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Abstract: The paradigm shift brought by deep learning in land cover object classification in hyperspec-
tral images (HSIs) is undeniable, particularly in addressing the intricate 3D cube structure inherent in
HSI data. Leveraging convolutional neural networks (CNNs), despite their architectural constraints,
offers a promising solution for precise spectral data classification. However, challenges persist in
object classification in hyperspectral imagery or hyperspectral image classification, including the
curse of dimensionality, data redundancy, overfitting, and computational costs. To tackle these
hurdles, we introduce the spectrally segmented-enhanced neural network (SENN), a novel model
integrating segmentation-based, multi-layer CNNs, SVM classification, and spectrally segmented
dimensionality reduction. SENN adeptly integrates spectral–spatial data and is particularly crucial
for agricultural land classification. By strategically fusing CNNs and support vector machines (SVMs),
SENN enhances class differentiation while mitigating overfitting through dropout and early stopping
techniques. Our contributions extend to effective dimensionality reduction, precise CNN-based clas-
sification, and enhanced performance via CNN-SVM fusion. SENN harnesses spectral information to
surmount challenges in “hyperspectral image classification in hyperspectral imagery”, marking a
significant advancement in accuracy and efficiency within this domain.

Keywords: segmentation; convolutional neural network; hyperspectral image (HSI); support vector
machine (SVM); factor analysis (FA); multi-layer CNN

1. Introduction

Hyperspectral imagery (HSI) has revolutionized the field of remote sensing by com-
bining the benefits of subdivisional spectroscopy and imaging technology. It enables the
capture of spatial distribution information along with hundreds or even thousands of
contiguous narrow spectral bands, offering a unique perspective on surface targets [1,2].
Owing to its inherent advantages in distinguishing unique land-cover categories and dif-
ferent objects, hyperspectral imaging (HSI) has gained widespread usage across a variety
of domains. These applications encompass a wide spectrum of disciplines, including but
not limited to military defense, atmospheric science, urban planning, vegetation ecology,
and environmental surveillance [3–6]. Despite its remarkable capabilities, HSI classification
poses significant challenges, including interference from redundant spectral information,
the limited availability of labeled samples, and the presence of high intra-class variability.
Addressing these obstacles and making advancements in hyperspectral image classification
techniques offer significant potential for realizing the complete capabilities of HSI data
analysis [7].

In the field of HSI classification, traditional methods have predominantly relied on
spectral information, often neglecting the effective integration of spatial data. While tech-
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niques like band selection, sparse representation classifiers, and principal component
analysis (PCA) [8] have been utilized to extract discriminative features, they encountered
notable limitations in feature extraction and robustness. Specifically, PCA, despite its
widespread use, suffers from several drawbacks, including its assumption of linearity
and orthogonality in data distribution, which may not hold true in complex real-world
scenarios, potentially overlooking subtle but relevant information crucial for accurate clas-
sification [9]. However, traditional machine learning algorithms like random forest [10] and
SVM [11], while widely used, have limitations in handling non-linear data and complex
decision boundaries. Random forest may struggle with capturing intricate spectral–spatial
relationships, while SVM’s performance may deteriorate with high-dimensional feature
spaces. Nonetheless, the advent of deep learning has spurred significant interest in HSI clas-
sification, particularly with convolutional neural networks (CNNs). Various CNN-based
architectures have demonstrated remarkable performance by simultaneously leveraging
both spectral and spatial information [12]. This integration of advanced deep learning
techniques presents a promising avenue for enhancing the accuracy of classification in
hyperspectral imagery analysis.

As previously discussed, the formidable challenge posed by the high dimensionality
of HSI data underscores the necessity of dimensionality reduction as a crucial preprocessing
step to mitigate data redundancy and complexity. In the realm of HSI classification, two pri-
mary approaches for dimensionality reduction exist: feature extraction and band selection.
Feature extraction techniques such as kernel PCA (KPCA) [13], PCA, linear discriminant
analysis (LDA) [14], and Fisher’s linear discriminant analysis (FLDA) [15] aim to optimize
between-class separation, whether leveraging label information or not. However, it is
important to note the limitations of minimum noise fraction (MNF) [16], another commonly
used technique for dimensionality reduction. While MNF is effective in certain contexts, it
may not be suitable for HSI classification due to its inherent assumptions and limitations.
MNF assumes that noise in the data is uncorrelated across bands, which may not hold true
for HSI datasets characterized by complex spectral and spatial correlations. Additionally,
MNF may not effectively capture the subtle spectral variations crucial for accurate classifi-
cation in HSI data [17]. Therefore, while MNF may be a useful technique in some scenarios,
its effectiveness for HSI classification is limited by these factors. Conversely, band selection
algorithms, while effective at selecting informative band subsets directly from the original
band space of HSIs, often struggle to capture the intricate spectral–spatial correlations
inherent in HSI data. Despite the application of popular feature selection methods like
chi-squared, select K best, and mutual information feature selection [18,19], their efficacy
for HSI classification may be limited by the inherent challenges in capturing the nuanced
spectral and spatial properties unique to HSI datasets.

