reduction treatments was evaluated. Tree crowns in the heavy thin site
had greater transpiration and were cooler than those in the unthinned site, while the light thin site
was not significantly cooler than either unthinned or the heavy thin site. There was a poor correlation
(Adj. R2 0.10–0.13) between remotely sensed stand temperature and stand-averaged transpiration,
and tree level temperature and transpiration (Adj. R2 0.04–0.19). Morphological attributes such as
greater needle chlorosis and reduced elongation growth supported transpirational indicators of tree
drought stress. The multispectral indices CCI and NDRE, along with the NIR and B bands, show
promise as proxies for crown temperature and transpiration, and may serve as a proof of concept for
an approach to evaluate forest treatment effectiveness in reducing tree drought stress.

Keywords: remote sensing; thermal; multispectral; ponderosa pine; vegetation index; sapflow;
transpiration; ECOSTRESS; FLIR; forest restoration

1. Introduction

Extreme and prolonged drought is impacting forests globally, leading to increased
tree mortality directly from drought stress and or an increased susceptibility to insects and
disease [1]. In the western U.S., recent megadrought events have resulted in extremely high
levels of conifer mortality [2,3]. These forests provide an array of ecosystem services that
are under direct threat, including clean water and air, flood control, biodiversity, carbon
sequestration, and commodities such as food, fiber, and fuel [4]. In the western U.S., dry
forest types (e.g., <50 cm annual precipitation; [5]) and a combination of effective fire
suppression and selective harvest practices has resulted in dense stands where, in drought
conditions, there is insufficient soil moisture [6,7]. The risk of high-severity wildfire events
in these stands has already been demonstrated over the last 5 years [8]. Assessment of
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vegetative water balance could help evaluate whether forest management practices mitigate
tree drought stress.

One of the tools available to forest managers to reduce drought and fire threats are
density control treatments or ‘forest thinnings’—removing pole-sized trees (thinning from
below) that are less fire resistant [9] and removing some mature trees to improve water
and nutrient availability for the remaining trees. Such treatments have been conducted
across many hectares of dry conifer forests and are on-going (e.g., the USDA Forest Service
Collaborative Forest Landscape Restoration Program, CFLRP). Our work here was con-
ducted within one such implementation of the CFLRP in central Oregon [9], with a focus
on ponderosa pine-dominated, mixed conifer forest.

Ponderosa pine (PP, Pinus ponderosa Douglas ex. P. Lawson et C. Lawson) is the
dominant species on over 11 million ha and co-dominant on another 5.5 million ha across
its range [10]. It dominates the temperate coniferous forest biome in the western hemisphere
on dry inland landscapes where annual precipitation ranges from 25 to 50 cm. Prior to
European settlement, fire disturbance was frequent (every 13–74 years) and low-intensity
fire maintained open, park-like stands of large mature PP [11]. Fires were typically started
by lightning, and there is ample evidence of burning by indigenous peoples for resource
enhancement [11]. Post-European settlement, fire exclusion, grazing, and timber harvest
have vastly altered these forests, allowing dense understory vegetation to develop [10].
These overstocked stands are highly susceptible to drought stress and high-intensity fire.

The goal of management actions in these dense, overcrowded stands is to reduce
the risk of stand replacing high-intensity wildfire by reducing stand density to increase
resilience. Assessments of the effectiveness of these treatments have focused on bole and
branchlet diameter growth [12], sapflow [13], elongation growth, needle chlorosis [14,15],
and remotely sensed spectral and thermal metrics [16–19]. In this paper, we tested the
capability of assessing these field metrics with drone-based imagery for individual trees
in three different stand densities—moderate and light thinnings and a unthinned control.
Additionally, we tested the capability of detecting differences among forest treatments
thermally with data from the ECOSTRESS space-borne sensor: could it be used to detect
tree canopy water stress in stands of varying density?

Plant transpiration is the process by which water and soil nutrients move up to the
photosynthetic tissues in the leaves; this process is largely driven by the draw of dry
air outside of the leaf, and a difference in water potential from soil to leaf to air. Leaf
stomata open to allow carbon dioxide to enter for photosynthesis and leaf water escapes,
lowering the water potential and driving the transport of nutrients from the soil to the leaf.
This release of water vapor causes evaporative cooling of the leaf surface and, conversely,
stomatal closing leads to a rise in temperature [20]. However, the link between transpiration
and crown temperature is not straightforward.

Environmental influences, resources available to the tree, and tree-specific physiologi-
cal attributes can affect the temperature of a tree crown (Figure 1). Crown temperature may
be the same as air temperature under conditions of fully closed stomata: no light or oxide
air pollution. With light, stomata may open as much as 30% of maximum daytime values
in the first couple of hours of low morning night (Grulke, upubl. data). If stomata are
open and the air is not saturated with moisture, transpirational water loss from the leaves
will cool the leaf/needle, resulting in a temperature lower than that of air temperature.
Soil moisture and the level of evaporative demand of the atmosphere (vapor pressure
deficit, VPD) limit maximum stomatal conductance and the cooling effects of transpiration.
Access to water in the soil and water storage in the plant (in this study, a tree) can also limit
transpiration. High CO2 concentrations (early morning in the forest due to decomposition
in the soil and vegetation respiration) can also limit stomatal conductance.
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Figure 1. Diagram of the influence of environmental factors (soil moisture, vapor pressure deficit) 
and resources on physiological responses relevant to detection of foliar or crown temperature. Fac-
tors are color coded by groups—atmospheric, soil, and plant. 
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vigor, drought-stressed PP that are susceptible to insect infestation. The Keen classifica-
tion [21] placed trees in age and crown vigor classes, the latter involving visual assessment 
of live crown ratio and, indirectly, needle elongation and retention. Recently, a suite of PP 
whole tree and crown morphological attributes was used to quantitatively assess tree 
vigor/drought stress in several different stand treatments (combinations of thinning and 
prescribed fire) [14]. This study demonstrated the utility of these attributes in estimating 
tree carbon acquisition and water status. 

Remotely sensed forest vegetation canopy temperature and spectral reflectance po-
tentially could offer efficient, cost-effective means for assessing tree water and vigor sta-
tus, and thus the effectiveness of the imposed management action. There is a long history 
of using remote sensing to detect and assess stress in forests [22], with much attention 
given to the disparity in reflectance/absorption in the 625–700 nm (red; R) and 725–950 nm 
(near-infrared; NIR) bands, primarily due to the concentration of photosynthetic pigments 
and water in the leaves. Additional metrics have also been used to assess vegetation status, 
such as vegetation indices (VIs), which are mathematical combinations of bands in the 
visible and near-infrared (VNIR) spectrum. VIs were developed to leverage different 
strengths of various bands to distinguish vegetation from background soil, shadows, and 
other non-target surfaces as well as the spurious effects of topography [23]. 

When compared to deciduous trees, conifers pose challenges due to lower surface 
areas per leaf (needle), thick cuticles, and complex needle orientation (and variable visi-
bility of branch surfaces), resulting in scatter and reabsorption of reflected light [24]. These 
factors result in lower VNIR, especially NIR, relative to deciduous canopies [25,26]. The 
Normalized Difference Vegetation Index (NDVI) has been successfully used in a variety 
of agricultural and wildland vegetation mapping applications [16,27–29]. However, it 
tends to saturate at high biomass levels [30], which has led to the development of alterna-
tives such as the Enhanced Vegetation Index (EVI). Recent research has demonstrated 
greater effectiveness of a simple green–red index in tracking conifer phenology and 

Figure 1. Diagram of the influence of environmental factors (soil moisture, vapor pressure deficit)
and resources on physiological responses relevant to detection of foliar or crown temperature. Factors
are color coded by groups—atmospheric, soil, and plant.

Foresters historically used qualitative, visual assessment techniques to identify low
vigor, drought-stressed PP that are susceptible to insect infestation. The Keen classifica-
tion [21] placed trees in age and crown vigor classes, the latter involving visual assessment
of live crown ratio and, indirectly, needle elongation and retention. Recently, a suite of
PP whole tree and crown morphological attributes was used to quantitatively assess tree
vigor/drought stress in several different stand treatments (combinations of thinning and
prescribed fire) [14]. This study demonstrated the utility of these attributes in estimating
tree carbon acquisition and water status.

Remotely sensed forest vegetation canopy temperature and spectral reflectance poten-
tially could offer efficient, cost-effective means for assessing tree water and vigor status,
and thus the effectiveness of the imposed management action. There is a long history
of using remote sensing to detect and assess stress in forests [22], with much attention
given to the disparity in reflectance/absorption in the 625–700 nm (red; R) and 725–950 nm
(near-infrared; NIR) bands, primarily due to the concentration of photosynthetic pigments
and water in the leaves. Additional metrics have also been used to assess vegetation
status, such as vegetation indices (VIs), which are mathematical combinations of bands in
the visible and near-infrared (VNIR) spectrum. VIs were developed to leverage different
strengths of various bands to distinguish vegetation from background soil, shadows, and
other non-target surfaces as well as the spurious effects of topography [23].

