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Abstract: Accurate, timely, and fine-resolution crop phenology is essential for determining the
optimal timing of agronomic management practices supporting precision agriculture and food
security. Synthetic Aperture Radar (SAR) methods, unaffected by cloud occlusion, have been widely
applied in monitoring maize phenology. Nonetheless, their reliance on manual threshold settings,
which depend on the user’s expertise, limits their applicability. Furthermore, the neglect of SAR’s
potential for monitoring other phenological periods (e.g., seven-leaves date (V7), jointing date (JD),
tassel date (TD), and milky date (MID)) hinders their robustness, particularly for regional-scale
applications. To address these issues, this study used an adaptive dynamic threshold to evaluate the
ability of the Sentinel-1 cross-polarization ratio (CR) in detecting the three-leaves date (V3), V7, JD,
TD, MID, and maturity date (MD) of maize. We analyzed the effect of incidence angle, precipitation,
and wind speed on Sentinel-1 features to identify the optimal feature for time series fitting. Then, we
employed linear regression to determine the optimal threshold and developed an adaptive dynamic
threshold for phenology detection. This approach effectively mitigated the speckle noise of Sentinel-1
and minimized artificial interference caused by customary conventional thresholds. Finally, we
mapped phenology across 8.3 million ha in Heilongjiang Province. The results indicated that the
approach has a higher ability to detect JD (RMSE = 11.10 d), MID (RMSE = 10.31 d), and MD
(RMSE = 9.41 d) than that of V3 (RMSE = 32.07 d), V7 (RMSE = 56.37 d), and TD (RMSE = 43.33 d)
in Sentinel-1. Compared with Sentinel-2, the average RMSE of JD, MID, and MD decreased by
4.14%, 35.28%, and 26.48%. Moreover, when compared to different thresholds, the adaptive dynamic
threshold can quickly determine the optimal threshold for detecting each phenological stage. CR is
least affected by incident angle, precipitation, and wind speed, effectively suppressing noise to reflect
phenological development better. This approach supports the rapid and feasible mapping of maize
phenology across broad spatial regions with a few samples.

Keywords: adaptive dynamic threshold; Sentinel-1 time series; Sentinel-2 time series; maize
phenology map; regional scale

1. Introduction

Maize serves as a staple food for 450 million people globally, while also acting as
a vital feed source and industrial raw material. It is important to ensure food security
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and sustain economic development [1]. Consequently, detailed information on maize
phenology is invaluable for guiding precision agriculture, such as precise fertilization,
rotational irrigation, pest control, and post-harvest soil preparation [2–5]. In addition,
understanding the feedback mechanism between climate change and crop phenology is
crucial for mitigating the threat of climate change on crop yield [6–8].

Traditional crop phenology information relies on ground observations by experts and
enthusiastic volunteers who track crop growth at the individual level [9]. This method
can accurately record phenological events and is often used as reference data. More-
over, camera networks have been utilized to monitor vegetation growth at the canopy
landscape level, such as the European Phenology Network [10], the Phenological Eyes
Network [11], the Australian Phenocam Network [12], and the PhenoCam Network [13].
However, both ground observations and camera networks encounter obstacles, particularly
in heterogeneous areas where conducting large-scale phenological surveys and monitoring
is challenging. Notably, there are still no ground investigations in Europe to record crop
phenological events [14]. At present, remote sensing technology provides a promising
opportunity for detecting crop phenology because of its wide spatial coverage, low cost,
and short revisit cycle.

Optical remote sensing data are predominantly applied for phenology monitoring.
Numerous studies have derived spectral bands, vegetation indices, and biophysical vari-
ables from datasets like the Advanced Very High-Resolution Radiometer, the Moderate
Resolution Imaging Spectroradiometer, and Global LAnd Surface Satellite data [15–17].
Because they have a higher temporal resolution, however, the spatial resolution of these
vegetation phenology observations is low for capturing the development of crops in specific
fields to meet the actual needs of agricultural production. For example, irrigation and fertil-
ization plans can be optimized considering specific phenological stages, pests, and disease
prevention [18,19]. With the development of remote sensing technology, Sentinel-2, Landsat
series data, and harmonized Landsat and Sentinel-2 with higher spatial resolution could
effectively alleviate this problem. For example, Liao et al. [20] and Moeini Rad et al. [21]
have used Sentinel-2 time series to detect and forecast within-field phenology for winter
wheat, corn, and rice. Niu et al. [22] extracted the three-leaves date (V3) and maturity date
(MD) of maize from Landsat data in the past 30 years. Moreover, Shen et al. [23] used
harmonized Landsat and Sentinel-2 to monitor crop progress at field scales. However,
these optical data are easily affected by clouds and rainfall, which decrease phenology
monitoring accuracy. As far as we know, the introduction of crop heights using drone im-
ages and digital surface models can improve accuracy at different phenological stages [24].
However, most satellite sensors cannot directly acquire crop height from the ground, and
scale effects between images with different resolutions can limit the robustness of phe-
nology detection methods. In addition, current methods for extracting crop phenology
from vegetation indices include fixed thresholds, dynamic thresholds, function fitting,
moving averages, derivative inflection, machine learning, etc. [25]. Among them, dynamic
threshold methods are the most widely used because they maintain the results within a
reasonable range [22,26]. However, the reliance on empirical thresholds in most studies
disregards crop type and geographical variations, introducing subjectivity and causing
accuracy variations in phenological detection.