In the study covered in [20], the conventional low-rank representation (LRR) method
for HSI classification has been improved and modified. This paper presents a locality-and-
structure-regularized LRR approach that combines spectral and spatial data to analyze local
pixel similarities. The authors of [21] also presented a new method for classifying HSI using
spectral gradients in another paper. They were able to efficiently collect both geographical
information and spectral features by utilizing spectral gradients in conjunction with the
random forest approach. The spectral characteristics were then fused together using
multi-scale fusion so that support vector machines (SVMs) could be used for classification.
Furthermore, the study in [22] introduced deep support vector machines (DSVMs) for HSI
classification, outperforming other cutting-edge algorithms, including different versions
of the conventional SVM. However, spatial features play a vital role in enhancing the
classification performance. To alleviate the spatial redundancy that frequently arises when
using a regular 3D CNN with HSI, a 3D octave CNN was developed in the work reported
in [23].

In a separate investigation [24], a novel technique incorporating 3D CNNs was intro-
duced, integrating both spectral and spatial data to bolster classification accuracy. Similarly,
in [25], a model utilizing 3D CNNs was proposed for HSI classification, following a similar
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methodology. Initially, the HSI dataset is segmented into small, overlapping 3D patches
and processed with a 3D kernel function across contiguous spectral bands to produce 3D
feature maps. Subsequent research has seen a surge in studies employing either 2D CNNs
or 3D CNNs for HSI analysis [26]. However, utilizing 2D CNNs or 3D CNNs for HSI classi-
fication poses several challenges. While 2D CNN architectures excel in capturing spatial
details, they often struggle to extract informative or distinguishing features from spectral
dimensions. Conversely, although 3D CNNs are presumed to offer enhanced performance,
they come with increased computational demands due to extensive 3D convolution opera-
tions [27]. Deep 3D CNNs necessitate a larger dataset for training, yet publicly accessible
HSI datasets provide limited samples. Additionally, numerous prevalent 3D CNN-based
methods rely on stacked 3D convolutions, complicating the direct minimization of estima-
tion loss using such nonlinear structures [28]. To address these challenges, many researchers
have proposed hybrid approaches. For instance, in [29], a hybrid model termed HybridSN
was introduced, merging 2D-CNN with 3D-CNN to effectively extract both spectral and
spatial features from HSI data, leading to improved classification accuracy. In another study,
the authors developed a wavelet-based 2D CNN named SpectralNET [30] for extracting
spectral–spatial features from HSI. They utilized a four-level wavelet decomposition with
2D convolutions by concatenating the upper levels with previously decomposed features
and applying average pooling after convolution operations. However, due to the increased
number of hidden layers during wavelet transformation, computational costs are slightly
higher, and performance diminishes with fewer training samples.

In recent studies, researchers have recognized the benefits of multi-scale spatial fea-
tures in enhancing the accuracy of semantic segmentation in regular RGB images [31].
Models such as PSPnet [32] and the Inception Module have successfully fused features at
different scales to capture detailed information and improve overall performance. Influ-
enced by the dilated residual network (DRN) [33], their investigation extended this notion
through the introduction of the spectral dilated convolutions (SDCs) concept [34], aiming to
enhance spectral coverage. In a different study, a novel Tri-CNN [35] approach enabled the
extraction of multi-scale spectral features, thereby enhancing the classification accuracy and
performance of HSI analysis. It introduced a novel three-branch CNN architecture aimed at
enhancing classification performance. However, it is worth noting some limitations. Firstly,
the reliance on PCA-based dimensionality reduction may restrict the model’s ability to
capture all relevant spectral information, potentially leading to the loss of discriminative
features. Additionally, the three-branch convolution structure introduces complexity, as
all branches are applied to the reduced data simultaneously. This approach may hinder
effective feature extraction, as different segments of data could benefit from distinct pro-
cessing strategies. Hence, exploring alternative methods wherein branches are applied
to different data segments individually could potentially improve feature extraction and
classification accuracy. By incorporating spectrally segmented dimensionality reduction
techniques, the issue of optimization and reduced time costs associated with HSI analysis
can be addressed. Partitioning the HSI data into subsets based on spectral characteristics
allows for an effective reduction in high dimensionality while preserving informative
features [36]. This approach not only enhances the efficiency of subsequent classification
processes but also improves the overall effectiveness of HSI analysis.

The proposed model introduces a comprehensive approach to enhance HSI classifica-
tion, focusing on three key components aimed at improving accuracy and effectiveness.
Firstly, we implement spectrally segmented dimensionality reduction through factor anal-
ysis (FA), leveraging the inherent strengths of FA for superior performance in handling
the complex spectral characteristics of HSI data. Factor analysis excels in capturing the
underlying structure of high-dimensional data, making it particularly well-suited for ex-
tracting informative features relevant to land cover classification. By segmenting the data
and applying FA, we not only reduce dimensionality but also ensure the inclusion of
top informative features from diverse segments, enhancing the model’s ability to capture
crucial spectral nuances. Moving on to the segmentation-based multibranch CNNs, we
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recognize CNNs’ inherent capability as feature extractors. However, in scenarios with
limited training samples, CNNs may struggle to extract features comprehensively from
various perspectives. To address this limitation, we deploy a multibranch CNN architecture
with distinct branches structured to extract spatial and spectral features from different
data weights. This innovative approach enables the extraction of detailed features even
with fewer training samples, enhancing the model’s robustness and adaptability to diverse
HSI datasets. Lastly, the integration of support vector machines (SVMs) into the final
classification stage leverages SVMs’ proficiency in creating non-linear decision boundaries,
complementing CNNs’ feature extraction capabilities. SVMs are renowned for their ro-
bustness and effectiveness in handling complex data, making them an ideal choice for
classification tasks. By combining CNNs with SVMs, we harness the strengths of both
models, resulting in improved classification accuracy. Additionally, the incorporation
of dropout as a regularization strategy mitigates overfitting and enhances the model’s
generalization ability, ensuring reliable performance on novel instances.