When compared to deciduous trees, conifers pose challenges due to lower surface
areas per leaf (needle), thick cuticles, and complex needle orientation (and variable visibil-
ity of branch surfaces), resulting in scatter and reabsorption of reflected light [24]. These
factors result in lower VNIR, especially NIR, relative to deciduous canopies [25,26]. The
Normalized Difference Vegetation Index (NDVI) has been successfully used in a variety of
agricultural and wildland vegetation mapping applications [16,27–29]. However, it tends
to saturate at high biomass levels [30], which has led to the development of alternatives
such as the Enhanced Vegetation Index (EVI). Recent research has demonstrated greater
effectiveness of a simple green–red index in tracking conifer phenology and carbon up-
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take [31–33]. Stress in conifer crowns has been detected with four-band VNIR imagery [16],
VNIR and thermal infrared (TIR) [18], hyperspectral data coupled with lidar [34], and
red-edge (691–730 nm) data [35]. Thermographic instruments became widely available in
the 1960s [36]. Remote thermography has been used to monitor drought stress in agricul-
tural [37,38] and laboratory and greenhouse studies [39], but similar studies with conifers,
especially in wildnon-plantation environments, are few [40].

Thermal infrared imaging of leaf and full tree crown temperatures is a complex
endeavor that requires calibration and careful monitoring of environmental conditions to
accurately estimate the surface temperature of the target [41]. This is partly due to the
relatively low energy of reflected thermal wavelengths [36] and is further complicated
by the complex structure of conifer tree crowns and the structure of the leaves (needles)
themselves [26]. Despite these complications, leaf and canopy thermal measurements
have been negatively correlated with transpiration (e.g., increased surface temperature
with reduced transpiration [17,36,42]). Spaceborne TIR instruments have been delivering
land surface temperature products since the late 1970s [43], but it is only recently that
consistent, repeat measures of land surface temperatures have been produced for analysis
(ECOSTRESS mission, 2018 to 2029 [44]).

Direct measures of transpiration are the most accurate metric for assessing tree water
balance, but it is impossible to adequately implement at the landscape level. Managers
and researchers may benefit from more broadly applied approaches to evaluate tree and
stand water balance. In this study, we test the hypothesis that remotely sensed metrics
(thermal and multi-spectral) from different platforms (unoccupied aerial vehicle [UAV]
and space-borne) and tree crown-based morphology attributes can be correlated with tree
sapflow measures of transpiration. Our objective was to evaluate these remote sensing
tools for their effectiveness in evaluating the water balance of forest stands in a drought
year. Additionally, we tested the hypothesis that density reduction treatments (‘thinnings’)
will result in reduced tree canopy drought stress, which will manifest as lower canopy
temperatures and higher transpiration.

2. Materials and Methods
2.1. Site Location

Mature PP trees were monitored in the Pringle Falls Experimental Forest (43.78◦N,
−121.68◦W/1584 m in elevation) managed by the Pacific Northwest Research Station of
the USDA Forest Service. Soil characteristics are dominated by a dactite pumice deposition
from an eruption of Mt. Mazama (now Crater Lake) 6600 years ago. Annual precipitation
averaged 102 cm, with most precipitation falling in the fall and winter. We investigated
stands within mature ponderosa pine stands representing three levels of density (TPH, trees
per hectare) and basal area (BA, m2/ha). The selected density conditions resulted from
two intensities of thinning—a light thin (Rx2), a heavy thin (Rx1), and an unthinned area
representative of the untreated condition (NoRx). These treatments were conducted under
the Lookout Mountain Thinning and Fuels Reduction Study (LOMS) [9]. The LOMS is a
long-term experiment (proposed 50 years) to test the effectiveness of thinning treatments
in achieving stand health and fuel reduction objectives.

2.2. Stand Characteristics

Within the LOMS, forest stands have similar elevation, aspect, plant association,
soils, and topography. The plant association of the stands studied is CW-S1-15 (mixed
conifer/snowbrush/sedge) [45]. The association consists of PP, a seral dominant species,
with smaller amounts of grand fir (Abies grandis [Douglas ex D. Don] Lindl.), white fir (Abies
concolor [Gord. & Glendl.] Lindl. ex. Hildebr.), and lodgepole pine (Pinus contorta Douglas
ex Loudon), listed in descending order of abundance. Shrub species in the understory
are dominated by greenleaf manzanita (Arctostaphylus patula ex. Greene) and snowbrush
(Ceanothus velutinus Douglas ex Hook) [9,45].
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We selected groups of dominant trees in each treatment type that were free of crown
or bole defects and were also within ca. 60 m of each other, which was a prerequisite for
connecting the sapflow equipment to a single data logger. These study sites, or ‘neighbor-
hoods’, are shown in Figure 2. Pre- and post-treatment stand and tree metrics are given
in Table 1. Ocular estimates of PP canopy cover are Rx1—15–20%, Rx2—40–60%, and
NoRx—75–80%. The objective of the LOMS was to lower the risk of stand replacing wildfire
risk by reducing understory fuel loads and stand density. The silvicultural prescriptions
specified a preference for retention of fire and drought-resistant PP (e.g., large, mature
trees) and for removal of lodgepole pine, grand fir, and white fir [9].
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Figure 2. Location of Pringle Falls Experimental Forest Lookout Mountain Unit in central Oregon
and the tree sample areas used in this study. The Rx1 site was harvested in 2011 and the Rx2 sites in
2012. Imagery collected in 2016.

Table 1. Pre- and post-harvest stand (Rx) basal area (BA, m2/ha), Stand Density Index (SDI), which is
a measure of relative stand density based on the mean tree diameter and the number of trees per ha in
a fully stocked stand, and trees per hectare (TPH) values. Rx1 (heavy thin) was harvested in 2011 and
Rx2 (light thin) in 2012. NoRx was unmanaged. Upper Management Zone (UMZ), or upper density
limit, is stand density at which trees begin to be suppressed. Treatment objectives are expressed as a
percentage of UMZ [46].

Site UMZ Unit Pre-BA Post-BA Pre-SDI Post-SDI Pre-TPH Post-TPH

Rx1 50 41 38 11 270 38 3884 831
Rx2 100 24 43 24 300 140 2252 473
NoRx n/a 25 43 49 282 316 2252 2252

2.3. Whole Tree and Crown Morphological Attributes

For each intensively measured tree, we recorded GPS location, bole diameter at 1.37 m
above ground level, height (clinometer), and percent live crown. An increment borer was
used to extract a core sample. We recorded the tree’s age, length of sapwood, and total length
of the core; the conducting sapwood area was calculated to relativize transpiration rates.
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In addition to stand density, we assessed individual tree-to-tree competition (competi-
tive zone density, CZD [47]). The reported CZD is the average of the diameter divided by
distance to the closest neighboring tree >10 cm in four pie-shaped aspects around the tree
out to a maximum distance of 20 m; if there were no neighbors in a pie, the value recorded
was 0.

Tree crown attributes related to vigor and drought stress in PP [14] and a related
species, Jeffrey pine [18], have been previously described and are presented in Appendix A.
On each tree, 3 secondary branches and 3–4 branchlets back from the apex of primary
branches in the upper third of the sunlit crown were used for morphological measures. Tree
climbers accessed the crown of these mature trees to remove and drop sample branches for
measurement. Among nearly 45 tree and crown attributes, the following morphological
attributes have been correlated to tree bole production: needle and branchlet elongation
growth (NL and BRN, 1 mm), branchlet diameter growth (BRIDIA, 0.1 mm), the level of
needle chlorosis (CHL, ocular estimate), and disease incidence (DISEASE), a sum of the
frequency of abiotic and biotic vectors [48,49]. Among these, needle elongation growth of
current year (NL1), branch elongation growth of prior year (BRN2), and chlorosis (oxidative
stress) are indicative of the level of drought stress in the current year. These metrics are
presented as relative to the longest needle (NL1%) and branchlet (BRN1%) length on that
sampled branchlet. Morphological attributes were collected the week of 13 August 2019
from 22 trees in the three neighborhoods: 8 in Rx1, 8 in Rx2, and 6 in NoRx.

The coordinates of each tree were recorded with a Garmin 60 CSX GPS (Garmin, Inc.
Olathe, KS, USA) receiver; if the position error was greater than 10 m, we moved to a more
favorable position and recorded the distance and azimuth to the tree from the new position.

2.4. Tree-Level Transpiration

Tree transpiration was calculated from sapwood area and sapflow rate measured
with thermal dissipation probes (TDP-30, Dynamax, Inc., Houston, TX, USA) per [50]
interfaced with a data logger (CR1000, Campbell Scientific, Inc., Logan, UT, USA) via 15, 25
or 30 m cables. Power was supplied by a deep cycle marine 12-volt battery supported by a
0.7 m × 1 m solar panel. A single TDP-30 probe pair was installed on the north aspect
of each sample tree into the sapwood following removal of the bark within ~5 mm of
the cambium. Each probe pair was then encased in Styrofoam for thermal insulation
and covered with a reflective, waterproof shade. The lower probe delivered heat and
the upper probe detected heat transfer, with the heat transfer a function of rate of sap
flow (cm/hr., Etrans). Sapflow velocity was normalized by estimated sapwood area using
methods described in [49] and recorded hourly. Sapflow data were collected on a total of
20 trees: 7 in Rx1, 6 in Rx2, and 7 in NoRx.

2.5. On-Site Temperature, Vapor Pressure Deficit, and Humidity

Air temperatures were extracted from existing data bases associated with the LOMS [9]
and are given here for the purpose of comparing the weather conditions during the two-day
data collection. Temperatures reported here were collected at each stand with an iButton
temperature logger (DS-1922L Thermochron, Maxim Integrated Products, San Jose, CA,
USA) mounted at 1.5 m above ground on fiberglass rods and sheltered from direct sunlight
with inverted, feathered, plastic cup shades. Temperatures (◦C) were recorded hourly for
DOY 232 and 234. Averages for time of day approximating the UAV and ECOSTRESS
collect times are presented in Table 2.