Synthetic Aperture Radar (SAR) data with intensive time series are sensitive to crop
structure, allowing for the detection of crop phenology [27–29]. Previous research utilizing
the threshold method has shown that phenological data obtained from Sentinel-1 and
Sentinel-2 are comparable, particularly in identifying key European crops [14]. Furthermore,
the integration of machine learning techniques with SAR and spectrally rich optical data
has significantly enhanced crop classification accuracy [30]. The effective extraction of
surface water and dynamic water changes has been achieved through a combination of
VH polarization and a modified normalized difference water index [31,32]. Felix Lobert
had accurately predicted the harvest date of winter wheat using an intensive Sentinel-
1, Sentinel-2, and Landsat-8 time series [33]. However, predicting early-stage phenology
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remains challenging due to the varying manifestations of backscattering features influenced
by crop type and plant structure. For example, the cross-polarization ratio (CR) is more
sensitive to the phenological development of barley and maize. Sunflowers are less sensitive
to CR than VH and VV [27]. Moreover, Meroni et al. [14] successfully utilized CR to detect
the beginning and end of the growing season for major European crops, such as wheat,
barley, rape, etc. Schlund and Erasmi [34] have proved the potential of CR breakpoints
for detecting the shooting and harvesting dates in wheat fields. Yang et al. [35] found
VH to provide accurate phenological estimation for rice. These studies emphasized the
potential of SAR data in identifying different crop types and phenological stages. However,
most studies focusing on maize have primarily analyzed key phenological stages such
as the tassel date (TD) and milky date (MID) [36,37] without systematically assessing all
phenological stages. Given that SAR is unaffected by cloud occlusion, it is imperative
to thoroughly investigate SAR data’s ability to monitor maize phenology, particularly in
fields with complex canopy structures. To fill the gaps in the evaluation of SAR’s detection
potential for the V3, seven-leaves date (V7), jointing date (JD), and MD. In addition, there
has been limited exploration of the potential influencing factors affecting backscattering in
farmland landscapes. Many studies concentrate on only a few fields, which can introduce
greater uncertainty on a regional scale, especially in complex agricultural landscapes and
climatic conditions.

To sum up, the current dynamic threshold method for maize phenology monitoring
based on SAR data faces several challenges. First, the reliance on empirical thresholds in
most studies disregards the differences between crop types and geographical environments,
introducing subjectivity and resulting in significant variations in phenological detection
accuracy across different locations. Second, compared to low- and narrow-leaf crops,
broad-leaved maize displays significant height variations and complex canopy structure,
potentially enhancing SAR’s capability in detecting maize phenology. Previous studies
focused on key maize phenological stages (e.g., TD and MID), overlooking SAR’s poten-
tial in detecting other maize phenological stages and the backscattering mechanism in
maize phenology.

The research goal of this study is to develop an adaptive dynamic threshold method
to evaluate the ability of Sentinel-1 to detect spring maize phenology, addressing the sub-
jectivity and lack of automation in the current dynamic threshold method. This method
autonomously identifies the optimal threshold for crop and environmental classification,
eliminating the need for human intervention. The proposed approach entails the following:
(1) the impact of the sensor’s incident angles, precipitation (Pre), and wind speed (Ws) on
Sentinel-1 features was analyzed using the correlation coefficient and standard deviation
(SD) to determine the optimal feature for time series fitting; (2) the optimal thresholds
for phenology detection were calculated using the fitted time series and linear regression
methods; (3) the detection results with Sentinel-1 and Sentinel-2 were compared to demon-
strate the performance of the proposed approach; (4) the maize phenology in Heilongjiang
Province was mapped in the years 2017 and 2018 and analyzed on the basis of growing
degree days (GDDs).

2. Study Area and Dataset
2.1. Study Area

China is the world’s second-largest maize producer and consumer, producing 23%
of maize from only 9% of cultivated land and feeding approximately 22% of the global
population [38]. The Northeast accounts for 31.51% of China’s maize planting area and
contributes roughly 34.33% of maize production (http://www.stats.gov.cn/sj/ndsj/, ac-
cessed on 10 November 2023). As shown in Figure 1, our study focuses on Heilongjiang
Province in northeastern China, with a maize area of 8.3 million ha, an important grain
production base [39]. The predominant soil types are Chernozems, Meadow soil, and Black
soil with abundant organic matter. The study area belongs to the cold-temperate continental
semi-humid climate, with an average temperature above 17 ◦C in the crop-growing season,

http://www.stats.gov.cn/sj/ndsj/
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coupled with an average precipitation range of 400–650 mm. It is a rain-fed agricultural
area without artificial irrigation, with maize typically sown around 118 days and harvested
around 265 days. The main cropping pattern is maize and soybean rotation [40].

Figure 1. Maize distribution in the study area [41], 2017. The blue and red dots show the spatial
distribution of Agricultural Meteorological Stations (AMSs), and the numbers above each station
represent the coded name.