Our proposed model, the spectrally segmented-enhanced neural network (SENN),
represents a significant advancement in precision land cover classification. By synergis-
tically combining spectrally segmented dimensionality reduction, segmentation-based
multibranch CNNs, and CNN-SVM fusion, our model effectively addresses the inherent
challenges of HSI data analysis. SENN offers a promising solution for diverse landscapes
and scenarios, particularly in the context of agricultural land cover object classification,
by retaining crucial features and integrating spectral–spatial data. Notably, the SENN’s
primary innovation lies in its effective mitigation of dimensionality through spectrally
segmented dimensionality reduction while maintaining crucial features, essential for han-
dling the complexity of agricultural land cover object classification. Moreover, the fusion of
CNNs and support vector machines (SVMs) enhances class differentiation, contributing to
improved accuracy in classification tasks. Techniques such as dropout and early stopping
are incorporated to alleviate overfitting issues, further enhancing the overall performance
and robustness of our proposed model. The primary achievements of our study can be
outlined as follows:

1. Spectrally segmented dimensionality reduction: CNNs are adept at extracting signifi-
cant features from unprocessed image data, facilitating the effective representation of
intricate information. These techniques effectively reduce the data’s high dimension-
ality while preserving the most informative features. This step aims to enhance the
subsequent classification process in terms of efficiency and effectiveness.

2. Parallel multi-resolution CNN model: The second objective is to implement a multi-
resolution CNN model for classification, utilizing the extracted informative features.
Utilizing the CNN architecture, this model will harness both spectral and spatial
data inherent in hyperspectral imagery to acquire intricate characteristics, leading
to precise classification outcomes for agricultural landscapes. By capitalizing on the
hierarchical representations learned by the CNN model, the overall classification
accuracy is expected to improve.

3. Final classification using SVM: CNNs excel at automatically extracting meaningful fea-
tures from raw image data, enabling effective representation of complex information.
In combination with SVMs, which create non-linear decision boundaries, class sepa-
ration is enhanced, resulting in improved classification accuracy. The integration of
CNNs and SVMs provides a flexible framework for image analysis tasks. Throughout
the training process, a range of strategies is employed, encompassing techniques such
as “dropout”. Regularization using dropout randomly deactivates neurons during
training, helping the network learn more robust features and avoid overreliance on
individual neurons.

2. Methodology

The integration of spectral and spatial data is achieved through a multi-resolution
CNN, drawing inspiration from the simplified iteration of the conventional 3D CNN archi-
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tecture [37]. Recent strides in deep learning emphasize the effectiveness of hybrid models
that fuse 3D and 2D CNNs, demonstrating their efficacy in extracting intricate features
from hyperspectral datasets. By incorporating both spectral and spatial dimensions, these
models enhance network performance, enabling a more comprehensive analysis of high-
dimensional hyperspectral images and addressing challenges within image processing.

2.1. Background of SENN

Most contemporary models designed for HSI classification predominantly adopt
either a 2D-CNN structure [25] or a 3D-CNN framework [27]. However, while the 2D-CNN
excels at capturing spatial information, it tends to overlook the valuable spectral intricacies
inherent in HSI data [38]. On the other hand, the 3D-CNN strives to simultaneously extract
both spatial and spectral information; however, this approach might not effectively extract
features. To overcome these limitations, an innovative strategy is presented: a multi-
resolution feature fusion network. This novel network amalgamates a spectral feature
extractor and a spatial feature extractor. Through the integration of these components, the
network profoundly augments the extraction of both spectral and spatial features, resulting
in significant enhancements in the comprehensive feature representation and the precision
of HSI classification.

To address the challenges associated with HSI classification, a combination of spectrally
segmented dimensionality reduction and a multiple-layer CNN model is proposed. HSI
data are represented as a high-dimensional cube denoted as X ∈ RP×Q×B, where P and Q
stand for the measures of spatial domain and B signifies the count of the spectral bands.
Each pixel in the hyperspectral cube is represented by a vector Xi ∈ RB, where i denotes
the pixel index.

The first key aspect of SENN involves spectrally segmented dimensionality reduction
techniques. These techniques partition the HSI data into subsets based on spectral character-
istics, effectively reducing high dimensionality while preserving informative features. Let
R1, R2, R3 . . . . . . . . . RK denote the spectrally segmented subsets obtained from the original
hyperspectral cube X. Each subset RK is represented by a reduced-dimensional matrix
Yi ∈ RP×Q×R, where R is the reduced dimensionality obtained after the segmentation
process. The dimensionality reduction is typically achieved using methods such as FA.