Vapor pressure deficit (VPD) and relative humidity (RH) are important parameters
driving transpiration (see Figure 1). To estimate VPD and RH, we downloaded data from
the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) for DOY 232
and 234 [51] and these are estimated for 1.5 m above ground. These data are presented in
Table 3.
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Table 2. Mean temperature statistics for the FLIR and ECOSTRESS collect days (232 and 234) in
◦C. Time periods (1000, 1300, 1700) roughly correspond to the Td flight times. All values are in ◦C.
DOY = Day of Year: 232 is 20 August 2019 and 234 is 22 August 2019.

DOY 1000 h 1300 h 1700 h 24 h Avg. Avg. Max Avg. Min Day Avg Night Avg

232 24.09 29.31 24.38 19.71 30.98 13.42 24.71 14.70
234 16.43 20.89 21.26 14.42 23.48 9.11 18.53 10.32

Table 3. Vapor pressure deficit (VPD) and relative humidity (RH) data extracted from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) 4 km grids for the study area.

DOY VPD Min
(hPa)

VPD Max
(hPa) RH Min RH Max

232 2.97 32.84 23.22 92.56
234 0.14 14.34 50.27 107.74

To ascertain the drought status for the study area, we used data from the USDA Forest
Service Drought Summary Tool (https://toolkit.climate.gov/tool/usfs-climate-gallery-
drought-summary-tool-storymap, accessed on 13 October 2023) These data indicate that
the study area experienced moderate drought in 2019, mild drought in 2017 and 2018, and
a water surplus for the years 2010–2016.

2.6. Remote Sensing Data Collection

Unless otherwise noted, all GIS functions were performed in ArcGIS Pro v 3.1.2
software [52]. We employed two aerial vehicles (UAVs) to conduct a near-surface [crown]
data collection campaign over the neighborhoods on 22 and 24 August 2019 (DOY 232, 234).
These vehicles were manufactured by Dji (SZ DJI Technology Co., Ltd., Shenzhen, China).
The Dji Phantom 4 Pro was mounted with the FLIR VUE Pro R 640 thermal camera (FLIR,
Teledyne FLIR LLC., Wilsonville, OR, USA) and the Dji Inspire was mounted with the
Micasense RedEdge MX multispectral sensor (MS, AgEagle Aerial Systems, Inc., Wichita,
KS, USA).

The FLIR instrument is primarily used in detecting high-energy targets such as wild-
land fire hotspots and has a documented accuracy of ±5 ◦C or 5% of the returned value.
A similar FLIR instrument was tested and uncalibrated FLIR temperatures were within
1.2–1.4 ◦C of leaf thermocouple temperature measurements [41] They concluded that for
conifer thermography applications in the range of 10–25 ◦C, correction was unnecessary and
that factory default settings were adequate. Spectral bandwidth for the FLIR is 7500–13,500
nm. Band specifications for the MS are listed in Table 4 below.

Table 4. Band specifications for the Micasense RedEdge MX instrument (MS) mounted on the Dji
Inspire UAV. Band references in parentheses are used in the text.

Band Name Band Center (nm)

Blue (B) 475 ± 20
Green (G) 560 ± 20
Red (R) 668 ± 10
Red edge (Re) 717 ± 10
Near infrared (NIR) 840 ± 40

A north to south ‘lawnmower’ flight pattern was used over each neighborhood,
starting west and finishing east. The pattern was pre-loaded into the UAV and flight
control was conducted with a GPS/GLONASS satellite positioning system that is rated
to be accurate to within ±0.5 m vertically and ±1.5 m horizontally. Flying height was
determined with the aid of a digital terrain model and was approximately 90 m above

https://toolkit.climate.gov/tool/usfs-climate-gallery-drought-summary-tool-storymap
https://toolkit.climate.gov/tool/usfs-climate-gallery-drought-summary-tool-storymap
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ground level and ~70 m above tree crowns. For the Dji Phantom carrying the FLIR camera,
nominal endlap and sidelap were 90% and 75%, respectively. For the Diji Inspire mounted
with the Micasense instrument, nominal endlap was 85% and nominal sidelap was 80%.
Each 2 ha plot took ~4–5 min to image, largely depending on the flight distance to and
from a landing area clear of obstacles.

UAV flights were conducted 20 and 22 August 2019 (Day of Year, [DOY] 232 and 234).
The Rx2 and NoRx sites were imaged with both instruments on DOY 232. DOY 233 was
a no-fly day due to inclement weather. On DOY 234, we flew the NoRx neighborhood.
For each neighborhood, we conducted three flights per day, targeting before noon (am),
noon, and afternoon (pm). Our intent was to capture diurnal patterns in MS or FLIR to
relate to the hourly Etrans data. Flight times for each of the neighborhoods are presented in
Table 5. The MS imagery was georeferenced using Pix4Dmapper software version 4.6.3 [53]
which uses Structure from Motion algorithms to calibrate and align the overlapping images.
Radiometric calibration was performed using camera parameters and solar irradiance;
we did not use reference panel data. We estimate that this had a negligible effect on the
multispectral data collected with the MicaSense instrument as the collects all occurred in
the same day under the same lighting conditions. Since the images did not contain location
information, ground control points (GCPs) were located on Oregon Statewide Imagery
Program 2018 natural color orthomosaics and used to georeference and orthorectify the
multispectral images. A separate 16-bit image was created for each MS band.

Table 5. UAV flight times for the neighborhoods. DOYs match those in Tables 2 and 3. All times are
in Pacific Daylight Time. In the text, the three flights for each neighborhood are generically referred
to as the am, noon, and pm flights. The mean time of UAV FLIR flights for each of the three collects
was AM—10:35, Noon—13:23, and PM—16:36. The Micasense instrument on the Inspire platform
was not flown over the Rx1 site on DOY 234.

Site DOY Inspire Micasense Phantom FLIR ECOSTRESS

Rx1 234 N/A 11:22, 14:21, 17:01 14:04
Rx2 232 10:14, 12:39, 15:40 10:47, 14:17, 16:58 09:13
NoRx 232 10:01, 12:22, 15:12 10:08, 13:01, 16:03 09:13

The FLIR images were processed in FLIR Thermal Studio v 1.9.10 software [54]. Ther-
mal parameters (emissivity, reflected temperature, atmospheric temperature, relative hu-
midity, reference temperature) were adjusted based on PRISM data, at-sensor temperature
at the time of image collect, and an emissivity of tree species value (0.95). These corrected
radiometric images were then opened in Pix4Dmapper v 4.6.3 software [53], where they
were converted to 32-bit unsigned surface temperature grids. At the nominal flying height
of 90 m, images from the FLIR instrument were 100 cm in resolution following post process-
ing. FLIR and MS orthomosaics of each neighborhood were created in Agisoft Metashape
software version 2.1 2020 [55].

A total of 23 trees were imaged with the Micasense sensor; Etrans data were available 2
for 13 of these. All 23 trees were imaged with the FLIR instrument.

Multispectral (MS) data were processed into indices which are mathematical combina-
tions of 2 or more bands (Table 6). We also selected the RE, R, B, and NIR bands for analysis.
This suite of bands and indices was chosen based on their utility in detecting stress and
phenological status in conifers [18,19,56]. The final MS outputs were 16-bit unsigned 6 cm
resolution img files, one file for each band/index.
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Table 6. Vegetation indices (VIs) calculated from the multispectral UAV imagery. Band designations:
R = red, G = green, B = blue, NIR = near infrared. See Table 4 for specific bandwidth information.

Index Formula Reference

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [34,56]
Chlorophyll/Carotenoid Index (CCI) (G − R)/(G + R) [31,57]
Normalized Difference Red Edge Index (NDRE) (NIR − Re)/(NIR + Re) [35,58]

Using the physics-based Temperature and Emissivity algorithm [52], ECOSTRESS TIR
data were used to generate georeferenced land surface temperature images (ECO2LSTE
v001). These images are available via the USGS Earth Explorer web tool. At our study
site location, the ECOSTRESS pixel was 38 m height (latitude) × 69 m wide (longitude).
We downloaded the ECO2LSTE v001 images that were collected on our UAV flight days
(DOY 232 and 234). These collection times are listed in Table 5. ECOSTRESS temperatures
for each tree were extracted from the downloaded grids using GIS software (ESRI 2023).
ECOSTRESS land surface temperature pixel values (Tes) were assigned to the 29 tree crowns
with Etrans data. There were six unique ECOSTRESS pixels with Etrans trees on DOY 232 and
9 on DOY 234; this discrepancy is due to the inconsistent orbital characteristics of the ISS,
which results in slight changes in the ECOSTRESS pixel configuration between acquisitions.
The number of Etrans trees in an ECOSTRESS pixel ranged from one to six. The ECOSTRESS
LST (Land Surface Temperature) raster layer for DOY 232 is displayed in Figure 3.
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2.7. Data Compilation and Analysis

We used the GPS coordinates of each of the intensively studied trees with the MS and
FLIR orthomosaics to aid in locating the tree crowns on the FLIR and MS image tiles. Image
tiles were selected that best displayed the sunlight portion of the tree crown. The sunlit
portion of each tree crown was digitized, and the resulting polygon used to extract statistics
(mean, standard deviation) from the image tile. When digitizing the polygons, we always
included the top of the tree and excluded any areas with dead branches and large shadow
areas. This process was conducted for both the MS and FLIR image data. The ESRI Zonal
Statistics tool [52] was used to create a table of MS and FLIR statistics for each digitized
tree crown polygon.