2.2. Dataset
2.2.1. Remote Sensing Data

This study utilized Sentinel-1 images as the primary dataset (Table 1). All images
from 2017–2018 were used to detect annual maize phenology. They were obtained from the
Google Earth Engine (GEE) collection “COPERNICUS/S1_GRD”. The observation pattern
is the Interferometric Wide mode, including ascending and descending orbits, and provides
dual polarization imagery with 10 m resolution. Sentinel-1 employs a 12-day repeat cycle
for observing the Earth’s land surfaces [42] (Figure 2). Descending orbit data were utilized,
as ascending orbit data were not available in the study area. The incidence angle of the
images spanned from 30.0◦ to 45.0◦. The speckle noise was reduced by a refined Lee speckle
filter with a window size of 7 × 7 [43]. Then, the Shuttle Radar Topography Mission was
used to correct SAR geometric distortions. Co-polarized (VV) and cross-polarized (VH)
bands were converted to raw (i.e., no dB scaling applied) backscatter coefficient σ (i.e.,
Sigma naught), which is a measure of the reflective strength of a radar target per unit area.
Although sigma 0 dB can be useful for visualizing the data and improving the contrast
between different features, it is not recommended for phenological studies due to the
introduction of distortions and artifacts in the data. Then, we calculated the CR to analyze
its relationship with maize phenology.

This study acquired the top-of-atmosphere (TOA) reflectance of Sentinel-2 from the
GEE collection “COPERNICUS/SENTINEL 2” because the Sentinel-2 surface reflectance
(SR) products have only been available since 2018 in the study area (Table 1). The quantity
of available TOA reflectance images is much greater than that of SR, facilitating the construc-
tion of time series spectral indices. The Sensor Invariant Atmospheric Correction method
was used for atmospheric correction [44]. Sentinel-2A and -2B observe earth’s land surfaces
with a 5-day repeat cycle and a 10–60 m spatial resolution [42] (Figure 2). The Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were calculated
using Band 8 (785–900 nm), Band 4 (650–680 nm), and Band 2 (458–423 nm). Then, this
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study extracted the various phenological stages from Sentinel-2’s EVI time series based on
harmonic fitting and compared them with the results of the CR time series. Additionally,
maize layers were collected to mask maize planting areas. It is a new 10 m crop-type map
in Northeast China from 2017 to 2018 with an overall accuracy of 91% [42].

Figure 2. Image number spatial distribution of Sentinel-1 and Sentinel-2.

2.2.2. Ground Observation Data

This study collected ground observation data to validate our results. They were ob-
tained from the Agricultural Meteorological Stations (AMSs) of the Chinese Meteorological
Administration (CMA) (https://data.cma.cn/, accessed on 10 November 2023). A phe-
nological stage is deemed to occur when more than 50% of maize fields have reached a
particular stage. The recorded phenological stages include the emergence date (ED), V3,
V7, JD, TD, MID, and MD of maize (Table 2). These phenological data were collected by
well-trained agricultural technicians, and quality was controlled by the Department of
China Agricultural Weather Monitoring System [45].

Additionally, this study acquired the daily precipitation, average wind speed, and
maximum wind speed (MWS) (Daily Meteorological Data, DMD) to analyze their effect on
Sentinel-1 features. Moreover, GDDs are calculated using the China meteorological forcing
dataset (1979–2018) [46] (Table 1). It represents the effective temperature accumulated to
complete a reproductive stage under the influence of environmental factors, which are
utilized to analyze the results’ spatial distribution.

Table 1. Date used in this study.

Data Application Source

Maize layer Maize mask layer [42]
Sentinel-1 Extraction of VH, VV, and CR GEE

Sentinel-2 Extraction of EVI and NDVI
time series GEE

AMSs Validation of maize phenology
results CMA

DMD Auxiliary analysis CMA
GDD Auxiliary analysis [47]

Table 2. The phenological stages of maize.

Phenological Stage Description

Emergence date The date when the plant’s first true leaf unfolds and the seedlings are
exposed 2 cm to 3 cm above the surface.

Three-leaves date The date when the third leaf is fully expanded.

Seven-leaves date The date when the seventh leaf is fully expanded.

Jointing date The date when the internodes at the base of the plant stem elongate.

https://data.cma.cn/
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Table 2. Cont.

Phenological Stage Description

Tassel date The date when the main tassel of the plant emerges 3–5 cm above
the top leaf.

Milky date
The date when the kernel color in the middle of the plant ear begins
to show the inherent color of the variety, and the endosperm turns

milky to mushy.

Maturity date The date when the dry weight of maize grains first reaches
the maximum.

3. Methodology

An adaptive dynamic threshold method was developed to evaluate the ability of
the Sentinel-1 time series to detect maize phenology (Figure 3). First, we used the corre-
lation coefficient and standard deviation (SD) to analyze the effects of incidence angle,
precipitation, and wind speed on Sentinel-1, aiming to screen the optimal feature. The
optimal threshold for different phenological stages were determined by linear regression,
and their effectiveness was evaluated by employing various threshold settings. Second, we
applied the optimal threshold to detect crop phenology on a regional scale. Moreover, we
evaluated the accuracy of the detection results with ground observation data and compared
them with the results of Sentinel-2, thereby verifying the efficacy of the adaptive dynamic
thresholds. Finally, the phenological detection results were mapped at a regional scale, and
their rationality was analyzed using GDDs.

Figure 3. The framework for deriving maize phenology on a regional scale using Sentinel-1 time series.