The second aspect of SENN involves the implementation of a multiple-layer CNN
model for classification. The CNN model takes as input the reduced-dimensional subsets
Yi obtained from the spectrally segmented dimensionality reduction. The CNN structure
encompasses convolutional layers, identified as CONV3D and CONV2D, carrying out
the extraction of spatial and spectral features. These layers apply filters with learnable
parameters to capture spatial and spectral patterns. The output of the CNN model is a
classification layer that produces the predicted class labels for each pixel. The mathematical
expressions associated with the SENN model include the operations performed in the
convolution layers [26]. For example, a 3D convolution operation can be represented as:

Zk = φ(Wk × Yk + bk), (1)

where Zi represents the output feature maps after the convolution operation, Wi denotes
the learnable weights, bi is the bias term, and φ represents the activation function, of-
ten exemplified by ReLU. Similarly, a 2D convolution operation could be formulated as
follows [26]:

Z′
k = φ

(
W′

k × Y′
k + b′k

)
, (2)

where Z′
i represents the output feature maps after the 2D convolution, W′

i denotes the
learnable weights, b′i denotes the bias term. Additionally, pooling operations, such as max
pooling or average pooling, can decrease the size of the feature maps in terms of spatial
information. This operation can be mathematically represented as [30]:

P(Zk) = Max(Zk), (3)
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where P(Zi) represents the pooled feature maps obtained from Zi using the max pooling
operation. Furthermore, fully connected layers in the CNN model can be represented
as [39]:

A = φ(V ∗ F + c), (4)

where A denotes the output activation, V represents the learnable weights, F represents the
input features, c is the bias term, and φ represents the activation function.

The integration of mathematical expressions and equations within the SENN model
provides a comprehensive understanding of the intricate operations and transformations
conducted within each branch, offering insights into its functionality. By synergizing spec-
trally segmented dimensionality reduction with multibranch CNN architecture, the SENN
model aims to elevate HSI classification accuracy by adeptly capturing both spectral and
spatial features. Initially, the HSI data undergo segmentation based on spectral correlation,
dividing it into distinct segments to enable more targeted analysis. Subsequently, the appli-
cation of the dimensionality reduction technique FA to each segmented subset effectively
reduces data complexity while preserving essential characteristics. This segmented ap-
proach ensures tailored processing for each subset, optimizing the extraction of informative
features vital for accurate classification. In parallel, the SENN model incorporates multiple
branches within the CNN architecture, each endowed with diverse convolution kernels and
weights to comprehensively extract features. By diversifying the feature extraction process
across multiple branches, the model can effectively capture a broader range of spectral and
spatial characteristics inherent in the HSI data. Following the extraction of spectral–spatial
features, the data are passed to the fully connected layers. Notably, a strategic decision is
made to replace the last dense layer with an SVM classifier, enhancing the model’s capacity
to discern subtle patterns and nuances within the HSI data. This integration is particularly
effective as SVMs excel in creating non-linear decision boundaries, thereby complementing
the feature extraction capabilities of the CNN architecture. The synergy between CNN
and SVM fosters improved classification accuracy and performance, rendering the SENN
model a valuable asset for HSI analysis in diverse applications.

2.2. SENN Model Description

The input HSI cube, with dimensions P × Q × R is first spectrally segmented into
several subgroups based on spectral band correlations. During the spectral segmentation
phase, creating 3 segments provides a balanced representation of spectral features, allowing
for the effective extraction of the features and the classification of land cover objects in
subsequent stages of the model. In the next step, factor analysis (FA) is implemented in
each subgroup for the dimensionality reduction to P × Q × R data. The output vector Y,
with dimensions P × Q, represents the selection of a class from the existing classes of land
cover objects.

The integrity of spectral dimensions is upheld through the application of FA, maintain-
ing the P × Q × R scale, while the number of bands undergoes a reduction from R to RD
(where RD < R). Employing FA in conjunction with spectral segmentation as a preliminary
step in HSI preprocessing proves to be immensely advantageous. This approach empowers
FA to effectively encapsulate the variances intrinsic to correlated and overlapping spectral
bands, thereby enhancing the model’s prowess in discerning analogous instances. Con-
versely, the conventional employment of PCA-based dimensionality reduction methods
such as PCA or the MNF fails to directly address this specific objective in the realm of
HSI [40]. On occasion, these strategies yield an approximation to the essential factors that
do not adequately discriminate among comparable instances. Following the conclusion of
the FA phase, we proceed to derive overlapping 3D cube patches measuring W × W × R
from the preprocessed HSI. Subsequently, these patches are input into the deep learning
model. For patch extraction, the window dimensions represented as W × W are set at
19 × 19 for the Indian Pines dataset, and 15 × 15 for both the Pavia University and Salinas
Scene datasets. The veracious values for these patches are established based on the class
category attributed to the central pixel. These specific values have been chosen through grid-
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search, aiming to optimize the overall accuracy. The SENN model architecture, depicted in
Figure 1, features multiple 3D convolution layers followed by a 2D convolution layer to
extract spatial-spectral features. Each block consists of three 3D convolution layers with 8,
16, and 32 filters, respectively, using kernel sizes of 3 × 3 × 5 for the first two layers and
3 × 3 × 1 for the third layer. By utilizing smaller convolution kernels, the model efficiently
extracts features while minimizing computational cost [29,35]. Max pooling is applied after
each convolution layer to prevent overfitting, and all convolution blocks are concatenated
and flattened to convert each branch’s extracted features into one-dimensional vectors.
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Figure 1. An insightful depiction of the overall system architecture encapsulating the key components
of the proposed spectrally segmented-enhanced neural network (SENN) model.

To ensure the seamless flow of features throughout our model, we implemented the
channel-wise concatenation of decomposed data within the fully connected dense layers.
This strategic approach enables the effective integration and transmission of spectral–spatial
features, ensuring that relevant information is retained and propagated throughout the
network. By preserving crucial details, our model facilitates comprehensive analysis and
classification of HSI data, allowing for the accurate interpretation of complex spatial and
spectral characteristics. Moreover, the incorporation of two dropout layers serves as a
crucial mechanism to mitigate the risk of overfitting, particularly in scenarios with a limited
number of HSI samples. Through the random deactivation of neurons during training,
dropout layers prevent the model from relying excessively on specific features or patterns,
thereby enhancing its generalization ability and robustness to unseen data instances.