When comparing the morphological attributes, which do not vary by time of day, we
used the pm Td and Etrans values. For MS analysis, we used the noon and pm Td and Etrans
values because of the xeromorphic characteristics of conifer leaves; any spectral response
would be attenuated until noon when the light intensity on the crowns is greatest [59,60].
When comparing Td to Tes, we used the Td value that was the closest to the time of the
Tes collect, so in this case we had 20 data points. In the Tes-Etrans analysis, we used the Tes
values for both DOY 232 and 234, a total of 40 data points.

All data (Etrans, Td, Tes, MS band and index values, morphological attributes) for each
tree crown were compiled into Microsoft Excel [61] spreadsheet tables. We reconciled the
date and time of the data points such that they matched temporally. Etrans was interpolated
between hourly measures to match that of the UAV and ECOSTRESS acquisitions. We
adjusted the Etrans time by adding 1 h to compensate for the lag between Etrans measured at
the bole and when that sap reaches the terminal branch foliage where it will affect crown
temperature and spectral reflectance [62]. Similarly, FLIR measurements were matched to
the once-a-day time of satellite acquisition. This table was the source for the statistical tests
and summaries described below, which were carried out using RStudio v 2022.12.1 Build
402 [63] and R v 4.2.1 [64].

We tested our data to see if the assumption of a normal distribution was met using the
Shapiro–Wilk normality test. All statistical tests were evaluated at the 95% level. To test for
differences in the means of Td, Tes, and Etrans, we conducted one-way analysis of variance
ANOVA tests followed by Tukey Multiple Comparison of means tests. Correlation matrices
to examine the relationships between Etrans, MS, Td, Tes, and the morphological attributes
were calculated using the cor_pmat function in R [64]. Similarly, linear regression models
were built with the lm function to visualize the Td and Tes correspondence to Etrans and
the CZD-Td relationship. Stepwise multiple regression models were created to determine
significant predictors of Td and Etrans.

3. Results

An average of 124 image tiles were collected over each neighborhood for each of the
instruments (FLIR and MicaSense) and corresponding platforms; examples of the image
tiles are displayed in Figure 4.

3.1. Tree Morphological Attributes and Transpiration by Treatment

The number of needle ages (#WHL) and branch diameter (BRDIA2) did not differ
among trees sampled in the three density stand levels (Table 7). Needle and branchlet
elongation, relative to the longest branchlet elongation observed, were lowest in Rx1, the
heavily thinned stand, and needle lengths of trees in both thinning treatments were lower
than the unmanaged stand. Oxidative stress (i.e., chlorosis) was much greater in current
year needles (CHL1) than in prior year needles (CHL2) on all sites. In Rx1, chlorosis was
1.25 times greater in current vs. prior year needles; in Rx2, chlorosis was 1.52 times greater,
and in NoRx, chlorosis was 3.09 times greater than in the prior year. Chlorosis in 4-year-old
needles was greatest in Rx1 (~30%), and chlorosis in Rx2 and NoRx was lower and similar
(~20%). The attributes summarized in Table 7 were used in the Etrans and Td stepwise
regression models.
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Figure 4. RGB orthomosaics of the 5-band 6 cm resolution MicaSense RedEdge MX imagery acquired
on ca. 12:00 PDT (Pacific Daylight Time) on DOY 232 (a–c) for each of the neighborhoods, except
for Rx1 (a) which was not flown with this sensor. The imagery in (a) is the Oregon Statewide Aerial
Imagery Program 2018 orthophoto. The second row (d–f) displays mosaiced UAS thermal data from
the FLIR instrument for each neighborhood. During the mosaic process, the 32-bit thermal tiles were
converted to a single 8-bit orthomosiac image.

Table 7. Morphological attribute values for trees in each Rx neighborhood. The standard error (SE) is
in parentheses. Units are count for number of whorls or needle age classes retained (#WHL), mm
for branchlet diameter (BRIDIA), branchelet elongation (BRN%), and needle elongation (NL%); the
remaining attributes are frequencies. Values in parentheses are standard errors.

Site #WHL BRDIA BRN% NL% CHL1 CHL2 CHL4 DISEASE

Rx1 6.5
(0.2)

10.3
(0.6)

59.7
(4.3)

67.5
(3.8)

26.8
(7.5)

21.4
(5.7)

27.9
(7.2)

0.4
(0.0)

Rx2 6.5
(0.1)

10.0
(0.4)

67.3
(2.9)

74.7
(1.5)

20.1
(3.8)

13.2
(2.2)

18.4
(1.7)

0.3
(0.0)

NoRx 6.6
(0.2)

9.8
(0.5)

66.3
(5.4)

83.4
(3.3)

20.4
(2.5)

6.6
(1.9)

17.7
(6.6)

0.3
(0.1)

All Rx 6.5
(0.1)

10.1
(0.3)

64.2
(2.4)

74.0
(231)

22.7
(3.2)

14.7
(2.6)

21.9
(3.2)

0.3
(0.0)

Transpiration of instrumented trees followed a parabolic curve, in sync with diurnal
light levels (Figure 5). Note the significantly lower transpiration rate during a cloudy day
of lower temperature (DOY 233) not used in the present analysis.
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by Rx2 and NoRx. The attributes summarized in Table 8 were used in the Etrans and Td step-
wise regression models. 
  

Figure 5. Graph showing the diurnal response of the hourly transpiration data (Etrans, blue line),
the Td temperatures (yellow squares), and the ECOSTRESS pixel temperature (triangles) for a
representative tree.

Mean Etrans values were higher in Rx1 than NoRx, evidence that trees in the heavily
thinned neighborhood had greater conductance than in the unthinned site and, by inference,
were more photosynthetically active. No difference between Rx1 and Rx2 indicates that
this level of thinning confers no improvement in Etrans, while the marginally insignificant
(p = 0.076) difference between Rx2 and NoRx is some evidence that the light thinning offers
no Etrans advantage over no thinning. The Etrans trend across neighborhoods was the inverse
of UAV FLIR temperature (Td); the highest Etrans neighborhood was Rx1, followed by Rx2
and NoRx. The attributes summarized in Table 8 were used in the Etrans and Td stepwise
regression models.

Table 8. ANOVA statistics for tree transpiration (Etrans, cm/h) compiled each hour for all trees for
the period DOY 232 to DOY 235. SE = Standard Error. This time period was selected to include both
warm dry conditions and wetter, cooler conditions. Rx1 and NoRx are significantly different (p < 0.05);
Rx2 is not significantly different from Rx1 or NoRx. The mean difference is given as I-J.

Site (I) Mean Max Min SE Stand (J) Mean Difference p-Value

Rx1 1.92
13.3 0 0.108 Rx2 0.10 0.779

NoRx 0.42 0.009

Rx2 1.82
9.41 0 0.115 Rx1 −0.10 0.779

NoRx 0.32 0.076

NoRx 1.50
8.94 0 0.086 Rx1 −0.42 0.009

Rx2 −0.32 0.076

3.2. Remote Detection of Crown Temperature

All temperature variables met the assumption of normality (Shapiro–Wilk). Mean
Td differed across all neighborhoods. However, the cool and wet weather on DOY 234
(Tables 2 and 3) somewhat invalidates any comparison with Rx1. In NoRx, lower wind-
speeds in a denser canopy coupled with greater crown temperatures were likely to cause
higher foliar transpiration (saturating water within the needle, higher temperatures in-
side and outside of the needles, but greater air evaporative demand) and greater tree
drought stress. This is supported by the higher oxidative stress and crown temperatures
(Td) observed (Tables 7 and 9) in NoRx.
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Table 9. ANOVA statistics for FLIR crown temperatures (Td) for each stand. Rx1 was flown on DOY
234, which was wetter and cooler than DOY 232. SE = Standard Error.

Site (I) DOY Mean ◦C SE Stand (J) Mean Difference p-Value

Rx1
234

14.1
1.1 Rx2 −5.14 <0.0001

NoRx −15.2 <0.0001

Rx2
232

19.2
0.50 Rx1 −5.14 <0.0001

NoRx −10.0 0.003

NoRx
232 29.3 0.73 Rx1 15.2 <0.0001

Rx2 10.0 0.003

The temperature trends were reversed for Tes and Td; the highest Tes neighborhood
was Rx1, followed by Rx2 and NoRx, (Table 10), while for Td, NoRx was the warmest,
followed by Rx2 and Rx1. Note the different spatial scales of the two metrics: Tes is land
surface temperature across a 38 m × 69 m area and Td is averaged over the upper one-third
of selected tree crown, with shadows and branch surfaces excluded. The scatterplot of Td
vs. Tes captures the negative correlation between the two crown temperature measures and
distinct grouping of the Rx types (Figure 6).

Table 10. ANOVA statistics for ECOSTRESS pixel temperatures (Tes) for each stand on DOY 232. The
Tes pixel temperature was assigned to each tree in the pixel and the statistics were calculated for the
trees by stand. SE = Standard Error.