3.1. Optimal Sentinel-1 Feature Analysis

Objectively determining the crop phenological stages from Sentinel-1 satellite observa-
tions is challenging, particularly during the crop-growing period, owing to the complex
backscattering mechanism. From V3 to V7, the Sentinel-1 backscatter is dominated by
the surface scattering of soil due to small maize plantings, resulting in the majority of
the soil being visible [27,28] (Figure 4). As the crop grows and canopy cover increases,
surface scattering from the soil decreases, while volume scattering of the canopy gradually
increases from JD, reaching its peak during the TD and MID. Even as the canopy withers
by MD, exposing some soil, volume scattering from the canopy remains dominant.



Remote Sens. 2024, 16, 826 7 of 22

Figure 4. Sentinel-1 scattering mechanism in different phenological stages of maize. CR value is
extracted from the real Sentinel-1. The maize plant graph depicts maize morphology at various
phenological stages. They correspond to the CR of each phenological stage. The yellow dotted
line divides the maize plants at various stages. (A and xp are the two variables for calculating
the threshold).

Precipitation, wind speed, and incidence angle are the main factors driving the vari-
ations in SAR features, affecting total ground biomass, plant geometry, and vegetation
water content [47,48]. Consequently, we calculated the Pearson correlation coefficients
between the precipitation, wind speed, incidence angle, and Sentinel-1 features at different
phenological stages to determine the optimal feature. Moreover, we compared the changes
in Sentinel-1 features with the phenological development at various incident angles. The
more stable Sentinel-1 time series is conducive to phenological detection. Therefore, the SD
of the Sentinel-1 time series was calculated to assess the stability of different features.

3.2. Adaptive Dynamic Threshold

In the original dynamic threshold method (Equations (1) and (2)), M is the maximum
value of the feature. ml and mr are the minimum values of the feature at the beginning
and end of the growing season, respectively. m is the average of the ml and mr. A is the
amplitude, which is the difference between M and m. P indicates the date of the detected
phenological stage. In general, the amplitude threshold (T) is empirically determined for
detecting the beginning and end of the growing season, such as 20%, 50%, etc. [49]. How-
ever, this threshold is inevitably influenced by subjective factors. Moreover, the thresholds
for detecting the phenological stages exhibit significant variations across different features,
particularly between optical indices and SAR features.

A = M − m (1)

P = m + A ∗ T (2)

Therefore, this study used a linear regression approach to determine optimal thresh-
olds (CRs) for detecting various phenological stages. CR has been widely used in agricul-
tural studies due to its lack of influence from clouds and rain, along with its fine spatial
resolution. Furthermore, CR is sensitive to vegetation stems and canopy structures. Ridges
and ditches at the edges of corn fields may be mixed into corn pixels. Therefore, morpho-
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logical processing was applied to erode the maize planting area, eliminating non-maize
pixels. This study used the mean value from mid-April to early May as the minimum
(Ming) value of CR during the growing season. As this period is bare soil, the CR value
is the lowest, which avoids the failure to detect CRs in other phenological stages. The
amplitude (Ag) is the difference between the maximum value (Maxg) and Ming. The Ag
and the real CR (extracted from Sentinel-1 according to the recorded phenological data)
were independent variables. These variables values are extracted from the buffer zone
within 5 km of each AMS because the study [50] demonstrated that 5 km is an acceptable
spatial scale for remote sensing phenology and ground observation. They are under similar
climate and soil conditions. And as shown in Equation (3), the optimal threshold for each
phenological period was obtained by linear regression. Since the CR calculated based on
the threshold determines the accuracy of phenological detection, the performance of the
optimal threshold was evaluated by calculating the RMSE between the threshold (with
a step of 0.1) and the actual CR at each phenological stage. This was compared with the
estimated CR by the adaptive dynamic threshold method. A smaller RMSE between the
optimal threshold estimated CR and the actual CR at the phenological stage indicates the
effectiveness of the adaptive dynamic threshold method. There were only three randomly
selected AMSs to determine the optimal threshold for dynamic phenological detection at
the provincial scale. This approach not only avoids numerous field surveys but also allows
for the quick detection of region-scale crop phenology.

T =
∑n

i=1 xp

∑n
i=1 Ag

(3)

where T represents the optimal threshold for each phenological stage, such as V3, V7, JD,
TD, MID, and MD of maize; Ag is the amplitude of the CR; xP is the difference between
the real CR and Ming; i is a pixel within 5 km of the AMS. n is the number of pixels within
5 km of the AMS.

Equation (3) is substituted into Equation (2) to avoid the threshold exceeding the
CR maximum, which may result in the failure to detect the corresponding CR value and
obtain the phenological stages. Ming was used instead of m. Thus, the adaptive dynamic
threshold (Equation (4)) for detecting phenological stages (PI) is derived as follows:

PI= Ming+Ag × T (4)

In addition, the harmonic function was utilized to fit the CR time series at a daily
resolution before conducting crop phenology detection [51]. Then, the phenology was
detected using the adaptive dynamic threshold. It should be noted that to obtain a better
detection result, the fitting function will also change according to the feature time series.

3.3. Accuracy Assessment

The adaptive dynamic threshold was used to map spring maize phenology for two
years (2017–2018) in Heilongjiang Province. To assess the accuracy of the map, ground
phenology observation data were compared with the results of Sentinel-2 extracted by
the original dynamic threshold method. Specifically, the dates for V3, V7, and JD were
determined when the EVI first crossed 10%, 15%, and 50% of the segment EVI amplitude,
and TD is the maximum EVI amplitude. MID and MD are the dates when the EVI last
crossed 90% and 50% of the segment EVI amplitude. These thresholds refer to Niu et al. [22]
and MCD12Q2.