Furthermore, the strategic utilization of a support vector machine (SVM) as the final
layer of our model aims to maximize classification accuracy and performance. SVMs
are renowned for their robustness and effectiveness in handling complex classification
tasks by identifying an optimal hyperplane that maximizes the margin between distinct
classes. By integrating the SVM into our model, we leverage its discriminative capabilities to
effectively manage intricate decision boundaries and capture non-linear correlations present
within the HSI data. The utilization of the “squared_hinge” loss function further enhances
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classification accuracy by penalizing misclassifications based on their distance from the
decision boundary, thereby promoting a more precise delineation of class boundaries and
reducing classification errors.

Moreover, the network structure and hyperparameters have been meticulously de-
signed and fine-tuned to ensure optimal performance across all HSI datasets used in our
research. The detailed specifications of the layers in each branch and level, including
three 3D convolution layers and one 2D convolution layer, are provided in Table 1. The
dimensions of the 3D convolution kernels are 8 × 3 × 3 × 7 × 1, 16 × 3 × 3 × 5 × 8, and
32 × 3 × 3 × 3 × 16, where the third 3D convolution signifies 32 3D kernels 3 × 3 × 3 in di-
mension for all 16 3D input feature maps. Conversely, the dimension of the 2D convolution
kernel is 64 × 3 × 3 × 576, where 64 represents the number of 2D kernels, 3 × 3 denotes
the spatial dimension of the 2D kernel, and 576 signifies the number of 2D input feature
maps. Through extensive experimentation and validation, our model has demonstrated
exceptional accuracy and reliability in accurately classifying HSI data, even in complex
and heterogeneous environments. This robust performance underscores the efficacy and
suitability of our proposed model for HSI classification.

Table 1. A concise overview of the SENN model’s architecture: unveiling its layers and parameters.

Layer (Type) Layer (Type) Layer (Type)

Input_1 (InputLayer) Input_2 (InputLayer) Input_k (InputLayer)

con3d_1_1 (Convolution 3D) Con3d_2_1 (Convolution 3D) Con3d_k_1 (Convolution 3D)

Con3d_1_2 (Convolution 3D) Con3d_2_2 (Convolution 3D) Con3d_k_2 (Convolution 3D)

Con3d_1_3 (Convolution 3D) Con3d_2_3 (Convolution 3D) Con3d_k_3 (Convolution 3D)

Reshape_1 Reshape_2 Reshape_k

Con2d_1 (Convolution 2D) Con2d_2 (Convolution 2D) Con2d_k (Convolution 2D)

Concatenate (Con2d_1, Con2d_2, Con2d_k)

Flatten

Dense (2,408,704)

Dropout (0.4) (0)

Dense (32,896)

Dropout (0.4) (0)

Squared Hinge (SVM) (16, 2064)

Total Trainable params: 1,901,264

3. Experimental Result Analysis
3.1. Experimental Configuration

The experiments were conducted using the Python 3.8 programming language and
TensorFlow 2.4.0 as the deep learning framework. During the segmentation process, the
HSI data are partitioned into K subsets based on spectral band correlations, with each
subset represented by an R-dimensional matrix. For the experimental datasets, segments
are separated based on threshold values of the correlation matrix, with typically two/three
visual correlation segments identified. For general purposes, we have created three seg-
ments for each dataset by setting K = 3. Furthermore, each segment’s bands are reduced
using dimensionality reduction methods such as FA, where R represents the number of
spectral features extracted. Since a minimum of two features is desired for deep learning
models, R is set as 2 for each segment of the dataset before being passed to the deep learn-
ing model. The optimization algorithm chosen was Adam, employing a learning rate of
1 × 10−3. After rigorous experimental analysis, the optimal learning rate was determined
to be 0.001, complemented by a decay rate of 1 × 10−6 for the Adam optimizer. The training
epoch was set at 120 iterations.
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It is important to note that all experiments were conducted on Google Colab, a cloud-
based platform, providing access to high-performance GPUs that significantly expedited the
model training process. The configuration of the proposed model, applied to the SA dataset,
is outlined in Table 1. This training configuration ensures a fair comparison by utilizing
5% of the total dataset as training data for each of the three datasets. Additionally, 20%
of the training data is allocated for validation purposes. The use of Google Colab offered
computational resources that enhanced the efficiency and scalability of the experiments.

3.2. Datasets Details

1. Salinas Scene (SC): The Salinas Valley in California was surveyed using the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor, resulting in an image dataset
comprising 224 spectral bands ranging from 0.4 to 2.45 µm [41]. The image has a
spatial resolution of 3.7 m and dimensions of 512 × 217 pixels. To mitigate water
absorption distortions, certain bands (108–112, 154–167, and 224) were excluded from
the analysis. Additional details regarding the distribution of pixels per class can be
found in Table 2.

Table 2. Land cover categories and corresponding pixel quantities within the Salinas Scene dataset.

No. Class Labels Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1294
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vineyards_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vineyards_untrained 7268
16 Vineyards_vertical_trellis 1807

2. The Pavia University (PU): The Pavia University dataset was captured using the
reflective optics imaging spectrometer sensor (ROSIS) during an aerial survey con-
ducted over Pavia, located in northern Italy. This dataset comprises 103 spectral bands
covering a wavelength range from 0.43 to 0.86 µm [41], with a spatial resolution of
1.3 m. The image dimensions of Pavia University are 610 × 340 pixels. For detailed
information on the distribution of pixels per class, please refer to Table 3.

