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Abstract: This paper proposes a method for forecasting surface solar irradiance (SSI), the most
critical factor in solar photovoltaic (PV) power generation. The proposed method uses 16-channel
data obtained by the GEO-KOMPSAT-2A (GK2A) satellite of South Korea as the main data for SSI
forecasting. To determine feature variables related to SSI from the 16-channel data, the differences and
ratios between the channels were utilized. Additionally, to consider the fundamental characteristics of
SSI originating from the sun, solar geometry parameters, such as solar declination (SD), solar elevation
angle (SEA), and extraterrestrial solar radiation (ESR), were used. Deep learning-based feature
selection (Deep-FS) was employed to select appropriate feature variables that affect SSI from various
feature variables extracted from the 16-channel data. Lastly, spatio-temporal deep learning models,
such as convolutional neural network–long short-term memory (CNN-LSTM) and CNN–gated
recurrent unit (CNN-GRU), which can simultaneously reflect temporal and spatial characteristics,
were used to forecast SSI. Experiments conducted to verify the proposed method against conventional
methods confirmed that the proposed method delivers superior SSI forecasting performance.

Keywords: solar irradiance forecasting; deep learning-based feature selection; spatio-temporal deep
learning model; solar geometry; GK2A satellite data

1. Introduction
1.1. Motivation

Renewable energy is defined as environmentally friendly and clean energy with low
CO2 generation. Energy obtained from non-depletable energy sources, such as the sun and
wind, can be indefinitely renewable. Therefore, renewable energy as a countermeasure
against climate change and its adverse effects, such as energy competition and global
warming due to fossil fuel depletion, is becoming increasingly important. Among the
various power generation technologies using renewable energy, solar photovoltaic (PV)
power generation, which uses solar cells to convert solar energy into electricity, has been
growing rapidly in recent years due to its ease of installation and policy supports. Because of
advances in solar PV power generation, its energy efficiency has improved, and costs are
gradually decreasing. Thus, solar energy is being recognized as a more economical and
sustainable option. Consequently, electricity production using solar PV power generation
and, thereby, dependence on this avenue of energy production are increasing rapidly
worldwide. This global trend of solar PV power generation emphasizes its importance in
modern society. In the future, solar PV power generation is expected to become the core of
the energy industry. Moreover, research and technological innovation in solar PV power
generation have the potential to emerge as highly important endeavors.
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1.2. Problem Statement

Solar PV power generation fluctuates depending on weather conditions. This volatility
adversely affects the operation stability of the power system. Such instability can cause
blackouts and an increase in power prices. Therefore, technology to forecast the amount
of solar PV power generation is required to alleviate the aforementioned problems and
establish a stable power supply and demand plan. Because solar PV power generation
converts solar energy into electrical energy, there is a high correlation between the amount
of power generation and solar irradiance. Therefore, elements related to solar irradiance,
such as global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and direct
normal irradiance (DNI), have been used in many studies on forecasting the amount of
solar PV power generation [1–4]. Factors affecting solar irradiance reaching the surface,
such as sky condition, clearness index, visibility, cloud cover, and date, have also been
investigated [5–7]. Furthermore, studies focusing on forecasting the amount of solar PV
power generation are preceded by solar irradiance forecasting [8,9]. In this context, it can be
inferred that solar irradiance is the most critical factor in forecasting the amount of solar PV
power generation. Therefore, research on solar irradiance forecasting needs to be pursued
as a precedent.

1.3. Related Works

In the past, research on solar irradiance forecasting was mainly based on statistical
methods such as autoregressive moving average (ARMA), autoregressive integrated moving
average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA) [10–13].
Statistical methods work by identifying patterns and trends observed in time series data
to make forecasting. However, statistical methods have limitations in that they rely on
linear relationships in the data, making it challenging to model non-linear relationships,
and they traditionally rely only on historical data, which can limit forecasting. To overcome
the limitations mentioned above, recent efforts have been made to utilize traditional machine
learning methods such as random forest (RF), support vector regression (SVR), or deep
learning methods such as an artificial neural network (ANN), long short-term memory (LSTM),
gated recurrent unit (GRU), and convolutional neural network (CNN) [14–20]. Approaches
using machine learning and deep learning can easily model non-linear relationships and
flexibly handle a variety of data to provide more accurate forecasting. In particular, deep
learning can learn complex patterns and trends, making them adaptable to environmental
changes or new data. For this reason, solar irradiance forecasting using machine learning and
deep learning has been a growing area of research in recent years.

The following are studies that apply machine learning to solar irradiance forecasting:
Urraca et al. [14] used RF and SVR to forecast 1 h–ahead GHI. The authors applied param-
eter optimization utilizing cross-validation, feature selection based on genetic algorithm
(GA), and model optimization using parsimonious model selection to differentiate from
conventional methods. Additionally, the authors compared the performance with and
without the differentiated methods and selected the best-performing model. They used
various performance metrics, such as mean absolute error (MAE), root mean square error
(RMSE), mean bias error (MBE), normalized mean absolute error (NMAE), normalized root
mean square error (NRMSE), and forecast skill for performance evaluation. They compared
performance with a persistence model and found that both SVR and RF outperformed the
persistence model, while both models were effectively simplified and reduced the number
of features as input variables. Yang et al. [15] conducted a study for easy and efficient
hourly global solar radiation prediction. The authors considered three machine-learning
models for global solar radiation prediction: back propagation network (BP), SVR, and light
gradient boosting machine (LightGBM). Additionally, they utilized various meteorological
factors and extra-terrestrial solar radiation (ESR) derived from solar geometry. Then, they
used a Shapley additive explanation (SHAP) model to select appropriate factors affecting
global solar radiation from the available factors. As a result, they selected seven input
variables based on feature importance: ESR, cloud cover, air temperature, relative humidity,
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date, and hour. They also compared the model’s performance with and without the weather
type variable, representing 18 different weather types, and found that the model performed
better with the weather-type variable. Finally, they compared the prediction performance
of the three machine learning methods and found that LightGBM performed the best.

In the studies on solar irradiance forecasting using machine learning, studies were
compared with and without the proposed unique techniques, or the performance was
verified by comparing the performance with traditional methods. Since there are many
parameters that determine machine learning models compared to statistical models, various
methods for model optimization have been proposed, and it is confirmed that efforts have
been made to select appropriate variables that influence solar irradiance.

The following are studies that apply deep learning to solar irradiance forecasting:
Brahma et al. [16] forecasted daily solar irradiance after 1, 4, and 10 d using multi-regional
data and a deep learning model specialized for time-series data forecasting. They used
LSTM, GRU, CNN, bi-directional LSTM (Bi-LSTM), and attraction LSTM to forecast solar
irradiance and employed Pearson correlation, Spearman correlation, and extreme gradient
boosting to select surrounding areas that are highly related to solar irradiance in the target
area. They also used autocorrelation to determine the appropriate number of days of
historical data and rolling window evaluation to assess the model in terms of accuracy,
robustness, and reliability. Meanwhile, Huang et al. [17] forecasted solar irradiance after 1 h
using a hybrid deep learning model combining wavelet packet decomposition (WPD) and
various deep learning models. They subsequently compared and analyzed the forecasting
performance of different combinations of hybrid deep learning models. Consequently, they
concluded that the highest solar irradiance forecasting performance is obtained using WPD-
CNN-LSTM-MLP, which combines WPD, CNN, LSTM, and multi-layer perceptron (MLP).
Their input variables in training their model included temperature, relative humidity,
wind speed, and solar irradiance over the last 24 h. Meanwhile, Rajagukguk et al. [18]
forecasted solar irradiance using sky images captured through a sky camera. First, they
used the red–blue ratio method and Otsu threshold to derive cloud cover, which affects
solar irradiance, from the sky images. Then, they employed LSTM to forecast cloud cover
and used a physical model based on forecasted cloud cover to forecast solar irradiance.
Nielsen et al. [19] forecasted effective cloud albedo (CAL) based on convolutional–LSTM
(ConvLSTM) using satellite data to forecast solar irradiance, considering the effect of
clouds on solar irradiance. They designed a model with an autoencoder structure based on
ConvLSTM, a spatio-temporal deep learning model, which used CAL, a solar elevation
map, latitude, longitude, hour, day, and month as input variables. Because satellite data
are 2D, whereas hour, day, and month data are 1D, the research team converted the 1D
data into two dimensions through data replication. They forecasted CAL for the next
4 h based on historical data of the past 2 h and future solar irradiance based on the
forecasted CAL. Meanwhile, Niu et al. [20] forecasted solar irradiance after 1 to 3 h using
the Conv1D-BiGRU-SAM model, which combines a one-dimensional convolution layer
(Conv1D), a bi-directional GRU (Bi-GRU), and self-attention mechanism (SAM). They
also used transfer learning to account for newly established PV power plants that lacked
sufficient data and performed feature selection based on RReliefF to improve predictive
performance. Their input variables for their forecasting model included the past GHI.