Ground phenological observations from all stations were used for validation, except
for three randomly selected observations in 2017, which were used to determine the optimal
threshold (Figure 1). Moreover, to assess the inter-annual applicability of the threshold,
validation was performed not only for the detection results of 2017 but also those of 2018.
The root mean square error (RMSE, Equation (5)) and coefficient of determination (R2,
Equation (6)) were calculated to assess the results. xt is the ground phenology observation
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data recorded by the AMSs, xp is the detection results, and m is the amount of ground
phenology observation data. j is a ground phenology observation. x is the recorded average
observation data. We calculated the RMSE between the detection results and ground
phenology observation data within 5 km because it is less affected by the spatial scale
between ground observations and satellite data [50,52].

RMSE =

√
∑m

j=1
(
xt − xp

)2

n
(5)

R2 =
∑m

j=1(xt − x)2

∑m
j=1
(
xp − x

)2 (6)

4. Results and Discussion
4.1. Influencing Factor Analysis of Sentinel-1 Features

The effects of incidence angle, precipitation, and wind speed on Sentinel-1 features
were analyzed using statistical methods and a backscatter mechanism to determine the
optimal features for phenology detection. In the VH, the contribution of multivolume
scattering from canopy structures is more important [53,54]. Conversely, in the VV, direct
surface scattering from the soil generally dominates [55]. Due to the maize’s vertical
structure, VV attenuation is higher than VH. Consequently, VH is larger than VV, leading
to a gradual increase in CR during crop growth. The CR at low incidence angles (30.66◦,
31.70◦, 34.00◦, 34.99◦) is lower than that at high incidence angles (40.81◦, 41.40◦, 43.22◦,
44.15◦) (Figure 5d,g,j,m). Notably, there is no significant difference between the incident
angles of 36.55◦ and 45.24◦ (Figure 5a). This observation is consistent with previous
research, indicating that higher incidence angles (>35◦) lead to an increase in the path length
through vegetation, thus maximizing the contribution of vegetation scattering [27,56,57].
Consequently, a higher incidence angle of CR is more sensitive to vegetation canopy and
fresh biomass, benefiting vegetation phenology detection. In contrast to CR, VV, and
VH displayed irregular trends as the incidence angle transitioned from low (<35◦) to
high (>35◦). In addition, Schlund and Erasmi [34] have confirmed the effectiveness of
normalizing observations collected from multiple view angles for CR.

Figure 5. Cont.
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Figure 5. CR, VH, and VV in different incident angles. (a–c) present CR, VV, and VH scatter plots of
site 50,742; (d–f) present CR, VV, and VH scatter plots of site 50,879; (g–i) present CR, VV, and VH
scatter plots of site 50,756, (j–l) present CR, VV, and VH scatter plots of site 50,739; and (m–o) present
CR, VV, and VH scatter plots of site 50,954.

Moreover, their influence was analyzed by calculating the correlation between pre-
cipitation, wind speed and Sentinel-1 features at various phenological stages. There
was no significant correlation between wind speed and Sentinel-1 features. As shown
in Figure 6, the influence of precipitation on Sentinel-1 features is VH > VV > CR. The
influence of precipitation on Sentinel-1 features during the maize’s nutritional growth
phase was more pronounced compared to the reproductive growth phase. For instance,
precipitation displays a significant influence on VH in the V3 (r = 0.69, p = 0.05), V7 (r = 0.94,
p = 0.001), and JD (r = 0.59, p = 0.01), while no significant effect is observed in the TD, MID,
and MD. This variation can be attributed to the dynamic interplay between vegetation and
soil contributions, which depends on factors such as crop development stages, soil moisture,
soil roughness, and crop conditions [54]. For instance, the introduction of anisotropy into
soil roughness by agricultural sowing rows could be observed when the soil is bare or
sparsely covered by vegetation. Numerous studies [58–60] have documented the effect of
row orientation on Sentinel-1 features. Over time, wind and precipitation tend to flatten
the surface, reducing anisotropy [60]. During V3–V7, the influence of the precipitation on
VH and VV increases significantly due to the sparse maize canopy. Subsequently, this effect
decreases as the canopy density increases from V7 to JD. However, precipitation has no
significant effect on CR from V3 to MD (Figure 6), proving that CR mitigates the influence
of precipitation and soil water content, which is consistent with existing studies [14,47,61].
At the same time, studies have indicated that when the LAI ranges between 1.0 and 3.0, the
SAR response is predominantly influenced by vegetation and least affected by soil moisture
conditions [62,63].