Table 3. Land cover categories and corresponding pixel quantities within the Pavia University dataset.

No. Class Labels Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted_metal_sheets 1345
6 Bare_Soil 5029
7 Bitumen 1330
8 Self_Locking_Bricks 3682
9 Shadows 947
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3. Indian Pines (IP): The Indian Pines dataset was acquired using the AVIRIS sen-
sor over the Indian Pines test site in northwestern Indiana. It comprises a total
of 145 × 145 pixels and 224 spectral bands, spanning the wavelength range from
400 nm to 2500 nm [41]. The dataset encompasses 16 distinct classes, providing valu-
able information about the land cover in the area. With its high-resolution spatial and
spectral data, the Indian Pines dataset has been extensively utilized for HSI classifica-
tion and analysis in various remote sensing applications. For a detailed breakdown of
the dataset, including the pixel count for each class, please refer to Table 4.

Table 4. Land cover categories and corresponding pixel quantities within the Indian Pines dataset.

No. Class Labels Samples

1 Alfalfafa 46
2 Corn-no till 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-no till 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

3.3. Evaluation Metrics

Comparing predicted class maps with reference or ground truth data is necessary to
assess the accuracy of classification results. However, visually inspecting pixel assignments
in an image is subjective and may not provide a comprehensive evaluation. Therefore,
relying on quantitative measures is more dependable. One widely used measure is the
overall accuracy (OA), represented by Equation (5), which calculates the proportion of
correctly assigned HSI pixels out of the total number of samples:

OA =
∑N

i Scorrect

Stotal
(5)

The average accuracy (AA) is a crucial criterion in evaluating classification perfor-
mance. It estimates the average accuracy across all categories or classes, providing a
comprehensive assessment. Equation (6) defines the calculation for the average accuracy
(AA), enabling a quantitative measure of this evaluation metric:

AA =
∑N

k Accuracy
N

(6)

It effectively conveys information about the importance of understanding the average
accuracy (AA) and the Kappa coefficient (Kappa) in assessing the effectiveness and quality
of the classification process for HSI data. The reference to Equation (6) adds clarity by
indicating where to find the calculation for the Kappa coefficient:

Kappa =
N∑n

k=1 mi,i − ∑n
k=1 (G ,k, C,k

)
N2 − ∑n

k=1 (G ,k, C,k

) (7)
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The Kappa coefficient assesses the concurrence between the classified predicted map
and the actual ground truth. This coefficient spans from 0 to 1, where 1 signifies complete
concordance and 0 implies a lack of concordance. An attained Kappa value of ≥0.8 denotes
considerable agreement, whereas a value <0.4 suggests inadequate model performance.

3.4. Results and Discussion

Within this section, the performance of the proposed model in classification is system-
atically examined, employing quantitative and qualitative evaluation strategies across the
PU, SA, and IP datasets. A comparative study is undertaken, contrasting the efficacy of the
proposed approach against six leading algorithms that are currently deemed state of the art.
To counterbalance any potential variability stemming from random sample selection, the
experiment trails are replicated 10 times, and the average outcome from these iterations is
adopted as the final result. Furthermore, a breakdown of the classification results for each
individual class is presented.

The assessment of the proposed model’s capacity to classify HSI was extended to
consider the impact of distinct spatial dimensions across various datasets. In the thorough
analysis of the results, an investigation into segmentation based on two distinct factors
was conducted: mutual information among spectral bands and band-to-band correlation.
Additionally, three different dimensionality reduction techniques (PCA, MNF, FA) were
applied for each of these two segmentation approaches. The outcomes are summarized in
Table 5, in which an overview of the fluctuations in three different accuracy metrics across
the datasets used is presented. Notably, for the PU dataset, mutual information-based FA ex-
hibited a strong performance. However, the proposed dimensionality method, specifically
correlation-based FA, consistently demonstrated superior performance across the board.
This suggests that correlation-based FA is generally more effective in achieving higher clas-
sification accuracy, with exceptions such as the SA dataset, where MNF performed better.
Despite FA’s comparatively lower performance in mutual information-based reduction, its
effectiveness significantly improves when utilizing correlation-based methods, emerging
as the optimal choice for dimensionality reduction in this study.

Table 5. A thorough evaluation of classification performance metrics was carried out for the Salinas
Scene dataset. This in-depth analysis aimed to provide a comprehensive understanding of how well
the proposed spectrally segmented-enhanced neural network (SENN) model performed in classifying
hyperspectral imagery within the context of the Salinas Scene dataset.