To consider temporal factors, research studies on solar irradiance forecasting using
deep learning have used mainly LSTM [21] and GRU [22], which are deep learning models
specialized for time-series prediction. However, to consider spatial factors, they have
used either a convolution layer in combination or a convolution operation method [23,24].
Variables related to the direct effect of clouds on solar irradiance, such as cloud cover
and clearness index, were used mainly in forecasting solar irradiance. Temporal elements
such as year, month, day, and hour and geographical elements such as latitude, longitude,
and altitude were frequently employed. The filter method [25] using the Pearson correlation
coefficient (PCC) and Spearman correlation coefficient (SCC) was used mainly to select
features for input variables. The wrapper method [26], which adds or removes features
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according to the amount of performance change, and the embedded method [27,28], which
selects optimal features using internal performance indicators of the model, have also
been employed.

Table 1 summarizes the models, their inputs and outputs, and their performance
(RMSE) in previous studies on solar irradiance forecasting. From related works, we have
seen that many different factors are used to forecast solar irradiance, including meteoro-
logical and geographical factors. We also found that solar irradiance forecasting research
using traditional machine learning methods and deep learning methods is actively be-
ing conducted, and in particular, deep learning methods have recently shown higher
forecasting performance than statistical methods and traditional machine learning meth-
ods. In addition, studies on solar irradiance forecasting using deep learning have shown
that various feature selection strategies and data processing techniques are applied to
improve performance.

Table 1. Summary of previous studies on solar irradiance forecasting.

Ref. Model Input Output RMSE (W/m2)

SVR
Relative humidity, wind speed,

solar elevation angle,
cos(solar zenith angle),
solar hour angle, ESR,

clear-sky index,
and GHI

100.55

[14] 1 h–ahead GHI

RF
Rainfall,

boolean variable of rain,
solar elevation angle,
solar azimuth angle,

cos(solar zenith angle),
ESR, and GHI

96.21

BP 138.7

[15] SVM
ESR,weather type,

cloud cover, air temperature,
relative humidity, and time

Hourly global
solar radiation

135.5

LightGBM 126.1

1 day-ahead
solar irradiance

9.536 (location 1)
8.724 (location 2)

Bi-LSTM 4 day-ahead
solar irradiance

11.30 (location 1)
10.25 (location 2)

10 day-ahead
solar irradiance

12.18 (location 1)
11.19 (location 2)

[16] Historical multi-site
solar irradiance

1 day-ahead
solar irradiance

9.695 (location 1)
8.735 (location 2)

Attention-LSTM 4 day-ahead
solar irradiance

11.26 (location 1)
10.34 (location 2)

10 day-ahead
solar irradiance

11.99 (location 1)
11.16 (location 2)

[17] WPD-CNN
-LSTM-MLP

Irradiance, temperature,
humidity, wind speed,

and hour

Hourly solar
irradiance

32.1



Remote Sens. 2024, 16, 888 5 of 30

Table 1. Cont.

Ref. Model Input Output RMSE (W/m2)

[18] LSTM Sky image 1 to 10 min-ahead
solar irradiance

137.00–199.75
(partly cloudy days)

20.59–45.70
(clear days)
15.60–20.46

(overcast days)

[19] ConvLSTM
CAL, elevation map,
longitude, latitude,

hour, day, and month

1 to 4 h-ahead
surface solar

irradiance

57.79–107.329
(cloudy)

36.42–90.14
(cloud-free)

[20]
TL-RReliefF-

Conv1D-BiGRU
-SAM

Historical GHI 1 to 3 h-ahead GHI 138.6641–162.5480

1.4. Contributions of Study

Because the accuracy of forecasting surface solar irradiance (SSI) is directly related to
the accuracy of forecasting the amount of solar PV power generation, this paper proposes
an SSI forecasting method that uses various techniques for a more accurate SSI forecasting.
To verify the performance of the proposed method effectively in this study, we targeted
SSI after a short time interval of 1 h. This is the temporal gap at which the reliability
and accuracy of the SSI forecasting model can be easily verified, and the comparison
between the forecasted and actual SSI can be used to evaluate the model’s performance
objectively. The proposed method uses 16-channel data obtained by the GEO-KOMPSAT-2A
(GK2A) satellite of South Korea as main data. SSI data obtained by the automated synoptic
observing system (ASOS) at the ground ASOS station operated by the Korea Meteorological
Administration (KMA) were used for deep learning-based feature selection (Deep-FS) and
to evaluate the proposed method. Considering the temporal and spatial characteristics
of SSI, we used a spatio-temporal deep learning model for SSI forecasting. Moreover, we
improved performance through feature extraction considering the characteristics of GK2A
satellite data, feature engineering based on solar geometry, and deep learning-based feature
selection. To verify the proposed method, we performed comparative experiments against
conventional methods, RMSE, relative root mean square error (RRMSE), coefficient of
determination (R2), MAE as performance indicators. The formulas for each performance
indicator are provided in Appendix A.The experimental results showed that the proposed
method performed better than the conventional methods. The contributions of this study
can be summarized as follows:

1. Use of GK2A satellite data

• This dataset is relatively free from locational constraints within the observation
area of GK2A. It can be used flexibly and usefully, especially in areas without
weather observation sensors or far from a weather station.

• Feature variables affecting SSI can be effectively searched/extracted/utilized
from GK2A satellite data.

2. Feature engineering based on solar geometry

• It is possible to generate solar geometry parameters that effectively reflect the
fundamental characteristics and periodicity of SSI for a target location.

• Solar geometry parameters help clarify the influence of each feature variable on
SSI attenuated by the atmosphere.

• Solar geometry parameters effectively improve SSI forecasting performance.



Remote Sens. 2024, 16, 888 6 of 30

3. Deep learning-based feature selection

• Based on both the linear and non-linear relationships between SSI and feature
variables considered simultaneously, feature variables suitable for forecasting
SSI can be selected.

• Feature variables can be selected by considering not only the one-to-one relation-
ships between the feature variables and SSI but also the many-to-one relationships.

4. SSI forecasting using a spatio-temporal deep learning model

• SSI forecasting performance can be improved using a spatio-temporal deep learn-
ing model that combines a CNN model, which can reflect spatial characteristics,
and an LSTM or GRU model specialized in time-series prediction.

This paper is organized as follows: Section 2 presents a detailed description of the
proposed method. Section 3 presents the results of experiments performed to verify
the proposed method and explains the interpretation of the experiment results. Finally,
Section 4 concludes this study and presents limitations and directions for future work.

2. Proposed Method

This section presents a step-by-step description of the proposed method for forecasting
SSI. Figure 1 shows an overview of the step-by-step procedure of the proposed method, which
consists of four steps: data acquisition, data analysis and preprocessing, feature selection,
and forecasting model design and evaluation. In the data acquisition step, 16-channel data
from the GK2A satellite and SSI data from the ASOS station on the ground are acquired. In the
data analysis and preprocessing step, the data are prepared for feature selection and the SSI
forecasting model. The data characteristics and patterns are analyzed and subjected to feature
extraction and engineering. Additionally, data preprocessing, such as extraction for valid
timestamp and region of interest (ROI), normalization, and resizing, is performed. In the feature
selection step, feature variables appropriate for SSI forecasting are selected. Deep-FS is applied
to the feature variables prepared in the second step to select the feature variables that affect SSI.
Finally, in the forecasting model design and evaluation step, the spatio-temporal model for SSI
forecasting is designed using the selected feature variables and evaluated. The details of each
step are explained individually in separate sections.