The stability of the Sentinel-1 features was assessed by calculating the SD of the
features time series. VH, VV, and CR were extracted from Sentinel-1. NDVI and EVI were
extracted from Sentinel-2. Figure 7 illustrates the average trends of the time series by
calculating the mean values of the different site features for each day. Given the differences
in environmental and human management practices, SD was used to reflect the stability of
VV, VH, and CR on the regional scale. Specifically, the study area included 20 phenological
observation sites, from which VH, VV, CR, NDVI, and EVI values were extracted from the
V3 to the MD. Their daily SDs were then calculated. Compared with VH and VV, the SD of
CR is the smallest, even though the value range of CR is not the smallest. This indicated
that CR is the least affected by the environment and variations in agricultural practice [34].
Studies have also demonstrated strong agreement between CR time series for crops such as
maize, barley, and winter wheat and destructive measurements of the green area index and
fresh biomass measurements [34,47]. And the CR time series is closely similar to that of
NDVI (r = 0.70) and EVI (r = 0.71). Moreover, CR is less affected by precipitation, soil water
content, and surface roughness than VH and VV [14,47]. Consequently, CR was chosen as
the optimal feature to detect phenology.
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Figure 6. Correlation of VH, VV, and CR with precipitation (Pre), average wind speed (AWS), maxi-
mum wind speed (MWS), and incidence angle (Angle). (a) presents V3, (b) presents V7, (c) presents
JD, (d) presents TD, (e) presents MID, and (f) presents MD. “*” is significant at the 0.05 level, “**” is
significant at the 0.01 level, and “***” is significant at the 0.001 level.

Figure 7. Time series of VH, VV, CR, NDVI, and EVI on maize test sites in 2017. The error bars along
the y-axes represent the uncertainty (i.e., standard deviation) of VH, VV, CR, NDVI, and EVI.
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4.2. Analysis of Optimal Threshold

Under the selected optimal Sentinel-1 feature (CR), linear regression fitting was con-
ducted between xP and Ag to determine the optimal threshold for detecting various pheno-
logical stages (Figure 8). The R2 of the optimal threshold ranged from 0.21 to 0.46 for V3
to V7 and from 0.68 to 0.93 for MID to MD. These R2 values of the optimal thresholds are
closely related to the different phenological stages. As shown in Figure 8, spatial variation
in CR is mainly reflected in different phenological stages. The scatter of CR from V3 to
MD transitions from a dispersed pattern to aggregated mode and back to dispersed mode,
respectively. This variance is mainly due to the greater contribution of soil moisture and
surface roughness compared to the maize canopy in V3 and V7 [47,64], resulting in the high
spatial heterogeneity of CR and lower R2 of these two phenological stages. At the JD-MID
stage, with the canopy gradually covering the soil, VH and VV are mainly influenced by
volume scattering, leading to the spatial distribution of CR becoming more aggregated.
The R2 of the optimal threshold reaches a maximum at the MID (R2 = 0.93). Subsequently,
as the maize matures with canopy water loss and leaf senescence, the dominance of maize
volume scattering gradually decreases, and the spatial variability of CR increases. Overall,
the CR time series could reflect the growth cycle of maize. However, the ability to detect
different phenological stages may be significantly different. For example, the difference
between TD and MID in CR is smaller than that in other phenological stages, resulting
in serious confusion between them. Previous studies have shown that SAR signals are
saturated at the maximum fresh biomass of maize [55].

Figure 8. The percentage of CR value in each phenological stage to the CR amplitude in entire
growing season. The red shading is the 95% forecast band. The difference represents the difference
between the CR value and the minimum value at each phenological stage. k represents the optimal
threshold for detecting each phenological stage.

In addition, to evaluate the performance of the optimal threshold determined by linear
regression, we calculated the RMSE between the CR of dynamic threshold with a step of
0.1 and the actual CR (Figure 9). This evaluation focused on the threshold itself rather
than comparing the detected phenological date with the date recorded by the AMSs. As
depicted in Figure 9, except for V3, the RMSE decreases and then increases with changes in
the threshold for all the phenological stages. Moreover, the RMSE of the optimal threshold
determined by the dynamic threshold consistently remains the minimum. The results



Remote Sens. 2024, 16, 826 13 of 22

show the effectiveness of the adaptive dynamic threshold method in extracting the optimal
threshold for detecting different crop phenological stages. For V3, the challenge might
arise from the small size of the crop, leading to Sentinel-1’s 10 × 10 grid predominantly
reflecting the soil background. This scenario complicates the determination of the optimal
threshold for phenological detection.

Figure 9. RMSE of different percentages of growing season amplitude. The 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9 represent the percentages of the growing season amplitude. The dotted line represents
the RMSE from the threshold, which is determined by the adaptive dynamic threshold method.

4.3. Validation of Ground Phenology Observation Data

This study designed an adaptive dynamic threshold approach to detect maize phe-
nology using the Sentinel-1 time series. The results indicated that the R2 in two years was
0.813 and 0.804, respectively, and both were significant at the 0.001 level (Figure 10). As
shown in Figure 11, the precision of maize phenology from high to low was MD > JD >
MID > V3 > TD > V7 in 2017. And the precision of maize phenology from high to low was
MID > MD > JD > V3 > TD > V7 in 2018. The RMSEs of JD, MID, and MD are significantly
lower than those for V3, V7, and TD in two years. This indicated that the Sentinel-1 time
series is better at detecting JD, MID, and MD compared to V3, V7, and TD. It is worth
noting that the optimal threshold derived from the 2017 data was used for estimating maize
phenology in both 2017 and 2018, based on data from only three AMSs. This consistency
implies the stability of optimal thresholds across different years. When ground phenologi-
cal observation data for a particular year are unavailable, historical ground phenological
observation data can be utilized to quickly obtain crop phenology at the regional scale.
However, the dates of V3 and V7 detected by the adaptive dynamic threshold method are
earlier than those recorded by ground phenology observation data. This discrepancy could
be attributed to the complex interaction of crop canopy, soil background, and precipitation.
Because the CR is sensitive to the three-dimensional structure of the soil canopy, canopy
backscattering is mainly influenced by the angle and size of the leaves, water content,
and wavelength of incidence [65,66]. During the nutritional growth phase of maize, the
smaller size (plant height is about 20 cm) of the plant’s stems and leaves at V3 results
in backscattering primarily reflecting the soil background. Precipitation events further
influence backscatter coefficients, leading to the earlier detection of V3 (Figure 12). At V7,
the multiple scattering effects between soil and canopy structure contribute significantly
to the total backscatter. Given that maize is a broad-leaved crop, the size and angle of the
leaves and the spacing of the plant rows affect multiple scattering effects [67], resulting in
greater error variation. In addition, at TD, the maize plants have fully developed leaves,
dry matter accumulation is the highest, maize pollination begins, and the CR maintains a
slight increase approaching saturation [63]. Therefore, the detection date of TD tends to be
significantly later than the date recorded by ground phenological observation data.
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Figure 10. Relationship between ground observation data and the detected phenology by the adaptive
dynamic threshold in 2017 and 2018. The p represents the significance level.