Segmentation
Basis

Dimensionality
Reduction

SA PU IP

OA Kappa AA OA Kappa AA OA Kappa AA

Mutual
Information

PCA 97.35 97.16 97.28 97.59 97.83 97.64 98.64 98.52 98.63
MNF 98.82 98.86 98.63 96.32 96.17 96.04 98.48 98.24 98.35

FA 99.19 99.21 98.87 99.46 99.29 99.37 97.82 97.65 97.75

Correlation
PCA 99.21 99.12 99.15 99.35 99.27 99.23 98.84 98.78 98.69
MNF 98.63 98.38 98.21 99.32 99.22 99.14 98.65 97.85 98.11

FA 99.58 99.47 99.51 99.46 99.38 99.43 99.18 99.05 99.13

The magnitude of the window size dictates the extent of spatial information employed
for labeling HSI patches. Large windows may include irrelevant neighborhood data, im-
peding feature extraction. Conversely, small windows result in a loss of spatial information.
The analysis provides corroborating evidence of the window size’s role in influencing the
model’s performance across the three utilized datasets. Table 6 depicts the experimental
results, indicating optimal window sizes of 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17,
19 × 19, 21 × 21, and 25 × 25 for the PU, SA, and IP datasets, respectively. Considering
that the model was trained on only 5% of the data, even slight changes in initial settings
can have a substantial impact on performance. Hence, the analysis reveals compelling
patterns. For the SA and PU datasets, a window size of 15 × 15 emerges as the optimal
choice, consistently delivering superior performance. Conversely, the IP dataset exhibits its
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peak performance with a window size of 19 × 19 within the framework of our proposed
model. This nuanced outcome underscores the critical role that tailored patch window sizes
play in optimizing the effectiveness of our method, offering distinct advantages contingent
on the characteristics of each dataset.

Table 6. The impact of different 3D patch window sizes on the efficacy of the proposed method was
investigated across various datasets. This analysis sought to understand how variations in the size of
the 3D patch window influenced the performance of the proposed spectrally segmented-enhanced
neural network (SENN) method across different datasets.

Window Size
SA PU IP

OA Kappa AA OA Kappa AA OA Kappa AA

9 × 9 99.15 98.36 98.87 99.19 98.87 99.04 97.49 97.24 97.23
11 × 11 99.39 99.27 99.31 99.18 98.92 98.98 98.82 98.63 98.71
13 × 13 99.45 99.29 99.38 99.37 99.21 99.24 98.96 98.59 98.86
15 × 15 99.58 99.52 99.54 99.46 99.33 99.41 99.14 98.75 98.98
17 × 17 99.53 99.41 99.45 99.35 99.22 99.29 99.11 98.72 98.02
19 × 19 99.56 99.46 99.49 99.43 99.36 99.39 99.18 98.97 99.12
21 × 21 99.47 99.44 99.42 99.41 99.18 99.26 99.13 98.83 99.96
25 × 25 99.51 99.38 99.44 99.39 99.27 99.33 99.07 98.79 98.94

The evaluation of the model’s effectiveness is achieved by scrutinizing its classifica-
tion accuracy across varying proportions of training data. This assessment involves the
random selection of labeled samples amounting to 1%, 2%, 3%, 4%, and 5% for training
purposes, with the remaining data serving as the testing set. The classification outcomes
for the proposed model across each dataset are illustrated in Figure 2. Observing the
results, it is evident that minor changes in classification accuracy occur across all training
sample proportions. The proposed model exhibits consistent performance across the three
datasets, regardless of the proportion of training samples used. To validate the proposed
classification algorithm, we compare it with several other algorithms, namely, SVM [11],
2D-CNN [25], 3D-CNN [26], Fast 3D-CNN [42], HybridSN [29], SpectralNET [30], and
TRI-CNN [35]. The quantitative comparisons of the methods being compared are presented
in Tables 7–9, with the best results highlighted in bold. Based on these comparisons, it can
be concluded that the proposed SENN model outperforms the other methods. Moreover, as
previously mentioned, the proposed methodology entailed conducting the experimental re-
sults iteratively 10 times, with the resultant mean values serving as the definitive outcomes
of the model. To fortify the credibility and precision of these mean values, we conducted a
comparative analysis of the standard deviation values pertaining to class wise accuracies,
in conjunction with overall accuracy, average accuracy, and Kappa coefficient, across three
distinct datasets as detailed in Table 10. Our findings reveal that the observed differences
are negligible, thereby substantiating minimal variation and affirming the stability of our
results. This robust consistency underscores the reliability of our experimental approach
and the validity of our conclusions.

The training times obtained from the comparison of methods are juxtaposed with
those of the proposed method in Table 11. This comparison unequivocally reveals that
the proposed model exhibits shorter training times in comparison to the other methods,
owing to its lower count of trainable parameters relative to the other models. From the
comparison, it is evident that SpectralNET and the 3D CNN require higher training times
due to the higher parameter count of 3D blocks and the use of four levels of decomposition
using 2D convolution layers, making them efficient but time-consuming feature extractors.
Conversely, the SVM, being a machine learning algorithm, requires a relatively limited
amount of computation time. Fast 3D CNN and Tri-CNN show an average duration.
Notably, both the HybridSN and proposed methods demonstrate the shortest times. In
the case of HybridSN, this can be attributed to its lower number of hidden layers and
parameters. Similarly, in the proposed method, the number of parameters is also limited
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despite having more layers. This is achieved by adjusting the kernel size and filter according
to the feature maps, thereby keeping the parameters within a limited range. Upon an
evaluation of the three datasets, it becomes evident that the 2D-CNN method yields the
lowest overall accuracy due to its exclusive reliance on 2D filters for the extraction of spatial
information. Conversely, the 3D-CNN method attains a higher accuracy of 98.13% by
simultaneously capturing both spatial and spectral information through the utilization of
3D filters, thereby enhancing the precision of the classification. Despite the incorporation
of four parallel branches of 3D kernels for the extraction of spatial features, the TRI-
CNN method demonstrates no appreciable enhancement when compared to HybridSN
or SpectralNET, and its accuracy lags slightly by 0.73%. HybridSN amalgamates three
layers of 3D-CNN with one layer of 2D-CNN to extract both spectral–spatial and spatial
information. SpectralNET, which fuses spectral and spatial information within a deep
neural network architecture, outperforms the aforementioned models in terms of accuracy.
In our proposed method, we achieve an overall accuracy approximately 0.35% higher than
that of Tri-CNN and SpectralNET, surpassing other models across the categories. This
underscores its proficiency in yielding favorable outcomes even when dealing with modest
training datasets. The comparative outcomes are depicted in Table 8 for the Salinas dataset,
Table 9 for the Pavia University dataset, and Table 10 for the Indian Pines dataset, further
highlighting the effectiveness of our model in achieving favorable results.
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Figure 2. The classification outcomes achieved by the proposed spectrally segmented-enhanced
neural network (SENN) model across diverse datasets. The visual representation highlights SENN’s
prowess in accurately categorizing hyperspectral imagery, offering valuable insights into its robust
performance across different scenarios.
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Table 7. A comprehensive analysis of classification performance metrics was conducted for the
Salinas Scene dataset. This thorough examination aimed to provide detailed insights into the effec-
tiveness of the proposed spectrally segmented-enhanced neural network (SENN) model in classifying
hyperspectral imagery within the Salinas Scene dataset.