Site (I) DOY Mean ◦C SE Stand (J) Mean Difference p-Value

Rx1
232

25.9
0.28 Rx2 6.03 <0.0001

NoRx 7.20 <0.0001

Rx2
232

19.9
0.13 Rx1 −6.03 <0.0001

NoRx 1.16 0.0009

NoRx
232 18.7 0.03 Rx1 −7.20 <0.0001

Rx2 −1.16 0.0009
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Figure 6. UAV FLIR crown temperatures (Td) (x axis) plotted against the temperature of the
ECOSTRESS pixel (y-axis), temporally matched for time of day on DOY 234. There were 7 unique
ECOSTRESS pixels with a range of 1- 6 sample trees per pixel. Data points are themed by post
treatment residual stand density: circles are Rx1 crowns, diamonds are Rx2, and squares are NoRx.
The shaded area is the 95% confidence interval for the regression line.
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3.3. Remotely Sensed Temperature vs. Tree Transpiration

Td crown temperatures had a weak, positive correlation to sapflow for Rx1, Rx2, and
all three neighborhoods combined (Figure 7). Only Rx2 was statistically significant.
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Figure 7. Scatterplots of UAV FLIR temperatures for tree crowns (Td) vs. sap velocity (Etrans) for
day of year (DOY) 234 (a) and 232 (b–d). Note the variation in scale in the y-axes. Etrans values
were matched temporally with the Td am, noon, and pm collect times, with a 1 h lag in compensate
for sapflow friction [62]. Circles are Rx1 crowns, diamonds are Rx2, and squares are NoRx. (a) Rx1
DOY 234 (Rx1 was the only neighborhood flown with the FLIR instrument on DOY 234, n = 21),
(b) all neighborhoods DOY 232, n = 39, (c) Rx2 DOY 232, n = 18 (d) NoRx DOY 232, n = 21. The Rx1
neighborhood was not flown with the FLIR instrument on DOY 232. The shaded areas are the 95%
confidence intervals for each regression line.

ECOSTRESS LST temperatures for both DOY 232 and 234 showed a similar pattern,
with the higher density Rx2 and NoRx neighborhoods having the strongest correlation with
Etrans (Figure 8).

3.4. Contributing Predictors of UAV FLIR Crown Temperature (Td)

We explored whether Etrans, Rx (ordinal), or tree to tree competition (CZD) were
predictive of crown temperature (Td) using stepwise multiple linear regression (Table 11).

The model had a high degree of correlation (Adj. R2 = 0.783) and identified significant
differences between Rx1 and Rx2, and Rx1 and NoRx. As a contributing predictor, Etrans
was significant (p = 0.039), but tree-to-tree competition (CZD) was not. Predicting drone-
detected crown temperature from only Etrans and CZD was not as effective overall (Adj. R2

0.528, p = 1.94 × 10−10 AIC = 192.83), although a significant correlation between CZD and
Td was found when no other attribute was co-analyzed (Figure 9). In this figure, trees in
the different neighborhoods are clustered together with the Rx2 and NoRx trees in the same
5–7 ◦C range, but the Rx2 trees have a significantly lower mean CZD (30.1) than the NoRx
trees (71.6).
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Table 11. Stepwise multiple linear regression of Td as a function of transpiration (Etrans), neighborhood
(Rx), and tree to tree competition (CZD) for the 20 sample trees at the am, noon, and pm UAV flight
times. See Table 5 for specific flight dates and times. No predictors were removed during the stepwise
process. SE = Standard Error.

Coefficient Estimate SE t p-Value

(Intercept) 14.4 0.984 <0.001 0.982

Etrans 1093 516 2.12 0.039

CZD −0.01 0.031 −0.375 0.709

Site Rx2 10.1 1.27 7.96 <0.001

Site NoRx 15.3 2.20 6.93 <0.001

Residual SE: 3.302
Degrees of freedom: 55
F-Statistic: 54.12
AIC: 146.3

Multiple R2: 0.797
Adjusted R2: 0.783
p-value: <0.001
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Coefficient Estimate SE t p-Value 
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Figure 8. Tree transpiration (Etrans, y-axis) vs. ECOSTRESS crown temperature (Tes, x-axis) for both
day of year (DOY) 232 and 234 combined. (a) All neighborhoods; (b) Rx1, heavily thinned; (c) Rx2,
lightly thinned; and (d) NoRx, no thin. Circles are Rx1 crowns, diamonds are Rx2, and squares are
NoRx. Etrans values were matched temporally with the Tes collect times, with a 1 h lag in compen-
sate for sapflow friction [62]. Tes values were assigned to each tree crown from the ECOSTRESS
temperature pixel value for the two ECOSTRESS collect times for a total of 40 observations for all
neighborhoods—14 measurements for Rx1, 12 for Rx2, and 14 for NoRx. ECOSTRESS data were
collected on DOY 232, 0915 PDT (Pacific Daylight Time) and DOY 234, 1404 PDT. The shaded areas
are the 95% confidence intervals for each regression line.
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Figure 9. Scatterplot and linear model statistics for individual tree Competitive Zone Density (CZD)
and UAV FLIR tree crown temperature (Td) collected in the pm on day of year 232 and 234. Circles
are Rx1 crowns, triangles are Rx2, and squares are NoRx. The shaded area is the 95% confidence
interval for the regression line.

The CCI and NDVI spectral indices and the B and R bands have significant correlation
to UAV FLIR tree crown temperature (Td) (Figure 10, Table 12). To reduce the effects of
collinearity, we removed R and Re from the stepwise regression model as they were highly
correlated (≥Adj. R2 0.80) with B and NDVI (R) and NIR (Re).
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Figure 10. Correlation matrix of the mean value of the spectral bands and indices with Td for the
13 trees in the Rx2 and NoRx neighborhoods at the noon and pm UAV flights. The Rx1 neighborhood
was not imaged with the multispectral instrument. Blank cells indicate no significant correlation at
the 0.05 level. TIR_MEAN represents the FLIR (Td) data.

For the trees in the NoRx and Rx2 neighborhoods, CCI was the strongest predictor of
crown temperature (Td), followed closely by NDRE and NIR.
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Table 12. Stepwise, forward regression of tree crown UAV FLIR (Td) temperature as a function of the
VIs NDVI, NDRE, CCI, B, and NIR, taken from the noon and pm UAV flights. Data used are from
the Rx2 and NoRx neighborhoods; the Rx1 stand was not imaged with the Micasense RedEdge MX
instrument. NDVI was removed as an insignificant predictor as part of the stepwise process, leaving
CCI, NIR, B, and NDRE as predictors in the final model. SE = Standard Error.

Coefficient Estimate SE t p-Value

(Intercept) 19.2 5.09 3.78 <0.001
NDVI −14.5 15.3 −0.95 0.350
NDRE 41.9 16.0 2.61 0.013
CCI 63.3 18.5 3.41 0.001
B 0.002 0.002 1.07 0.293
NIR −0.003 0.002 −1.85 0.072

Residual SE: 2.2
Degrees of freedom: 40
F-Statistic: 5.26
AIC: 211.00

Multiple R2: 0.397
Adjusted R2: 0.321
p-value: 0.0008

3.5. Contributing Predictors of Tree Level Transpiration (Etrans)

When combined in the same stepwise linear model, both crown temperature measure-
ments (Tes and Td) were significant predictors of Etrans, along with stand type (Table 13).
Within the model, Tes was a stronger predictor than the average per-pixel Td values. Similar
to the Td model (Table 11), CZD was not significant and the difference between Rx1 and
NoRx was significant in the Etrans model (Table 13).

Table 13. Multiple linear regression of tree transpiration (Etrans) as a function FLIR (Td) crown
temperature, ECOSTRESS temperature (Tes), stand (Rx), and CZD. Etrans, Td, and Tes measurements
were taken on 20 August 2019 (DOY 232) at 0915 PDT and on 22 August 2019 (DOY 234) at 1404
Pacific Daylight Time (ECOSTRESS collect times). Individual tree Td values were averaged to produce
a per-pixel Td value. The Td values closest to the time of the ECOSTRESS collect were used in this
average calculation. SE = Standard Error.

Coefficient Estimate SE t p-Value

(Intercept) −18.15 4.860 −3.734 <0.001

UAV FLIR (Td) 0.432 0.158 3.856 0.010

ECOSTRESS
(Tes) 0.636 0.165 3.856 <0.001

CZD 0.040 0.029 1.415 0.167

Site Rx2 −2.55 1.458 −1.750 0.0891

Site NoRx −7.396 3.178 −2.327 0.026

Residual SE: 2.279
Degrees of freedom: 34
F-Statistic: 4.298
AIC: 186.91

Multiple R2: 0.387
Adjusted R2: 0.297
p-value: 0.004

4. Discussion

In this study, we tested for correlations among remotely sensed metrics (thermal and
multi-spectral) from different platforms (UAV and space-borne) and tree crown-based
morphology attributes associated with tree drought stress and sapflow measures of tran-
spiration. Our objective was to evaluate these remote sensing and field methods for their
potential effectiveness in evaluating the water balance of different forest treatments in a
drought year.

The reverse pattern of Rx temperatures from ECOSTRESS (Tes) and the UAV FLIR
sensor (Td) is intuitive when mixed pixels for the former and individual trees for the latter
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are considered. At a nominal resolution of 2600 m2 (38 m × 69 m), a large percentage of a
Tes pixel is shrub/forb vegetation and bare ground in an Rx1 stand; these surfaces tend to
be much warmer than the sparse cover of the overstory conifers.