Figure 11. Comparison error and RMSE between ground observation phenology and detection
phenology. The whisker is the 95% confidence interval.

Figure 12. Average precipitation in Heilongjiang Province in 2017 (a) and 2018 (b). Different colored
rectangular boxes represent various phenological stages. Blue box: V3; Green box: V7; Orange box:
JD; Red box: TD; Cyan box: MID; Brown box: MD.

4.4. Comparison of Sentinel-1 and Sentinel-2 Phenology Observations

This study detected different phenological stages using the EVI time series and com-
pared them with the results of CR time series (Table 3). Notably, although Sentinel-2’s
maximum image count is larger than that of Sentinel-1’s, the RMSE indicated that Sentinel-1
can stably detect JD, TD, and MID in 2017 and 2018. Specifically, the average RMSE for JD,
MID, and MD decreased by 4.14%, 35.28%, and 26.48%, respectively, when compared to
Sentinel-2 phenology observations. Therefore, the quantity of images did not significantly
impact the Sentinel-1’s detection results. Sentinel-2 is the most stable in detecting V3 and
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JD, but for other phenological stages, the RMSEs varied significantly in different years. For
instance, the RMSEs for V7 and TD in 2017 were significantly higher than those in 2018.
This could be attributed to image acquisition coinciding with a significant rainfall event in
2017, resulting in a higher overall RMSE for each phenological stage. Overall, Sentinel-1
effectively detects JD, MID, and MD under continuous clouds and rainfall. In addition,
compared to Sentinel-2 phenology observations, our results underestimated the V3, V7, and
MID and overestimated the JD and TD for maize (Figure 13b). This indicated that the CR
time series and EVI time series for broad-leaved maize did not completely match (Figure 7).
For example, in the nutritional growth phase of maize, V3, V7, JD, and TD correspond to
the dates when EVI first crossed 10%, 15%, and 50% and reaches its maximum amplitude,
respectively, which is faster than the phenology detected by the CR. The same is true for the
reproductive growth phase. This inconsistency is consistent with previous studies [14,27],
which have highlighted differences between NDVI and CR time series for maize in various
regions. The reason could be the different response principles of two indices to vegetation.
EVI responds to changes in leaf area and chlorophyll content. CR is sensitive to changes
in soil cover and structural plant development. Consequently, their changes did not com-
pletely match. Veloso et al. [34] have shown that CR exhibits a higher correlation with fresh
biomass compared to photosynthetic activity. For example, as crops mature, EVI decreases
due to the leaf yellowing and drying, which reduces the chlorophyll content and increases
lutein content [68,69]. In contrast, CR responds to standing, yellowing crop structures (or
maize stubble) [14,34], leading to differences in the EVI and CR time series.

Table 3. The RMSE between the results of Sentinel-2, Sentinel-1 and ground observation data in each
phenological stage (n is the number of AMSs). The year 2017&2018 represents the average RMSE
over the past two years.

Year Data V3 V7 JD TD MID MD

2017 (n = 20)
Sentinel-2 9.11 121.12 11.58 79.16 19.38 17.51
Sentinel-1 27.33 48.17 10.24 44.57 10.89 7.87

2018 (n = 15)
Sentinel-2 11.85 14.93 11.57 16.98 12.48 8.09
Sentinel-1 36.82 64.57 11.96 42.08 9.73 10.94

2017&2018
Sentinel-2 10.48 68.03 11.58 48.07 15.93 12.80
Sentinel-1 32.07 56.37 11.10 43.33 10.31 9.41

Figure 13. Scatter plots of phenological detection errors by Sentinel-1 and Sentinel-2. (a) represents
phenological detection errors in 2017; (b) represents phenological detection errors in 2018.