Figure 1. Overview of the step-by-step procedure of the proposed method consists of four steps:
data acquisition, data analysis and preprocessing, feature selection, and forecasting model design
and evaluation.
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2.1. Data Acquisition
2.1.1. GEO-KOMPSAT-2A (GK2A)

GK2A is a geostationary meteorological satellite of South Korea performing meteo-
rological and space weather observation missions since its launch on 5 December 2018.
It is equipped with an advanced meteorological imager (AMI), enabling accurate obser-
vation. GK2A utilizes AMI to observe the weather of Earth through 16 channels with
different wavelengths: VIS004, VIS005, VIS006, VIS008, NIR013, NIR016, SWIR038, WV063,
WV069, WV073, IR087, IR096, IR105, IR112, IR123, and IR133. The 16-channel data for the
observations by GK2A are provided after several preprocessing procedures at the National
Meteorological Satellite Center (NMSC) in South Korea. Table 2 shows the specifications for
the 16 channels of GK2A provided by NMSC. Each of the 16 channels has three observation
areas: Full Disk (FD), East Asia (EA), and Korea (KO). The FD area is observed every
10 min, whereas the other areas are observed every 2 min and have high spatial resolutions
of 0.5/1.0/2.0 km, depending on the channel [29]. In this study, we used 16-channel data
obtained every hour on the hour for the KO area. The period of the acquired data was 2 July
2019, 00:00:00 to 1 July 2023, 00:00:00, based on Korea Standard Time (KST) (hereinafter,
these data are referred to as the GK2A dataset).

Table 2. Data specifications of 16 channels used for observation by AMI mounted on GK2A.

Channel
No. Name

Wavelength (µm) Spatial
Resolution

Spatial
CoverageMin. Max.

Ch01 VIS004
(Visible 0.47 µm) 0.431 0.479 1 km

FD (10 Min.)
EA (2 Min.)
KO (2 Min.)

Ch02 VIS005
(Visible 0.51 µm) 0.5025 0.5175 1 km

Ch03 VIS006
(Visible 0.64 µm) 0.625 0.660 0.5 km

Ch04 VIS008
(Visible 0.86 µm) 0.8495 0.8705 1 km

Ch05 NIR013
(Near Infrared 1.38 µm) 1.373 1.383 2 km

Ch06 NIR016
(Near Infrared 1.6 µm) 1.601 1.619 2 km

Ch07 SWIR038
(Shortwave Infrared 3.8 µm) 3.74 3.96 2 km

Ch08 WV063
(Water Vapor 6.3 µm) 6.061 6.425 2 km

Ch09 WV069
(Water Vaper 6.9 µm) 6.89 7.01 2 km

Ch10 WV073
(Water Vaper 7.3 µm) 7.258 7.433 2 km

Ch11 IR087
(Infrared 8.7 µm) 8.44 8.76 2 km

Ch12 IR096
(Infrared 9.6 µm) 9.543 9.717 2 km

Ch13 IR105
(Infrared 10.5 µm) 10.25 10.61 2 km

Ch14 IR112
(Infrared 11.2 µm) 11.08 11.32 2 km

Ch15 IR123
(Infrared 12.3 µm) 12.15 12.45 2 km

Ch16 IR133
(Infrared 13.3 µm) 13.21 13.39 2 km

2.1.2. Automated Synoptic Observing System (ASOS)

Synoptic weather observation refers to ground observation conducted simultaneously
at all weather stations to determine atmospheric conditions at a given time. Synoptic
weather observation automatically observes atmospheric conditions using ASOS, excluding
some visual observations such as visibility, cloud forms, and weather phenomena. KMA
operates 96 ASOS stations (as of 1 April 2020) and provides various meteorological data
such as temperature, precipitation, pressure, and humidity observed on the ground. SSI
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observation data are provided through the hourly aggregation of SSI measured every
minute using pyranometers at ASOS stations. In this study, SSI observation data provided
hourly intervals every hour on the hour were collected from the ASOS station (latitude:
35.10468◦, longitude: 129.03203◦) located in Busan, South Korea. The SSI data were collected
from 2 July 2019, 00:00:00 to 1 July 2023, 00:00:00, based on KST (hereinafter, these data are
referred to as the SSI dataset).

2.2. Data Analysis & Preprocessing
2.2.1. Search for Missing Values

If an observation or event results in missing data, either the data will not be stored,
or meaningless values will be stored. Therefore, a missing value search must be performed
before the data are used. For the GK2A dataset, the primary cause of missing data is
periodic inspections such as satellite attitude correction. Because missing data are not
stored in the GK2A dataset, the missing points can easily be searched by checking the
data memory or sorting the data in chronological order. Furthermore, in the SSI dataset,
missing data can be due to non-detection of solar irradiance and the occurrence of sensor
errors. Because missing data are stored as Not a Number (NaN) in the SSI dataset, points
of error/missing values can be found through data exploration. Table 3 shows the results
of searching for missing values in the acquired GK2A and SSI datasets. In the GK2A
dataset, in most cases, data for each channel are missing owing to satellite maintenance,
and the low missing rate is approximately 1.7%. Meanwhile, the SSI dataset appears to
have many missing values because the non-detection of solar irradiance after sunset is
regarded as missing data. However, considering the number of data corresponding to
sunrise to sunset times (16,004), it can be inferred that most of the missing data are not
due to sensor errors but, rather, due to unobserved SSI. Although missing values may be
interpolated, they are likely to have errors owing to the nature of interpolation. Therefore,
this study excluded missing values entirely instead of accepting the errors that are likely to
result from interpolating missing values.

Table 3. Results of searching for missing values in GK2A and SSI datasets.

Dataset Name Num. of Data Num. of Missing
Data Missing Rate (%)

GK2A

VIS004

35,041

588 1.678
VIS005 588 1.678
VIS006 589 1.680
VIS008 589 1.680
NIR013 589 1.680
NIR016 588 1.678

GK2A

SWIR038

35,041

588 1.678
WV063 589 1.680
WV069 588 1.678
WV073 588 1.678
IR087 587 1.675
IR096 587 1.675
IR105 589 1.680
IR112 588 1.678
IR123 589 1.680
IR133 588 1.678

SSI SSI 35,041 15,913 45.413

2.2.2. Analysis of Data Characteristics

The 16 channels in the GK2A dataset are divided into 5 categories: visible channel,
near-infrared channel, shortwave infrared channel, water vapor channel, and infrared
channel. Each category has common characteristics, and simultaneously, each channel has
unique characteristics corresponding to different wavelengths. Therefore, the objects that
can be observed are different for each channel. Table 4 shows the characteristics of the
16 channels by category and the observation targets for each channel.
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The visible channel can be observed only during the day when there is sunlight,
and the observed value represents the intensity of sunlight reflected from clouds and the
ground surface. Moreover, in the visible channel, the reflected light is proportional to
the observed value because the stronger the reflected sunlight, the greater its brightness.
The near-infrared channel has a wavelength range in the infrared region with relatively low
interference from water vapor. Similar to the visible channel, it is observable only during
the day. The shortwave infrared channel can observe solar radiation and earth radiation
simultaneously. It is used mainly at night because the reflected solar radiation is stronger
than the reflected earth radiation during the day. The water vapor channel is an infrared
channel with a wavelength that absorbs water vapor and reacts sensitively to water vapor
even in a cloudless atmosphere. Unlike the visible channel, the infrared channel allows
observation at night and observes mainly the intensity of energy emitted by the surface of
Earth and by objects. The intensity of the emitted energy is determined by temperature,
and the object temperature estimated from the infrared channel is called the brightness
temperature (BT).

Table 4. Characteristics of 16 channels by category and observation targets by channel.