The understory was dominated by Arctostaphylos patula, which at the time of sea-
son (August), was likely to have been water limited, resulting in higher foliar surface
temperatures. At the other end of spectrum, an ECOSTRESS pixel in an NoRx stand is
dominated by tree crowns, and the ground cover is shaded and minimized. This is the
mixed pixel effect. For this reason, the NoRx Tes are the lowest of the three neighborhoods.
However, when we look at the individual tree crown temperatures (Td), the mean Td for
trees in NoRx is significantly higher than Rx2 (comparison to Rx1 is not possible due to
confounding weather conditions), suggesting that NoRx trees are under greater drought
stress than Rx2. Density reduction treatments such as those conducted as a part of the
LOMS have been shown to reduce tree drought stress and related mortality [42,65]. Trees
in the high-density NoRx neighborhood (SDI = 282) are likely under greater water deficit
due to higher levels of tree-to-tree competition (CZD) and reflect that with higher crown
temperatures than the thinned neighborhoods. This is the pattern we observed with the
Rx2 and NoRx neighborhoods. Higher crown temperatures in NoRx could also have been
influenced by high tree density with lower wind speeds at the level of the upper crown
and re-radiation of higher temperatures from tree to tree at that height.

ECOSTRESS is effective at tracking conifer canopy temperature seasonally [17], evap-
otranspiration in post-fire Mediterranean biomes [66], and drought stress in agricultural
crops [67], but applications in conifer forests are few. The higher Td crown temperatures
we observed for individual trees in NoRx are likely cancelled by the cooling effect of shad-
ows and dense canopy architecture at the scale of an ECOSTRESS pixel. Similarly, the
cooler Td in Rx1 was not observed in Tes due to the high temperature of shrubs and bare
ground. ECOSTRESS is a land cover assessment tool that could be used to assess the
relative drought stress of high canopy cover stands, but it is too coarse in resolution for
tree-level assessments. Tes and Td are different tools for different objectives, and different
conclusions on tree transpiration/water balance (and tree drought stress) would be drawn
if not used in tandem.

Although the cooling effect of gas exchange at the leaf level on leaf temperature is
well documented [68–70], neither FLIR (Figure 7) nor ECOSTRESS (Figure 8) thermal
imagery in our data showed greater crown temperatures with lower tree transpiration. Our
data showed only a weak, mostly non-significant, positive correlation between Etrans and
crown temperature, suggesting that stomata remained open as air temperature increased;
this increase led to a modest rise in canopy surface temperature without a decrease in
Etrans. Leaf and canopy temperatures are a product of many environmental and structural
traits in addition to transpiration [36]. The Etrans-Td relationship we observed is likely a
product of canopy and leaf architecture, the leaf to air temperature gradient, and the canopy
microclimate [26,69].

Our growth data were inconclusive in supporting greater tree drought stress with
increasing tree density; needle retention and elongation, branch elongation, and diameter
did not show a definitive trend [39,54]. Lower elongation growth suggests less water
availability and greater tree drought stress in the same year of growth. We expected
that trees on the thinned site would be less drought stressed, but we found that they
generally had lower elongation growth, perhaps due to greater crown evaporation due
to increased wind flow through a heavily thinned stand. Also, there may have been
significant competition for water between the pines and shrub cover; in the Great Basin,
shrubs outcompeted pine for water [71]. Branchlet diameter (BRDIA) is correlated with
basal area increment and is also indicative of reduced carbon acquisition and allocation to
wood production in that year and the following year [14,60]; we observed no difference in
BRDIA among the treatments. Increased needle chlorosis from 2018 to 2019 reflected a shift
from mild to moderate drought stress in the year of this study and greater oxidative stress
in NoRx followed by Rx2 and Rx1; a similar pattern is seen in CZD. Chlorophyll repair
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from oxidative stress requires nutrient uptake from the soil (water, magnesium, nitrogen,
in order of priority), and repair is prioritized from current to older needle ages [47].

Trees under low drought stress are unlikely to exhibit the expected negative correla-
tion between crown temperature (Td) and transpiration (Etrans). Under low water deficits,
canopy temperature is driven mostly by environmental conditions (weather, canopy struc-
ture) rather than transpiration and stomatal conductance. This is likely the situation with
our study trees. Based on crown and tree attributes, tree vigor was greater in this study
than PP at a site experiencing less precipitation and more evaporative demand [14]. We
report 1.56× more needles retained (#WHL), 1.65× greater branch diameters (BRDIA),
1.70× branch length (BRN%), and 1.43x more chlorosis in the 4th year (CHL4) for mature
PP at PFEF vs. their site in south central Oregon. Our study area was in moderate drought
in 2019, but in the previous nine years, two were mild drought while seven were water
surplus years.

Increased stand density in mixed conifer forest types due to fire suppression is a
well-known cause of increased drought stress [11], although there is evidence that PP in
lower densities is less resistant to drought stress than in higher density conditions [72].
We found that density at the tree-to-tree level (CZD) was not a significant predictor of
either transpiration (Etrans) or crown temperature (Td); however, stand (Rx) effects were.
CZD has an inconsistent association with Etrans at values of up to 40 m2/ha; above this
threshold, there is a steep decline in Etrans [47]. Except for NoRx, the mean CZD of the
study neighborhoods was below this threshold, which may explain the non-significance
of CZD. Stand density is a stronger and significant predictor of crown temperature and
transpiration; from a manager’s perspective, this is helpful as knowledge of the treatment
alone (thinning level) may be used to improve tree vigor rather than labor-intensive
measures of neighboring tree competitive pressure such as CZD.

Although availability of thermal imagery is improving, challenges regarding spatial
and temporal resolution remain. As described above, long-wave radiation in the thermal
infrared part of the electromagnetic spectrum is relatively low energy and large pixel sizes
are necessary to capture the signal. TIR sensors are typically 1.5 to 2 times the pixel size of
their VNIR counterparts. Despite new sources of thermal imagery such as UAV-mounted
sensors like the one used here, VNIR options are more numerous and do not have the
complex calibration correction steps often required with TIR sensors [36,40]. This prompted
our investigation into the relationship between TIR tree crown temperatures and a variety
of VNIR bands and indices from UAV platforms.

We found that CCI and NDVI indices had moderate positive correlations to Td, and B
and NIR bands had moderate negative correlations. In our final model (Table 12), NDRE
and CCI were significant. CCI is of particular interest as it has been promoted as an
alternative to NDVI and other indices for tracking phenology based on its sensitivity to
changing chlorophyll/carotenoid ratios seasonally in conifers [31,57] and in assessing
carbon uptake [32,73]. To our knowledge, this is the first study to examine the use of CCI to
assess drought stress and vigor in conifers, and its significance is an indication that further
work is needed.

The red-edge band (Re) is a relative newcomer to the VNIR space and is spectrally
located between R (625–700 nm) and NIR (800–1200 nm). NIR has long been used to track
stressed vegetation [74] as color infrared film long preceded multispectral digital sensors.
Red edge leverages the dramatic difference in chlorophyll reflectance between R and NIR.
This part of the spectrum is highly sensitive to chlorophyll a and b [75], which are reduced
when a plant is stressed [76]. It is effective in detecting stress in Scots Pine (Pinus sylvestris)
in a nursery setting [58] and, when substituted for R in the NDVI formula (NDRE), in
discriminating stress in a piñon-juniper stand earlier than NDVI [35].

Our work here shows that these VIs are reasonable proxies for the thermal signatures
that characterize drought stress in conifers and are worthy of additional investigations.

Because of the decoupling of Td and Etrans in our data, we also investigated the
relationship of Etrans with the multispectral bands and VIs. Re, NIR, and B showed moderate
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negative correlations, most likely driven by the increase in water and active chlorophyll
associated with higher Etrans, which is not surprising for B but is somewhat puzzling for
Re and NIR. By all accounts, the latter bands should have had a positive correlation with
Etrans. Using our point in time approach, correlations between Etrans and VIs were elusive.
However, foliar traits that were detected in the multispectral data were likely the product
of tree transpiration and water status over days, weeks, and months and not simply at the
time of spectral data capture.

5. Conclusions

This study is an investigation of the comparative use of disparate remote sensing
technologies (UAV and ECOSTRESS) in assessing ponderosa pine drought stress in un-
managed and managed mixed conifer forest in central Oregon. Heavy thinning in PP
resulted in trees exhibiting reduced drought stress (sustained transpiration) relative to
those on unmanaged sites, but this was not observed in light thinning treatments. However,
crowns on a lightly thinned site were cooler than those in an untreated control, indicating a
reduction in drought stress.

UAV- and ECOSTRESS- detected tree crown temperature and transpiration mea-
sures were largely decoupled at this relatively mesic site, contrary to the commonly ac-
cepted paradigm that they are negatively correlated. Evidence suggests that our sample
trees were under mild–moderate, but not extreme, drought stress, which could explain
these observations.