4.5. Mapping Maize Phenology in Heilongjiang Province

We compared the abilities of adaptive dynamic thresholds in mapping spring maize
phenology for the years 2017 and 2018 in Heilongjiang Province. Figure 14 illustrates the
estimations for JD, MID, and MD. However, due to the large errors in V3, V7, and TD, their
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spatial distribution has no reference. Overall, consistent spatial variation in phenological
development was observed in 2017 and 2018, with earlier development occurring in the
southern regions compared to the northern regions. This spatial variation can primarily
be attributed to GDDs, a key factor affecting crop phenological development [70,71]. In
this study area, the number of GDDs in the south is always higher than that in the north.
Meanwhile, we calculated the GDDs for the years 2017 and 2018, revealing coherent
spatial variations in the accumulated temperature (Figure 15). Specifically, although the
accumulated temperature in 2018 (GDDs = 3186 ◦C) was generally higher than that in 2017
(GDDs = 3120 ◦C), their spatial distribution remained consistent. This consistency accounts
for the spatial similarity in observed phenological patterns. The region with lower GDDs in
the north may benefit from employing early-maturing crop varieties with a shorter growth
period to increase grain yield. In addition, natural disasters and field management may
exacerbate phenological differences between adjacent years within the same area. For
example, at site 50,858, the phenological development in 2018 is earlier than that in 2017.

4.6. Limitations and Outlook

Phenological monitoring using the adaptive dynamic threshold method, based on
data from the GEE, offers a practical solution for monitoring phenology with limited
sample sizes. In agricultural applications, this approach requires collecting regional
ground phenology observation data (3–5 samples). Subsequently, the amplitude, min-
imum value, and CR of the phenological observation date are extracted to calculate the
optimal threshold. Finally, phenology mapping is performed based on the optimal thresh-
old. (https://code.earthengine.google.com/cb00adc3488a10f7de3da2a395b87fc1 accessed
on 10 November 2023). And the approach only needs to change the threshold of different
regions to realize phenology mapping. In addition, the approach utilizes SAR time series,
which are unaffected by clouds or precipitation, thereby providing reliable phenology
information.

Figure 14. Cont.

https://code.earthengine.google.com/cb00adc3488a10f7de3da2a395b87fc1
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Figure 14. Comparing the detection of spring maize phenology in 2017 and 2018 using adaptive
dynamic thresholds. (a,c,e) represent detected JD, MID, MD in 2017; (b,d,f) represent detected JD,
MID, MD in 2018. (a1–a4) represent detected JD in 2017 at sites 50,739, 50,858, 50,867, and 50,875;
(b1–b4) represent detected JD in 2018 at sites 50,739, 50,858, 50,867, and 50,875; (c1–c4) represent
detected MID in 2017 at sites 50,739, 50,858, 50,867, and 50,875; (d1–d4) represent detected MID
in 2018 at sites 50,739, 50,858, 50,867, and 50,875; (e1–e4) represent detected MD in 2017 at sites
50,739, 50,858, 50,867, and 50,875; (f1–f4) represent detected MID in 2018 at sites 50,739, 50,858, 50,867,
and 50,875.
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Figure 15. Spatial distribution map of growing degree days (GDDs) and sowing dates in 2017 (a) and
2018 (b).

However, this approach still has some limitations for application to larger areas,
different crop types, and more phenological stages. First, the spatial heterogeneity of crop
seeding density, soil background, and precipitation [28,72] in a larger area could affect
the backscattering intensity, increasing the phenological detection uncertainty. Second,
limited by the availability of crop samples, this method has not yet been applied to crops
other than maize. If the monitored crop structure is very different from maize, such as
soybean and rice, the accuracy of the method could be decreased because the difference in
vegetation structure reflects the difference in backscattered signals. Third, this approach,
which utilizes a single feature as input, is beneficial for quickly detecting crop phenology
at the regional scale. However, one feature can only provide limited information; it cannot
characterize the actual and complex physiological changes of crops. Finally, it should be
noted that when the pixels have a lower spatial resolution, the calculated thresholds should
be interpreted cautiously because there could be more mixed pixels [25]. In the future, to
improve phenological detection accuracy in larger areas, regional thresholds should be
taken to mitigate the effects of anthropogenic management and the variety of geographical
environments. Additionally, studies have explored the potential of monitoring the entire
crop growth stage using multisource remote sensing data [14,52], which could improve the
accuracy of phenological monitoring.

5. Conclusions

This study developed an adaptive dynamic threshold method that autonomously
determines the optimal threshold for crop and environmental classification, eliminating the
requirement for human intervention. Moreover, it evaluates not only SAR data’s capability
of detecting TD and MID but also assesses SAR’s potential for detecting V3, V7, TD, and
MD. We first analyzed the Sentinel-1 features to select optimal features for time series fitting.
The results revealed that the CR is least affected by incident angle, precipitation, and wind
speed, making it a robust indicator for capturing phenological development accurately
while minimizing noise. Then, we employed linear regression to determine the optimal
threshold, thereby avoiding the subjectivity of custom thresholds. This is not possible with
traditional dynamic threshold methods. This study demonstrated that the ability of the
Sentinel-1 time series to detect JD, MID, and MD is greater than that of V3, V7, and TD.
Moreover, the adaptive dynamic threshold was built to detect crop phenology at a regional
scale, improving detection accuracy compared to Sentinel-2 phenology observations. The
average RMSEs of JD, MID, and MD decreased by 4.14%, 35.28%, and 26.48%, respectively.
Furthermore, we analyzed the spatial distribution of JD, MID, and MD of maize in 2017
and 2018, revealing a correlation between phenological patterns and GDDs. The crop
phenology was delayed with increasing latitude. It should be noted that the adaptive
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dynamic threshold is generically applicable to different broad-leaved crops. The overall
strength of backscattering increased with maize growth, and similar backscattering is
observed in other broad-leaved stalk crops (e.g., sorghum) [73,74].
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