Category Name Characteristic Observation Target

Visible
Channel

(Ch01∼Ch04)

VIS004
- Observed only during daytime
- Proportional to the intensity of reflected light
- Possible to create a realistic RGB composite image

using Ch01∼Ch03
- Ch04 clearly distinguishes between the land and sea

surfaces and has high reflectivity about vegetation

Surface and coastal aerosol

VIS005
Fog/Smog
Synthesis of true color

VIS006
Cloud/Fog
Solar irradiance

VIS008
Vegetation
Land surface/sea level distinction

Near
Infrared
Channel

(Ch05∼Ch06)

NIR013 - Observed only during daytime
- Ch05 shows strong water vapor absorption
- Ch06 can distinguish between clouds with water

droplets and clouds with ice

Cirrus

NIR016 Cloud waver droplet, Ice, Snow cover

Shortwave
Infrared
Channel
(Ch07)

SWIR038

- Observe solar radiation and earth radiation
simultaneously

- Mainly used at night when there is little reflected
solar radiation

- Sensitive to high temperatures

Nighttime cloud/Fog/Fire

Water Vapor
Channel

(Ch08∼Ch10)

WV063 - Sensitive to water vapor even in cloudless atmosphere
- 3D water vapor distribution can be confirmed

using Ch08∼Ch10

Upper layer waver vapor
WV069 Middle layer water vapor
WV073 Lower layer waver vapor/SO2

Infrared
Channel

(Ch11∼Ch16)

IR087 - Possible to observe regardless of day/night
- Observe the intensity of energy emitted by the

Earth’s surface and objects
- Ch11 is sensitive to effective cloud radius
- Ch13 has little attenuation by water vapor.
- Ch16 is a CO2 absorption channel

Cloud particles/Dust storm/SO2/Aerosol
IR096 Ozon
IR105 Size of cloud particle, Surface property
IR112 Sea surface temperature/Cloud/Precipitation
IR123 Lower layer water vapor/Volcanic ash
IR133 Cloud altitude/Cloud cover

Because the SSI dataset provided by KMA is based on observations through the Solar
System by the ASOS station on the ground, it is directly affected by the geometric properties
of the sun, such as its position and altitude angle. It is also affected by factors that cause
reflection and scattering as sunlight travels to the surface of the atmosphere, such as cloud
cover, water vapor, and fog. Therefore, feature variables representing the geometry of the
sun and the atmospheric conditions of Earth are needed to forecast SSI. In this context,
satellite data of observations of Earth’s weather from outside the Earth are very suitable
for SSI forecasting. However, indiscriminate use of data can increase model complexity
and result in performance degradation, and thus, it is necessary to subject the data to
appropriate data preprocessing, feature extraction, and selection processes. Therefore,
we extracted features corresponding to the ROI from the GK2A dataset and performed
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feature engineering based on solar geometry to consider the geometric properties of the
sun. In addition, we used Deep-FS to select feature variables suitable for forecasting SSI.

2.2.3. ROI Extraction and Calibration

The collected SSI dataset comprises 1D data obtained by the ASOS station installed
in Busan, South Korea, and thus, the ROI must be extracted from the 2D GK2A dataset
for the Korean Peninsula area. We set a rectangular area of 18 km × 18 km as the ROI
based on the latitude and longitude coordinates of the ASOS station in Busan and extracted
data corresponding to the ROI using the 2D latitude map and 2D longitude map of the
GK2A dataset. Because the GK2A dataset is obtained after it is converted to lightweight
values for data storage efficiency, it must be converted to physical values for use. Therefore,
the visible and near-infrared channel data were calibrated with albedo, whereas the other
channel data were calibrated with BT.

2.2.4. Feature Extraction

NMSC generates various meteorological outputs such as clouds, yellow dust, convec-
tive clouds, and total cloud cover based on 16-channel data provided by GK2A. Research
studies on each output primarily used the channels (Ch07 to Ch16) in the infrared wave-
length range, because of which observations could be made even at night. Moreover, apart
from the raw data of each channel, the maximum, minimum, average, median, standard
deviation and the difference between the maximum and minimum values of the data,
etc., within a specific space or time interval were used to generate meteorological outputs.
In particular, considering the unique characteristics of each channel, the BT differences
between infrared channels were employed as main key feature variables [30]. Therefore,
for this study, we extracted all BT differences and ratios between the infrared channels
(Ch07 to Ch16) as feature variables. Consequently, we could extract 106 feature variables,
including raw data from 16 channels. Table 5 shows each of the 106 feature variables.

Table 5. Information about 106 feature variables extracted from GK2A dataset.

Variable Description Unit Variable Description Unit

x1 VIS004 x54 IR096−IR123
x2 VIS005 x55 IR096−IR133
x3 VIS006 x56 IR105−IR112
x4 VIS008 x57 IR105−IR123
x5 NIR013 x58 IR105−IR133
x6 NIR016

Albedo

x59 IR112−IR123

x7 SWIR038 x60 IR112−IR133
x8 WV063 x61 IR123−IR133
x9 WV069 x62 SWIR038/WV063
x10 WV073 x63 SWIR038/WV069
x11 IR087 x64 SWIR038/WV073
x12 IR096 x65 SWIR038/IR087
x13 IR105 x66 SWIR038/IR096
x14 IR112 x67 SWIR038/IR105
x15 IR123 x68 SWIR038/IR112
x16 IR133 x69 SWIR038/IR123
x17 SWIR038−WV063 x70 SWIR038/IR133
x18 SWIR038−WV069 x71 WV063/WV069
x19 SWIR038−WV073 x72 WV063/WV073
x20 SWIR038−IR087 x73 WV063/IR087
x21 SWIR038−IR096 x74 WV063/IR096
x22 SWIR038−IR105 x75 WV063/IR105
x23 SWIR038−IR112 x76 WV063/IR112
x24 SWIR038−IR123 x77 WV063/IR123
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Table 5. Cont.

Variable Description Unit Variable Description Unit

x25 SWIR038−IR133 x78 WV063/IR133
x26 WV063−WV069 x79 WV069/WV073
x27 WV063−WV073 x80 WV069/IR087
x28 WV063−IR087 x81 WV069/IR096
x29 WV063−IR096 x82 WV069/IR105
x30 WV063−IR105 x83 WV069/IR112
x31 WV063−IR112 x84 WV069/IR123
x32 WV063−IR123 x85 WV069/IR133
x33 WV063−IR133 x86 WV073/IR087
x34 WV069−WV073 x87 WV073/IR096
x35 WV069−IR087 x88 WV073/IR105
x36 WV069−IR096 x89 WV073/IR112
x37 WV069−IR105 x90 WV073/IR123
x38 WV069−IR112 x91 WV073/IR133
x39 WV069−IR123 x92 IR087/IR096
x40 WV069−IR133 x93 IR087/IR105
x41 WV073−IR087 x94 IR087/IR112
x42 WV073−IR096 x95 IR087/IR123
x43 WV073−IR105 x96 IR087/IR133
x44 WV073−IR112 x97 IR096/IR105
x45 WV073−IR123 x98 IR096/IR112
x46 WV073−IR133 x99 IR096/IR123
x47 IR087−IR096 x100 IR096/IR133
x48 IR087−IR105 x101 IR105/IR112
x49 IR087−IR112 x102 IR105/IR123
x50 IR087−IR123 x103 IR105/IR133
x51 IR087−IR133 x104 IR112/IR123
x52 IR096−IR105 x105 IR112/IR133
x53 IR096−IR112

Brightness
Temperature

(K)

x106 IR123/IR133

Brightness
Temperature

(K)

2.2.5. Feature Engineering

SSI is directly related to the geometric properties of the sun, such as its position and
altitude and, therefore, these parameters are essential factors in forecasting SSI. Accord-
ingly, we used solar declination (SD), solar elevation angle (SEA), and ESR among the
solar geometry parameters. SD refers to the angle indicating how far the sun is from the
declination of Earth (celestial equator), whereas the SEA refers to the height of the sun
expressed in degrees relative to the horizon. Meanwhile, ESR refers to the amount of solar
irradiance before scattering or absorption by dust or water vapor in the atmosphere. SD,
SEA, and ESR were derived using solar geometry formulas [31,32] based on the latitude
and longitude of the ASOS station in Busan.

n = JD− 2, 451, 545.0 (1)

L = 280.460 + 0.9856474n (2)

g = 357.528 + 0.9856003n (3)

λ = L + 1.915sin(g) + 0.020sin(2g) (4)

ϵ = 23.439− 0.0000004n (5)

δ = arcsin(sin(ϵ)sin(λ)) (6)
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α = arctan(cos(ϵ)tan(λ)) (7)

Emin = 4(L− α) (8)

λs = −15(TUTC − 12 +
Emin
60

) (9)

αs = arcsin(sin(ϕo)sin(δ) + cos(ϕo)cos(δ)cos(λs − λo)) (10)

ωsr = −arccos(−tan(ϕo)tan(δ)) (11)

ωss = arccos(−tan(ϕo)tan(δ)) (12)

B = (doy− 1)
360
365

(13)

GoN = Gsc(1.00011 + 0.034221cos(B) + 0.00128sin(B) + 0.000719cos(2B) + 0.000077sin(2B)) (14)

GoH = GoN(cos(ϕo)cos(δ)cos(ω) + sin(ϕo)sin(δ)) (15)

Io =
3600

1, 000, 000

∫ ω2

ω1

GoHdω (16)

The descriptions of the variables used in the formulas are as follows:

• JD: Julian Day.
• n: Number of days from J2000.0 (=Julian Day for 1 January 2000 at 12:00 noon).
• L: Mean longitude of the sun corrected for aberration in degrees.
• g: Mean anomaly in degrees.
• λ: Ecliptic longitude in degrees.
• ϵ: Obliquity of the ecliptic in degrees.
• δ: Declination angle of the sun in degrees.
• α: Right ascension in degrees.
• Emin: Equation of time in minute.
• TUTC: Time in Coordinated Universal Time (UTC).
• λs: Longitude of the subsolar point at which the sun is perceived to be directly

overhead (at the zenith) in degrees.
• ϕo: Latitude in degrees.
• λo: Longitude in degrees.
• αs: Solar elevation angle or altitude angle in degrees.
• ωsr: Hour angle at sunrise in degrees.
• ωss: Hour angle at sunset in degrees.
• doy: Day of year (sequential day number starting with day 1 on 1 January).
• Gsc: Solar constant (=1367 W/m2).
• GoN : Extraterrestrial solar radiation incident on the plane normal to the radiation on

the doy in W/m2.
• ω: Hour angle in degrees.
• GoH : Extraterrestrial solar radiation incident on a horizontal plane outside of the

atmosphere at ω in W/m2.
• Io: Accumulated extraterrestrial solar radiation from ω1 to ω2 in MJ/m2.

We generated data on the three solar geometry parameters every hour between 2 July
2019, 00:00:00 and 1 July 2023, 00:00:00, based on KST (hereinafter, these data are referred
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to as the SG dataset). Table 6 shows information about the three solar geometry parameters
generated through solar geometry-based feature engineering.

Table 6. Information about the three solar geometry parameters.

Variable Description Unit

s1 Solar Declination Radian
s2 Solar Elevation Angle Radian

s3
Extraterrestrial Solar

Radiation MJ/m2

2.2.6. Data Process for Deep Learning

To use a deep learning model, it is necessary to convert the data into a form that fits
the input structure of the model. In addition, before training the model, invalid data must
be removed and the data must be normalized to prevent the model from falling into local
minima or overfitting. Considering the validity of the data, we excluded missing values and
extracted data corresponding to meaningful periods based on the hour angles at sunrise
(ωsr) and sunset (ωss). Furthermore, we performed data resizing to unify the data structure
according to the input structure of the deep learning model. In the feature selection step,
we used data from a time zone that satisfies ωsr + 30◦ ≦ ω ≦ (ωss + 15◦)− 30◦, covering
the range from 2 h after sunrise to 2 h before sunset, to exclude errors in solar geometry
and due to SSI observed even after sunset. In addition, for feature selection, we averaged
the ROI of the GK2A dataset to transform it into a 1D structure.

In the forecasting model design and evaluation step, we used data from a time zone
that satisfies ωsr ≦ ω ≦ ωss + 15◦, covering sunrise to sunset. Moreover, to utilize the
spatio-temporal deep learning model, we performed data resizing to enforce the same width
and height for the ROI, for which we employed a method based on sliding the average
window without overlapping. Then, we generated the SG dataset as a 2D structure based
on the 2D latitude and longitude map of the GK2A dataset. Moreover, we converted the SD
data, which do not use latitude and longitude, via data replication to a 2D structure. Lastly,
when training the deep learning model, we performed data normalization to improve
learning efficiency and prevent overfitting. We also applied absolute normalization instead
of Z-score normalization or 0–1 normalization to maintain the relative size and direction of
the data. Equation (17) is the formula used for max absolute scaling.

XN =
X

max(|X|) (17)

In this equation, XN refers to the normalized variable, X refers to the variable before
normalization, and max(|X|) refers to the maximum value of the variable.

2.2.7. Data Visualization and Pattern Analysis

We analyzed the patterns in the acquired data via visualization. For this, we converted
the GK2A dataset, which has a 2D structure, to a 1D structure by obtaining the average for
the ROI. Figures 2–4 show visualizations of the GK2A, SSI, and SG datasets, respectively.
Figure 2 confirms that among the 16 channels that constitute the GK2A dataset, channels
belonging to the same category have similar patterns, all channels repeat seasonal patterns
every year, and the channels that can be observed only during the day and those that can
be observed both day and night exhibit clearly different patterns. Figure 3 shows that the
pattern of daily maximum SSI increasing and decreasing over a yearly cycle is repeated and
that there is severe volatility depending on the time. It can be inferred that this variability
is due to weather conditions, and thus, it is necessary to find appropriate features that
represent the weather conditions that affect variability. Meanwhile, Figure 4 confirms that
the SG dataset is consistent with the geometric properties of the sun over a yearly cycle,
ESR is proportional to SEA, and the daily maximum ESR changes depending on SD.
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To visually analyze the relationship between the 16-channel data and solar geometry
parameters on the SSI, Figures 5 and 6 provide simultaneous visualizations of the data for
some of the collected data periods (10 February 2020 to 16 February 2020). Figure 5 shows
that although channels belonging to the same category in the GK2A dataset have similar
patterns, the channels have detailed differences between them. Moreover, as mentioned
earlier, it can be confirmed that the visible and near-infrared channels can be observed
only during the day, whereas the other channels can be observed both during the day and
at night. The visible channel and near-infrared channels also exhibit a clearly inversely
proportional relationship to SSI. This is in contrast to the other channels, for which it is
difficult to visually confirm any relationships with SSI. Figure 6 shows that SSI is propor-
tional to SEA and ESR and that the degree to which SSI is attenuated by the atmosphere
can be intuitively confirmed. Through data pattern analysis using data visualization, we
verified that the SG dataset effectively represents the periodicity and pattern of SSI and
judged it to be suitable as a feature for SSI forecasting. In addition, we determined that
although some channels clearly show relationships with SSI, there are also channels where
no relationships can be visually identified. Therefore, it is necessary to select appropriate
features that are influential to SSI.

2.3. Feature Selection

We used Deep-FS to select feature variables that effectively influence SSI among
the 106 feature variables derived from the GK2A dataset. The feature selection method
imitated the forward selection of the wrapper method, and we assumed a change in SSI
estimation performance according to the use or absence of a feature variable with an
effect on or correlation with SSI; that is, if the performance is improved using a particular
feature variable, it was determined that the feature was related to SSI and could affect SSI.
The reason for using Deep-FS for SSI estimation rather than SSI forecasting is to understand
the influence of specific feature variables on SSI more clearly. The deep learning models
used in Deep-FS are LSTM and GRU, which are specialized for time-series prediction and
use an input–output structure in Sequence-to-Sequence (Seq2Seq) form. RMSE was used as
the performance indicator. Algorithm 1 provides the pseudocode of Deep-FS.

Because Deep-FS has no limit to the number of variables that it can use as input, it can
provide other information, such as time and location, to clarify the correlation or influence
of feature variables on the target variable. Additionally, it can be used to identify any linear
and non-linear relationships between two variables. Taking advantage of this, we used not
only SSI at the previous point in time but also the three solar geometry parameters and
feature variables corresponding to the visible channel as fixed input variables. Then, we
employed Deep-FS on the remaining 102 feature variables as candidate feature variables.
Moreover, when the 106 feature variables derived from the GK2A dataset were used, 2D
data corresponding to the ROI were averaged and converted into 1D. Table 7 shows the
information on the model structure, input variables, output variables, and input/output
(I/O) time stamps used in Deep-FS.

The number of layers and nodes of the deep learning model used in Deep-FS was de-
termined through repeated experiments with various values. Given that the SSI is 1-h accu-
mulated solar irradiance, both timestamp t− 1 and t were used to estimate SSI at timestamp
t in the case of the SG and GK2A datasets, which comprise instantaneous values. Moreover,
as mentioned earlier, to exclude errors in solar geometry and owing to SSI observed even
after sunset, data from a period that satisfies ωsr + 30◦ ≦ ω ≦ (ωss + 15◦)− 30◦, covering
the range from 2 h after sunrise to 2 h before sunset, were used. Given the Seq2Seq type
I/O structure, a sequence for the unbroken, continuous data section was also formed.
For the performance evaluation, the training and evaluation process was repeated five
times, considering the randomness of the deep learning model, and the lowest RMSE was
considered the final measure of performance. Subsequently, we designed an SSI forecasting
model based on the features selected through Deep-FS. Details about this model will be
discussed in Section 2.4.
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Figure 2. Visualization of 16-channel data belonging to GK2A dataset.
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Figure 3. Visualization of SSI dataset.
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Figure 4. Visualization of SG dataset.
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Figure 5. Visualization overlapping SSI and GK2A datasets over a certain period (10 February 2020 to 16 February 2020).
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Figure 6. Visualization overlapping SG and GK2A datasets over a certain period (10 February 2020 to
16 February 2020).