Differences in ECOSTRESS pixel composition across the neighborhoods, e.g., a higher
proportion of shrub, bare ground, and litter cover, likely contributed to the inverse re-
lationship between UAV and ECOSTRESS temperatures. The best use of ECOSTRESS
may be in thermal and transpiration comparisons between similar stand densities and
at the landscape level, as the data are too coarse for tree-level stress detection. Visible
and near-infrared bands and indices are inherently more accessible than airborne or near-
surface thermography. The CCI, NDRE indices, and the NIR and B bands as gathered
by UAVs show promise as possible proxies for crown temperature and drought stress.
Image-based layers using these indices could be operationally developed that aid foresters
in prescription marking and in selecting drought-resistant or -resilient seed source trees.
Further research is warranted.
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Appendix A

Branchlet diameter (BRDIA)—Diameter measured in mm (±0.01 mm) at the base of the
previous year branchlet.
Branchlet elongation (BRN)—Measured length of the current year branchlet (±2.0 mm)
(BRN1) or the previous year’s branchlet (BRN2). BRN1% is the percentage of the current
year’s branchlet length relative to the maximum branchlet length of all annual branchlet
length segments present on the branch.
Chlorosis (CHL)—Chlorosis level of needles expressed as a percent of healthy, green
needles in the same age class by ocular estimation. Age class is indicated by integer, e.g.,
CHL2 is the chlorosis level for the previous year’s needle age class.
Insect and disease (DISEASE)—a sum of the frequency of abiotic and biotic vectors on
sampled branches in each crown [14,48,49]. Abiotic vectors included needle tip dieback,
whole needle dieback, and early needle senescence (in August instead of October), all likely
driven by drought stress. Biotic vectors included presence or absence of pine needle weevil,
phloem feeder, armored scale, black pineleaf scale, and needle blight (Latin authorities
given in [14]).
Needle whorls (#WHL)—The number of needle ages retained on the branchlet. Ponderosa
pine needles are in distinct groups on branchlets; these groups are established annually.
See [14] for examples.
Needle elongation (NLN)—Measured length of the current year needle length (+2.0 mm)
(NLN1). NLN2% is the percentage of the current year needle length relative to the maxi-
mum needle length retained on the branchlet.
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13. Zavadilova, I.; Szatniewska, J.; Stojanović, M.; Fleischer, P., Jr.; Vágner, L.; Pavelka, M.; Petrík, P. The Effect of Thinning Intensity
on Sap Flow and Growth of Norway Spruce. J. For. Sci. 2023, 69, 205–216. [CrossRef]

14. Grulke, N.; Bienz, C.; Hrinkevich, K.; Maxfield, J.; Uyeda, K. Quantitative and Qualitative Approaches to Assess Tree Vigor and
Stand Health in Dry Pine Forests. For. Ecol. Manag. 2020, 465, 118085. [CrossRef]

https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1016/j.foreco.2018.09.006
https://doi.org/10.1016/j.foreco.2010.09.048
https://doi.org/10.1146/annurev.ecolsys.38.091206.095650
https://doi.org/10.1002/eap.2432
https://www.ncbi.nlm.nih.gov/pubmed/34339086
https://doi.org/10.1139/X09-044
https://doi.org/10.17221/17/2023-JFS
https://doi.org/10.1016/j.foreco.2020.118085


Remote Sens. 2024, 16, 1005 22 of 24

15. Klein, T.; Hoch, G.; Yakir, D.; Körner, C. Drought Stress, Growth and Nonstructural Carbohydrate Dynamics of Pine Trees in a
Semi-Arid Forest. Tree Physiol. 2014, 34, 981–992. [CrossRef]

16. Schrader-Patton, C.; Grulke, N.; Bienz, C. Assessment of Ponderosa Pine Vigor Using Four-Band Aerial Imagery in South Central
Oregon: Crown Objects to Landscapes. Forests 2021, 12, 612. [CrossRef]

17. Javadian, M.; Smith, W.K.; Lee, K.; Knowles, J.F.; Scott, R.L.; Fisher, J.B.; Moore, D.J.P.; van Leeuwen, W.J.D.; Barron-Gafford, G.;
Behrangi, A. Canopy Temperature Is Regulated by Ecosystem Structural Traits and Captures the Ecohydrologic Dynamics of a
Semiarid Mixed Conifer Forest Site. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006617. [CrossRef]

18. Grulke, N.; Maxfield, J.; Riggan, P.; Schrader-Patton, C. Pre-Emptive Detection of Mature Pine Drought Stress Using Multispectral
Aerial Imagery. Remote Sens. 2020, 12, 2338. [CrossRef]

19. Reid, A.M.; Chapman, W.K.; Prescott, C.E.; Nijland, W. Using Excess Greenness and Green Chromatic Coordinate Colour Indices
from Aerial Images to Assess Lodgepole Pine Vigour, Mortality and Disease Occurrence. For. Ecol. Manag. 2016, 374, 146–153.
[CrossRef]

20. Brown, H.T.; Escombe, F. Researches on Some of the Physiological Processes of Green Leaves, with Special Reference to the
Interchange of Energy between the Leaf and Its Surroundings. Proc. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character 1997, 76,
29–111. [CrossRef]

21. Keen, F.P. Ponderosa Pine Tree Classes Redefined. J. For. 1943, 41, 249–253.
22. Weber, F.P.; Polcyn, F.C. Remote Sensuin to Detect Stress in Forests. Photogramm. Eng. Remote Sens. 1972, 38, 163–175.
23. Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
24. Yang, B.; Knyazikhin, Y.; Lin, Y.; Yan, K.; Chen, C.; Park, T.; Choi, S.; Mõttus, M.; Rautiainen, M.; Myneni, R.B.; et al. Analyses of

Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and
Shoot Samples. Remote Sens. 2016, 8, 563. [CrossRef]

25. Williams, D.L. A Comparison of Spectral Reflectance Properties at the Needle, Branch, and Canopy Level for Selected Conifer
Species. Remote Sens. Environ. 1991, 35, 79–93. [CrossRef]

26. Leuzinger, S.; Körner, C.; Leuzinger, S.; Korner, C. Tree Species Diversity Affects Canopy Leaf Temperatures in a Mature Temperate
Forest. Agric. For. Meteorol. 2007, 146, 29–37. [CrossRef]

27. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8,
127–150. [CrossRef]

28. Cihlar, J.; Ly, H.; Li, Z.; Chen, J.; Pokrant, H.; Huang, F. Multitemporal, Multichannel AVHRR Data Sets for Land Biosphere
Studies—Artifacts and Corrections. Remote Sens. Environ. 1997, 60, 35–57. [CrossRef]

29. Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized Difference Vegetation Index Measurements from the
Advanced Very High Resolution Radiometer. Remote Sens. Environ. 1991, 35, 257–277. [CrossRef]

30. Sellers, P.J. Canopy Reflectance, Photosynthesis and Transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [CrossRef]
31. Wong, C.; D’Odorico, P.; Bhathena, Y.; Arain, M.; Ensminger, I. Carotenoid Based Vegetation Indices for Accurate Monitoring of

the Phenology of Photosynthesis at the Leaf-Scale in Deciduous and Evergreen Trees. Remote Sens. Environ. 2019, 233, 111407.
[CrossRef]

32. Garbulsky, M.F.; Peñuelas, J.; Ogaya, R.; Filella, I. Leaf and Stand-Level Carbon Uptake of a Mediterranean Forest Estimated
Using the Satellite-Derived Reflectance Indices EVI and PRI. Int. J. Remote Sens. 2013, 34, 1282–1296. [CrossRef]

33. Gamon, J.A.; Kovalchuck, O.; Wong, C.Y.S.; Harris, A.; Garrity, S.R. Monitoring Seasonal and Diurnal Changes in Photosynthetic
Pigments with Automated PRI and NDVI Sensors. Biogeosciences 2015, 12, 4149–4159. [CrossRef]

34. Brodrick, P.G.; Asner, G.P. Remotely Sensed Predictors of Conifer Tree Mortality during Severe Drought. Environ. Res. Lett. 2017,
12, 115013. [CrossRef]

35. Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband,
Red-Edge Information from Satellites Improves Early Stress Detection in a New Mexico Conifer Woodland. Remote Sens. Environ.
2011, 115, 3640–3646. [CrossRef]

36. Jones, H.G. Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology. In Incorporating
Advances in Plant Pathology; Advances in Botanical Research; Academic Press: New York, NY, USA, 2004; Volume 41, pp. 107–163.

37. Fuchs, M.; Tanner, C.B. Infrared Thermometry of Vegetation1. Agron. J. 1966, 58, 597–601. [CrossRef]
38. Jones, H.G. Use of Infrared Thermometry for Estimation of Stomatal Conductance as a Possible Aid to Irrigation Scheduling.

Agric. For. Meteorol. 1999, 95, 139–149. [CrossRef]
39. Hashimoto, Y.; Ino, T.; Kramer, P.J.; Naylor, A.W.; Strain, B.R. Dynamic Analysis of Water Stress of Sunflower Leaves by Means of

a Thermal Image Processing System 1. Plant Physiol. 1984, 76, 266–269. [CrossRef]
40. Still, C.; Powell, R.; Aubrecht, D.; Kim, Y.; Helliker, B.; Roberts, D.; Richardson, A.D.; Goulden, M. Thermal Imaging in Plant and

Ecosystem Ecology: Applications and Challenges. Ecosphere 2019, 10, e02768. [CrossRef]
41. Kim, Y.; Still, C.J.; Roberts, D.A.; Goulden, M.L. Thermal Infrared Imaging of Conifer Leaf Temperatures: Comparison to

Thermocouple Measurements and Assessment of Environmental Influences. Agric. For. Meteorol. 2018, 248, 361–371. [CrossRef]
42. Sankey, T.; Tatum, J. Thinning Increases Forest Resiliency during Unprecedented Drought. Sci. Rep. 2022, 12, 9041. [CrossRef]
43. Kuenzer, C.; Guo, H.; Ottinger, M.; Zhang, J.; Dech, S. Spaceborne Thermal Infrared Observation—An Overview of Most

Frequently Used Sensors for Applied Research. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 131–148.

https://doi.org/10.1093/treephys/tpu071
https://doi.org/10.3390/f12050612
https://doi.org/10.1029/2021JG006617
https://doi.org/10.3390/rs12142338
https://doi.org/10.1016/j.foreco.2016.05.006
https://doi.org/10.1098/rspb.1905.0002
https://doi.org/10.1080/02757259509532298
https://doi.org/10.3390/rs8070563
https://doi.org/10.1016/0034-4257(91)90002-N
https://doi.org/10.1016/j.agrformet.2007.05.007
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/S0034-4257(96)00137-X
https://doi.org/10.1016/0034-4257(91)90017-Z
https://doi.org/10.1080/01431168508948283
https://doi.org/10.1016/j.rse.2019.111407
https://doi.org/10.1080/01431161.2012.718457
https://doi.org/10.5194/bg-12-4149-2015
https://doi.org/10.1088/1748-9326/aa8f55
https://doi.org/10.1016/j.rse.2011.09.002
https://doi.org/10.2134/agronj1966.00021962005800060014x
https://doi.org/10.1016/S0168-1923(99)00030-1
https://doi.org/10.1104/pp.76.1.266
https://doi.org/10.1002/ecs2.2768
https://doi.org/10.1016/j.agrformet.2017.10.010
https://doi.org/10.1038/s41598-022-12982-z


Remote Sens. 2024, 16, 1005 23 of 24

44. Hook, S.J. ECOSTRESS, SBG, and HyTES: Status and Results. In Proceedings of the International Workshop on High Resolution
Thermal EO, Frascati, Italy, 10–12 May 2023.