Table 7. Information about model structure, input variables, output variables, and I/O timestamp
used in Deep-FS: N = number of input variables, S = sequence length, ssi = SSI.

Model Structure Option

Input Layer Input Size: N × S
LSTM Layer Number of Node: 6LSTM

Output Layer Output Size: 1 × 1
Cost Function: Mean Square Error

Input Layer Input Size: N × 1
GRU Layer Number of Node: 6GRU

Output Layer Output Size: 1 × S
Cost Function: Mean Square Error

Input

Default Candidate Output

{s1, s2, s3, x1, x2, x3, x4}
at timestamp t− 1, t

&
{ssi} at timestamp t− 1

{x5, x6, x7, ..., x105, x106}
at timestamp t− 1, t ssi at timestamp t

2.4. Forecasting Model Design & Evaluation

We used a spatio-temporal deep learning model that combines a CNN model special-
ized for extracting the spatial features of 2D data and an LSTM or GRU model specialized
for predicting time-series data to reflect the temporal and spatial characteristics of SSI.
The I/O structure of the model used the Seq2Seq format. Moreover, the input variables of
the model used N feature variables ( f1, f2, ..., fn), three solar geometry parameters (s1, s2, s3),
and four visible-channel feature variables (x1, x2, x3, x4) selected in the feature selection
step. For all input variables, preprocessed data in a 9× 9 size for an 18 km × 18 km area
based on the latitude and longitude coordinates of the ASOS station in Busan, where the
SSI is measured, were used. Table 8 shows the structure, input variables, output variables,
and I/O timestamp of the designed SSI forecasting model.

The structure and hyperparameters (number of layers, number of nodes, filter size,
number of filters, stride, etc.) of the deep learning model used to forecast SSI were deter-
mined through repeated experiments with various values as in feature selection. To forecast
the SSI after 1 h (t + 1), the visible-channel feature variables of the current time (t) and
the selected feature variables were used. In the case of the SG dataset, with which we can
determine the future through solar geometry, the timestamps t and t + 1 were employed.
To use only data from a valid section for forecasting SSI, data from a time zone that satisfies
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ωsr ≦ ω ≦ ωss + 15◦, covering the range from sunrise to sunset, were targeted. Further-
more, given the Seq2Seq type I/O structure, a sequence was formed for the unbroken,
continuous data section and used for I/O. For the performance evaluation, the training
and evaluation process was repeated five times, considering the randomness of the deep
learning model. Then, RMSE, RRMSE, R2, and MAE were obtained based on the model
with the lowest RMSE.

Table 8. Structure, input variables, output variables, and I/O timestamp of designed SSI forecasting
model: N = number of input variables, S = sequence length, ssi = SSI.

Model Structure Option

CNN-LSTM

Input Layer Input Size: 9 × 9 × N × S

Convolution Layer
Size of Filter: 3 ×3
Number of Filter: 16
Stride: 1
Padding: Same
Activation Function: ReLU

Convolution Layer
Size of Filter: 3 × 3
Number of Filter: 8
Stride: 1
Padding: Same
Activation Function: ReLU

Max Pooling Layer Size of Filter: 3 × 3
Stride: 3

Flatten Layer -

LSTM Layer Node: 8
Activation Function: ReLU

Output Layer Output Size: 1 × S
Cost Function: Mean Square Error

CNN-GRU

Input Layer Input Size: 9 × 9 × N × S

Convolution Layer
Size of Filter: 3 × 3
Number of Filter: 16
Stride: 1
Padding: Same
Activation Function: ReLU

Convolution Layer
Size of Filter: 3 × 3
Number of Filter: 8
Stride: 1
Padding: Same
Activation Function: ReLU

Max Pooling Layer Size of Filter: 3 × 3
Stride: 3

Flatten Layer -

GRU Layer Node: 8
Activation Function: ReLU

Output Layer Output Size: 1 × S
Cost Function: Mean Square Error

Input Output
{s1, s2, s3} at time t, t + 1

&
{x1, x2, x3, x4, f1, f2, ..., fn} at time t

ssi at time t + 1
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Algorithm 1: Deep Learning-based Feature Selection (Deep-FS).

Set of candidate feature variables: X = {x1, x2, ..., xn}
Set of fixed feature variables: Z = {z1, z2, ..., zm}
Set of selected feature variables: S = {}
Set of temporary candidate feature variables: C = {}
while n(X) ̸= 0 do

Initialization:
score← 0;
idx ← −1;
for i = 0; i ≤ n(X); i = i + 1 do

if i == 0 then
Construct input data with fixed feature variables: I ← Z;
Split train/test data: [Itrain, Itest]← Split(I);
Train model: Mt ← Train(M, Itrain);
Evaluate trained model: e← Test(Mt, Itest);

else
Construct input data with fixed feature variables and the ith candidate
feature variable: I ← Z ∪ Xi;

Split train/test data: [Itrain, Itest]← Split(I);
Train model: Mt ← Train(M, Itrain);
Evaluate trained model: t_e← Test(Mt, Itest);
Calculate the amount of performance change: t_score← e− t_e;

end
if t_score > 0 then

Add features that show performance improvement to the set of
temporary candidate feature variables: C ← C ∪ Xi;

if t_score > score then
score← t_score;
idx ← i;

end
end

end
Add the highest-performance-improvement feature variable to the set of

selected feature variables: S← S ∪ Xidx;
Add the highest-performance-improvement feature variable to the set of fixed

feature variables: Z ← Z ∪ Xidx;
Set the remaining feature variables as the set of candidate feature variables,
except for those with the highest performance improvement: X ← C− Xidx;

Initialize set of temporary candidate feature variables: C = {};
end
return S

3. Experimental Results

We performed various comparison experiments to verify the performance of the
proposed method. For the experiments using the deep learning model, the model was
trained using the training options outlined in Table 9. Three years of data was used to
train the model, whereas six months of data was used to validate and test the model. We
applied early stopping constraints to avoid long training times and prevent overfitting of
the model. Additionally, based on the loss of verification data recorded in each verification
cycle, the model at the point in time with the lowest verification loss was made the final
output. The performance of the proposed method was verified against those of other
methods in terms of the following aspects:
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1. Performance comparison between using feature variables selected through Deep-FS
and that through conventional feature selection methods.

2. Performance comparison between spatio-temporal models (CNN-LSTM, CNN-GRU)
and single models (ANN, CNN, LSTM, GRU).

3. Performance comparison depending on the use of the SG dataset.

First, we performed an experiment to verify that Deep-FS is superior to traditional
feature selection methods. The feature selection methods included in this experiment were
filter methods based on the PCC and minimum redundancy maximum relevance (mRMR).
The first filter method selected the top 5%, 10%, and 15% features based on the PCC, which
indicates the strength of the linear relationship, whereas the second filter method, based
on the mRMR, selected the top 5%, 10%, and 15% of features based on feature importance.
The case wherein all feature variables were used was also considered. Table 10 shows the
feature variables selected according to the feature selection methods.

Table 9. Description of data and training options for the experiments using the deep learning model.

Option Description

Data source

GK2A dataset provided by NMSC
SSI dataset provided by KMA

SG dataset calculated based on solar geometry
Period of data: 2 July 2019, 00:00:00∼1 July 2023, 00:00:00

Period of training data 2 July 2019, 00:00:00∼1 July 2022, 00:00:00
Period of validation data 1 July 2022, 01:00:00∼1 January 2023, 00:00:00

Period of test data 1 January 2023, 01:00:00∼1 July 2023, 00:00:00
Training epoch 1000

Size of mini-batch 64
Initial learning rate 0.001

Decay schedule Decay learning rate by 0.8 times every 100 epochs
L2 normalization 0.0001

Cycle of validation (Num. of train data)/(Size of mini-batch)
Patience of early stopping 30

Optimization function Adaptive moment estimation (Adam)
Output model Model with the lowest validation loss

Table 10. Feature variables selected by feature selection methods.

Feature Selection Method Selected Features
Num. of

Selected Features

All x1, x2, x3, ..., x106 106

PCC Top 5% x51, x58, x96, x103, x105 5

PCC Top 10% x41, x43, x51, x58, x60, x61, x86, x96, x103, x105, x106 11

PCC Top 15% x35, x37, x41, x43, x44, x51, x58, x60, x61, x86, x88, x89, x96, x103, x105, x106 16

mRMR Top 5% x3, x8, x66, x79, x96 5

mRMR Top 10% x3, x6, x8, x17, x49, x66, x79, x96, x103, x104, x105 11

mRMR Top 15% x3, x4, x6, x8, x14, x17, x21, x47, x49, x51, x66, x79, x96, x103, x104, x105 16

Deep-FS (LSTM) x1, x2, x3, x4, x24, x31, x42, x54, x59, x61 10

Deep-FS (GRU) x1, x2, x3, x4, x29, x37, x41, x54, x55, x60, x61 11
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Table 11 shows the results of spatio-temporal deep learning model-based SSI fore-
casting experiment using feature variables selected by each feature selection method and
solar geometry parameters as input variables. In Table 11, Deep-FS (LSTM) refers to
LSTM-based Deep-FS, whereas Deep-FS (GRU) refers to GRU-based Deep-FS and the
best performers for each metric are highlighted in bold blue text. As shown in Table 11,
using Deep-FS leads to superior SSI forecasting performance compared to using all fea-
ture variables or conventional feature selection methods in all performance indicators.
When comparing feature selection methods based on PCC, the results showed that PCC
Top 15% > PCC Top 10% > PCC Top 5% in terms of higher performance, indicating that
using more variables with higher Pearson correlation coefficients improved performance.
Similarly, when comparing feature selection methods based on mRMR, the results showed
that mRMR Top 15% > mRMR Top 10% > mRMR Top 5% in terms of higher performance,
indicating that using more variables with higher feature importance improved performance.
And when comparing feature selection methods based on Deep-FS, the results showed that
the Deep-FS using GRU slightly outperformed.

Based on experimental results, the feature selection methods could be ranked from
highest to lowest performance as follows: Deep-FS (GRU) > Deep-FS (LSTM) > mRMR
Top 10% > mRMR Top 5% > mRMR Top 15% > All > PCC Top 15% > PCC Top 10% > PCC
Top 5%. The feature selection method based on PCC is inferred to have low performance
because it not only identifies linear relationships between only 1:1 features but also fails to
consider redundancy. However, when all features are used, low performance is likely to
result from not only increasing the complexity of the model but also requiring sufficient data
for training as the number of parameters to be trained increases exponentially. Meanwhile,
mRMR can select important features by minimizing the amount of mutual information
(redundancy) between features and maximizing the correlation (relevance) with target
variables. However, it does not consider non-linear relationships and therefore leads to a
lower performance than that of the proposed Deep-FS.

Table 11. Experimental results comparing the performance of SSI forecasting across different feature
selection methods.

Performance
Model Feature Selection Method RMSE

(MJ/m2) RRMSE R2 MAE
(MJ/m2)

All 0.2324 0.1643 0.9385 0.1651

PCC Top 5% 0.3207 0.2266 0.8883 0.2230
PCC Top 10% 0.3104 0.2194 0.8903 0.2108
PCC Top 15% 0.3095 0.2188 0.9036 0.2105

mRMR Top 5% 0.2192 0.1549 0.9578 0.1558
mRMR Top 10% 0.2082 0.1472 0.9611 0.1447
mRMR Top 15% 0.2041 0.1443 0.9598 0.1400

Deep-FS (LSTM) 0.1979 0.1399 0.9623 0.1313

CNN-LSTM

Deep-FS (GRU) 0.1966 0.1389 0.9627 0.1316

All 0.2128 0.1504 0.9605 0.1490

PCC Top 5% 0.3189 0.2254 0.9097 0.2260
PCC Top 10% 0.3086 0.2181 0.9133 0.2200
PCC Top 15% 0.3009 0.2127 0.9170 0.2148

mRMR Top 5% 0.2185 0.1544 0.9606 0.1506
mRMR Top 10% 0.2083 0.1473 0.9594 0.1519
mRMR Top 15% 0.2089 0.1476 0.9629 0.1435

Deep-FS (LSTM) 0.2032 0.1436 0.9654 0.1343

CNN-GRU

Deep-FS (GRU) 0.1986 0.1404 0.9655 0.1360
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Figure 7 shows the results of forecasting SSI 1 h ahead in a certain period (13 April 2023,
00:00:00 to 20 April 2023, 00:00:00) using the CNN-LSTM-based SSI forecasting models
utilized four feature selection methods (All, PCC Top 15%, mRMR Top 15%, Deep-FS
(GRU)), which showed high performance in each method. From Figure 7, it can be inferred
that 13 and 17 April are sunny, 6 April is partly cloudy, and the rest of 14–15 and 18–19 April
are cloudy. On sunny days, the forecasting performed well overall for all models. However,
on cloudy days, the difference in forecasting performance for each feature selection method
is intuitively apparent. It can be seen that the model utilizing the PCC Top 15% has a
larger scale of over-forecasting or under-forecasting compared to the models utilizing
other feature selection methods, and it does not track the increase/decrease trends well.
On the other hand, models utilizing feature selection methods except for PCC Top 15%
have similar abilities to track increase/decrease trends. Still, there are slight differences in
the scale of over-forecasting or under-forecasting.

Figure 7. Experimental results of forecasting SSI 1 h ahead in period (13 April 2023, 00:00:00 to
20 April 2023, 00:00:00) using the CNN-LSTM-based SSI forecasting models utilized four feature
selection methods: All, PCC Top 15%, mRMR Top 15%, and Deep-FS (GRU).

Afterward, an experiment was conducted to compare the performance of the proposed
spatio-temporal deep learning model against those of single deep learning models to
verify if simultaneously accounting for both temporal and spatial elements leads to better
performance. The comparison models included in this experiment were ANN, CNN, LSTM,
and GRU, and the input variables were feature variables selected via Deep-FS and the solar
geometry parameters. Table 12 shows experimental results comparing the performance of
the deep learning models, where all the models used feature variables selected by Deep-
FS. The top performers for each metric are highlighted in bold blue text. As shown in
Table 12, it can be confirmed that the proposed spatio-temporal deep learning models
(CNN-LSTM, CNN-GRU) performed better than the single deep learning models (ANN,
CNN, LSTM, GRU).

Based on experimental results, forecasting models could be ranked from highest to
lowest performance as follows: CNN-LSTM > CNN-GRU > GRU > LSTM > CNN > ANN.
Because SSI data are inherently time series, we found that GRU and LSTM, models that
specialize in predicting time series data, performed better than CNN and ANN. In the
case of the CNN model, it cannot reflect the time series characteristic in the same way as
ANN, but it can reflect spatial characteristic, which is why they seem to perform better than
ANN. On the other hand, spatio-temporal deep learning models (CNN-LSTM, CNN-GRU)
are believed to have better performance than single deep learning models (ANN, CNN,
LSTM, GRU) because they can consider temporal and spatial characteristics simultaneously.
Figure 8 shows the results of forecasting SSI 1 h ahead in a certain period (13 April 2023,
00:00:00 to 20 April 2023, 00:00:00) utilized the four SSI forecasting models (ANN, CNN,
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GRU, CNN-LSTM) using selected feature variables based on Deep-FS (GRU) and SG
parameters as input. Overall, we found that the ability to track SSI’s upward and downward
trend was similar regardless of weather conditions in all models. Still, there are slight
differences in the scale of over-forecasting or under-forecasting.

Table 12. Experimental results comparing the performance of SSI forecasting across different deep
learning models.

Performance
Feature Selection Method Model RMSE

(MJ/m2) RRMSE R2 MAE
(MJ/m2)

ANN 0.2195 0.1552 0.9597 0.1521
CNN 0.2163 0.1529 0.9597 0.1495
LSTM 0.2092 0.1478 0.9623 0.1418
GRU 0.2090 0.1477 0.9622 0.1416

CNN-LSTM 0.1979 0.1399 0.9623 0.1313

Deep-FS (LSTM)

CNN-GRU 0.2032 0.1436 0.9654 0.1343

ANN 0.2202 0.1556 0.9580 0.1506
CNN 0.2179 0.1540 0.9600 0.1524
LSTM 0.2124 0.1501 0.9607 0.1471
GRU 0.2088 0.1476 0.9625 0.1430

CNN-LSTM 0.1966 0.1389 0.9627 0.1316

Deep-FS (GRU)

CNN-GRU 0.1986 0.1404 0.9655 0.1360

Figure 8. Experimental results of forecasting SSI 1 h ahead in period (13 April 2023, 00:00:00 to
20 April 2023, 00:00:00) with four forecasting models (ANN, CNN, GRU, CNN-LSTM) using SG
parameters and feature variables selected based on Deep-FS (GRU) as input variables.