45. Volland, L.A. Plant Associations of the Central Oregon Pumice Zone; USDA Forest Service, Pacific Northwest Region: Portland, OR,
USA, 1988.

46. Cochran, P.; Geist, J.; Clemens, D.; Clausnitzer, R.; Powell, D. Suggested Stocking Levels for Forest Stands in Northeastern Oregon and
Southeastern Washington; Forest Service Research Note; USDA, Forest Service, Pacific Northwest Research Station: Portland, OR,
USA, 1994.

47. Shaw, R.C. Tree Vigor Response and Competitive Zone Density in Mature Ponderosa Pine; Oregon State University: Corvallis, OR,
USA, 2016.

48. Grulke, N.E.; Lee, E.H. Assessing Visible Ozone-Induced Foliar Injury in Ponderosa Pine. Can. J. For. Res. 1997, 27, 1658–1668.
[CrossRef]

49. Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996.
50. Granier, A. Evaluation of Transpiration in a Douglas-Fir Stand by Means of Sap Flow Measurements. Tree Physiol. 1987, 3, 309–320.

[CrossRef]
51. PRISM Climate Group. Parameter-Elevation Regressions on Independent Slopes Model; Oregon State University: Corvallis, OR,

USA, 2023.
52. ESRI ArcGIS Pro, v 3.1.2; Environmental Systems Research Institute: Redlands, CA, USA, 2023.
53. Pix4D Pix4Dmapper, v 4.6.3; Pix4d SA: Prilly, Switzerland, 2020.
54. Teledyne FLIR FLIR Thermal Studio Suite, v 1.9.10; Teledyne FLIR LLC: Wilsonville, OR, USA, 2020.
55. Agisoft Agisoft Metashape Professional Edition, Version 2.1; Agisoft LLC: St. Petersburg, Russia, 2020.
56. Stimson, H.C.; Breshears, D.D.; Ustin, S.L.; Kefauver, S.C. Spectral Sensing of Foliar Water Conditions in Two Co-Occurring

Conifer Species: Pinus Edulis and Juniperus Monosperma. Remote Sens. Environ. 2005, 96, 108–118. [CrossRef]
57. Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelas, J. A Remotely

Sensed Pigment Index Reveals Photosynthetic Phenology in Evergreen Conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092.
[CrossRef]

58. Eitel, J.U.H.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active Ground Optical Remote Sensing for Improved Monitoring
of Seedling Stress in Nurseries. Sensors 2010, 10, 2843–2850. [CrossRef] [PubMed]

59. Richardson, A.D.; Berlyn, G.P. Changes in Foliar Spectral Reflectance and Chlorophyll Fluorescence of Four Temperate Species
Following Branch Cutting. Tree Physiol. 2002, 22, 499–506. [CrossRef]

60. Wong, C.Y.S.; Gamon, J.A. Three Causes of Variation in the Photochemical Reflectance Index (PRI) in Evergreen Conifers. New
Phytol. 2015, 206, 187–195. [CrossRef] [PubMed]

61. Microsoft Microsoft Excel for Microsoft 365 MSO, Version 2311 Build 16.0.17029.20140. 64-Bit. Microsoft Corporation: Redmond,
WA, USA, 2023.

62. Fisher, J.B.; Baldocchi, D.D.; Misson, L.; Dawson, T.E.; Goldstein, A.H. What the Towers Don’t See at Night: Nocturnal Sap Flow
in Trees and Shrubs at Two AmeriFlux Sites in California. Tree Physiol. 2007, 27, 597–610. [CrossRef]

63. RStudio: Integrated Development for R, RStudio version 2022.12.1+402 software; RStudio Team: Boston, MA USA, 2022.
64. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022.
65. Restaino, C.; Young, D.J.N.; Estes, B.; Gross, S.; Wuenschel, A.; Meyer, M.; Safford, H. Forest Structure and Climate Mediate

Drought-Induced Tree Mortality in Forests of the Sierra Nevada, USA. Ecol. Appl. 2019, 29, e01902. [CrossRef] [PubMed]
66. Wilder, B.A.; Kinoshita, A.M. Incorporating ECOSTRESS Evapotranspiration in a Paired Catchment Water Balance Analysis after

the 2018 Holy Fire in California. Catena 2022, 215, 106300. [CrossRef]
67. Li, K.; Guan, K.; Jiang, C.; Wang, S.; Peng, B.; Cai, Y. Evaluation of Four New Land Surface Temperature (LST) Products in the U.S.

Corn Belt: ECOSTRESS, GOES-R, Landsat, and Sentinel-3. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9931–9945.
[CrossRef]

68. Lambers, H.; Chapin, F.S.; Pons, T.L. Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level. In
Plant Physiological Ecology; Lambers, H., Chapin, F.S., Pons, T.L., Eds.; Springer: New York, NY, USA, 1998; pp. 230–238.
ISBN 978-1-4757-2855-2.

69. Jarvis, P.G.; McNaughton, K.G. Stomatal Control of Transpiration: Scaling Up from Leaf to Region. In Advances in Ecological
Research; MacFadyen, A., Ford, E.D., Eds.; Academic Press: New York, NY, USA, 1986; Volume 15, pp. 1–49. ISBN 0065-2504.

70. De Kauwe, M.G.; Medlyn, B.E.; Knauer, J.; Williams, C.A. Ideas and Perspectives: How Coupled Is the Vegetation\hack\newline
to the Boundary Layer? Biogeosciences 2017, 14, 4435–4453. [CrossRef]

71. Callaway, R.M.; DeLucia, E.H.; Moore, D.; Nowak, R.; Schlesinger, W.H. Competition and Facilitation: Contrasting Effects of
Artemisia Tridentata on Desert vs. Montane Pines. Ecology 1996, 77, 2130–2141. [CrossRef]

72. Steckel, M.; Moser, W.K.; del Río, M.; Pretzsch, H. Implications of Reduced Stand Density on Tree Growth and Drought
Susceptibility: A Study of Three Species under Varying Climate. Forests 2020, 11, 627. [CrossRef]

73. Wong, C.Y.S.; Young, D.J.N.; Latimer, A.M.; Buckley, T.N.; Magney, T.S. Importance of the Legacy Effect for Assessing Spatiotem-
poral Correspondence between Interannual Tree-Ring Width and Remote Sensing Products in the Sierra Nevada. Remote Sens.
Environ. 2021, 265, 112635. [CrossRef]

https://doi.org/10.1139/x97-135
https://doi.org/10.1093/treephys/3.4.309
https://doi.org/10.1016/j.rse.2004.12.007
https://doi.org/10.1073/pnas.1606162113
https://doi.org/10.3390/s100402843
https://www.ncbi.nlm.nih.gov/pubmed/22319275
https://doi.org/10.1093/treephys/22.7.499
https://doi.org/10.1111/nph.13159
https://www.ncbi.nlm.nih.gov/pubmed/25408288
https://doi.org/10.1093/treephys/27.4.597
https://doi.org/10.1002/eap.1902
https://www.ncbi.nlm.nih.gov/pubmed/31020735
https://doi.org/10.1016/j.catena.2022.106300
https://doi.org/10.1109/JSTARS.2021.3114613
https://doi.org/10.5194/bg-14-4435-2017
https://doi.org/10.2307/2265707
https://doi.org/10.3390/f11060627
https://doi.org/10.1016/j.rse.2021.112635


Remote Sens. 2024, 16, 1005 24 of 24

74. Colwell, R.N. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 1956, 26,
223–286. [CrossRef]

75. Carter, G.A.; Knapp, A.K. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll
Concentration. Am. J. Bot. 2001, 88, 677–684. [CrossRef]

76. Knipling, E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote
Sens. Environ. 1970, 1, 155–159. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3733/hilg.v26n05p223
https://doi.org/10.2307/2657068
https://doi.org/10.1016/S0034-4257(70)80021-9

	Introduction 
	Materials and Methods 
	Site Location 
	Stand Characteristics 
	Whole Tree and Crown Morphological Attributes 
	Tree-Level Transpiration 
	On-Site Temperature, Vapor Pressure Deficit, and Humidity 
	Remote Sensing Data Collection 
	Data Compilation and Analysis 

	Results 
	Tree Morphological Attributes and Transpiration by Treatment 
	Remote Detection of Crown Temperature 
	Remotely Sensed Temperature vs. Tree Transpiration 
	Contributing Predictors of UAV FLIR Crown Temperature (Td) 
	Contributing Predictors of Tree Level Transpiration (Etrans) 

	Discussion 
	Conclusions 
	Appendix A
	References