Lastly, to verify the effectiveness of the solar geometry parameters (SD, SEA, ESR), we
conducted an experiment to compare model performance depending on whether these pa-
rameters were used as input variables. The forecasting models included in this experiment
were ANN, CNN, LSTM, GRU, CNN-LSTM, and CNN-GRU, and the feature variables
were selected using Deep-FS. Table 13 shows the results of comparative experiments be-
tween the models that used the solar geometry parameters and those that did not. The
table highlights the best performers for each metric with blue and bold text. As a result, it
was found that performance is significantly improved when solar geometry parameters
are included among the input variables, regardless of the model used. The reason for
this is believed to be that solar geometry parameters not only reflect the periodic pattern
characteristics of SSI but also allow future values to be calculated in advance through solar
geometry. Thus, it was confirmed that the parameters engineered based on solar geometry
contributed decisively to improving SSI forecasting performance. Figure 9 shows the results
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of forecasting SSI 1 h ahead with and without SG parameters as input variables in a certain
period (13 April 2023, 00:00:00 to 20 April 2023, 00:00:00) using the CNN-LSTM model
utilized Deep-FS (GRU). While there is not much difference in following SSI’s up and down
trend, it is confirmed that using the SG parameter effectively improves over-forecasting
and under-forecasting regardless of the weather.

Table 13. Experimental results comparing the performance of SSI forecasting with and without
SG parameters.

Performance
Feature Selection

Method Model Use of SG
Parameters * RMSE

(MJ/m2) RRMSE R2 MAE
(MJ/m2)

X * 0.5372 0.3797 0.7554 0.4207ANN O * 0.2195 0.1552 0.9597 0.1521
X 0.3771 0.2665 0.8785 0.2946CNN O 0.2163 0.1529 0.9597 0.1495
X 0.3959 0.2798 0.8731 0.2954LSTM O 0.2092 0.1478 0.9623 0.1418
X 0.4005 0.2831 0.8707 0.3032GRU O 0.2090 0.1477 0.9622 0.1416
X 0.2780 0.1965 0.9078 0.1954CNN-LSTM O 0.1979 0.1399 0.9623 0.1313
X 0.2709 0.1915 0.9423 0.1950

Deep-FS
(LSTM)

CNN-GRU O 0.2032 0.1436 0.9654 0.1343

X 0.5024 0.3551 0.7817 0.3897ANN O 0.2202 0.1556 0.9580 0.1506
X 0.3636 0.2570 0.8856 0.2789CNN O 0.2179 0.1540 0.9600 0.1524
X 0.4355 0.3078 0.8471 0.3238LSTM O 0.2124 0.1501 0.9607 0.1471
X 0.4275 0.3022 0.8598 0.3219GRU O 0.2088 0.1476 0.9625 0.1430
X 0.2863 0.2023 0.9306 0.2045CNN-LSTM O 0.1966 0.1389 0.9627 0.1316
X 0.2836 0.2004 0.9392 0.2085

Deep-FS
(GRU)

CNN-GRU O 0.1986 0.1404 0.9655 0.1360

* SG parameters: SD (s1), SEA (s2), and ESR (s3). * X: Not using SG parameters as input variables. * O: Using SG
parameters as input variables.

Figure 9. Experimental results of forecasting SSI 1 h ahead with and without SG parameters as input
variables in a certain period (13 April 2023, 00:00:00 to 20 April 2023, 00:00:00) using the CNN-LSTM
model utilized Deep-FS (GRU).
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4. Conclusions

In this study, we investigated and developed a method for forecasting SSI 1 h in
advance using imageries of 16 channels observed from the GK2A satellite as the primary
data. To account for fundamental factors, such as the position of the sun, that affect SSI, we
used solar geometry to engineer feature variables such as SD, SEA, and ESR. Additionally,
to prevent model performance degradation due to indiscriminate use of feature variables,
appropriate feature variables for SSI forecasting were selected using Deep-FS. We also
designed a spatio-temporal deep learning model that combines a CNN, which can extract
spatial features, and an LSTM or GRU, which are specialized for forecasting time-series
data. For verification, we compared the proposed method with traditional methods based
on three performance indicators (RMSE, RRMSE, R2, MAE). Our experimental results show
that the proposed spatio-temporal deep learning model (CNN-LSTM, CNN-GRU) delivers
superior overall performance to those of ANN, CNN, LSTM, and GRU. Moreover, it was
confirmed that features selected using the proposed Deep-FS lead to higher forecasting
performance than that produced by features selected via the conventional method. Lastly,
it was confirmed that when three solar geometry parameters (SD, SEA, ESR) are used in
SSI forecasting, the performance is significantly improved regardless of the forecasting
model. Therefore, it was demonstrated that the proposed method could select features
appropriate for SSI forecasting and simultaneously exhibit high performance. Furthermore,
because this study uses GK2A satellite data as the main data, it can be easily used for any
region in the observation area of the satellite. In other words, it is free from locational
constraints within the observation area of the satellite.

The limitation of this study is that because the experiment was conducted based
on a single ASOS station, geographic factors such as location and topography were not
evenly reflected, and there were insufficient data for training because not much time has
elapsed yet since the start date of the GK2A mission. In addition, to effectively verify
the performance of the proposed method, this study forecasted SSI after 1 h, which is a
relatively short time. Accordingly, in future works, we plan to use data from as many ASOS
stations as possible to engineer features that can reflect geographical factors. Through
this, we will research SSI estimation and forecasting that can simultaneously account for
temporal, spatial, and geographical factors. We will also be working on using data that has
information about the future, such as weather forecasts or numerical weather prediction
models, to forecast SSI over a longer time horizon.
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Abbreviations
PV Photovoltaic
GHI Global horizontal irradiance
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
ARMA Autoregressive moving average
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ARIMA Autoregressive integrated moving average
SARIMA Seasonal autoregressive integrated moving average
RF Random forest
SVR Support vector regression
ANN Artificial neural network
LSTM Long short-term memory
GRU Gated recurrent unit
CNN Convolutional neural networks
MAE Mean absolute error
RMSE Root mean square error
MBE Mean bias error
NMAE Normalized mean absolute error
NRMSE Normalized root mean square error
BP Back propagation network
LightGBM Light gradient boosting machine
ESR Extra-terrestrial solar radiation
SHAP Shapley additive explanation
Bi-LSTM Bi-directional LSTM
WPD Wavelet packet decomposition
MLP Multi-layer perceptron
CAL Effective cloud albedo
ConvLSTM Convolutional long short-term memory
ST-GCN Spatio-temporal graph convolutional network
Conv1D One-dimensional convolution layer
Bi-GRU Bi-directional gated recurrent unit
SAM Self-attention mechanism
PCC Pearson correlation coefficient
SCC Spearman correlation coefficient
SSI Surface solar irradiance
GK2A GEO-KOMPSAT-2A
ASOS Automated synoptic observing system
KMA Korea Meteorological Administration
Deep-FS Deep learning-based feature selection
RRMSE Relative root mean square error
R2 Coefficient of determination
ROI Region of interest
AMI Advanced meteorological imager
NMSC National Meteorological Satellite Center
FD Full Disk
EA East Asia
KO Korea
KST Korea Standard Time
NaN Not a Number
BT Brightness temperature
SD Solar declination
SEA Solar elevation angle
SG Solar geometry
UTC Time in Coordinated Universal Time
Seq2Seq Sequence-to-Sequence
I/O Input/Output
Adam Adaptive moment estimation
mRMR Minimum redundancy maximum relevance

Appendix A

The formulas for the four metrics used in this paper are shown below: RMSE, RRMSE,
R2, and MAE. In Formulas (A1)–(A4), n means the number of data, yi means the ith target
data, ŷi means the ith forecasted data (or output data), and y implies the average of the
target data.
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (A1)

RRMSE =
RMSE

y
=

√
1
n ∑n

i=1(yi − ŷi)2

y
(A2)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (A3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (A4)
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