Class 2D CNN 3D CNN Fast 3D CNN HybridSN Spectral NET TRI-CNN Proposed

1 96.34 99.19 99.13 99.57 99.66 98.95 99.62
2 97.94 99.11 98.41 98.88 99.34 99.15 99.18
3 97.88 98.90 98.69 99.06 99.61 99.74 99.64
4 95.53 98.48 98.48 98.76 99.42 99.05 99.57
5 97.59 98.84 98.84 99.25 99.26 99.73 99.53
6 96.94 97.90 98.90 99.21 99.60 99.62 99.48
7 96.92 99.56 99.01 99.15 99.21 99.04 99.39
8 96.93 98.54 98.54 98.84 97.43 97.63 99.63
9 96.44 99.28 99.28 99.54 99.26 99.51 99.62
10 95.69 98.68 98.68 99.50 99.22 99.73 99.46
11 94.94 98.95 98.75 99.09 99.22 99.45 99.51
12 97.83 99.20 99.21 99.27 99.06 99.24 99.28
13 95.82 99.04 99.32 98.94 98.55 98.89 99.49
14 95.69 98.71 98.67 98.09 98.91 98.55 99.56
15 97.81 98.19 99.19 99.05 99.25 99.68 99.63
16 96.62 98.84 99.22 99.54 99.53 99.09 99.59

OA 96.71 98.84 98.93 99.13 99.19 99.23 99.58
Kappa 96.62 98.73 98.83 99.04 99.12 99.17 99.47

AA 96.68 98.80 98.89 99.10 99.15 99.20 99.51

Table 8. A comprehensive analysis of classification performance metrics was conducted for the Pavia
University dataset. This detailed evaluation aimed to provide insights into the effectiveness of the
proposed spectrally segmented-enhanced neural network (SENN) model in classifying hyperspectral
imagery within the context of the Pavia University dataset.

Class 2D CNN 3D CNN Fast 3D CNN HybridSN Spectral NET TRI-CNN Proposed

1 98.40 99.31 98.85 99.39 98.94 99.44 99.45
2 96.86 99.46 99.37 99.12 98.25 99.19 99.49
3 93.14 99.41 99.21 99.20 98.92 99.06 99.54
4 96.92 99.28 98.76 99.36 98.51 99.34 99.40
5 96.07 97.95 98.76 98.67 99.53 98.37 99.43
6 92.37 98.92 98.99 99.12 98.77 99.30 99.53
7 97.09 97.25 98.47 98.74 98.84 98.72 99.34
8 98.40 98.82 99.36 98.92 98.99 99.23 99.53
9 95.90 98.41 97.89 98.66 99.47 98.62 99.16

OA 96.19 98.81 98.89 99.09 98.92 99.12 99.46
Kappa 96.06 98.66 98.79 99.88 98.69 98.94 99.38

AA 96.12 98.75 98.85 99.02 98.87 99.03 99.43

Table 9. A comprehensive analysis of classification performance metrics was conducted for the
Indian Pines dataset. This meticulous evaluation aimed to provide a detailed assessment of the
proposed spectrally segmented-enhanced neural network (SENN) model’s effectiveness in classifying
hyperspectral imagery within the Indian Pines dataset.

Class 2D CNN 3D CNN Fast 3D CNN HybridSN Spectral NET TRI-CNN Proposed

1 98.23 99.15 99.13 99.29 99.41 98.52 99.23
2 95.66 99.31 99.05 98.81 99.02 98.84 99.12
3 96.32 98.36 98.84 99.31 99.34 99.36 99.41
4 95.93 98.43 98.42 98.92 99.20 98.85 99.33
5 95.44 99.24 98.78 99.02 98.93 99.35 99.61
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Table 9. Cont.

Class 2D CNN 3D CNN Fast 3D CNN HybridSN Spectral NET TRI-CNN Proposed

6 93.67 98.66 97.84 98.93 99.28 98.11 98.79
7 96.09 99.13 98.94 99.38 99.06 98.37 99.32
8 94.42 97.96 98.48 99.25 97.11 98.16 98.54
9 95.88 99.27 99.22 99.31 98.82 99.32 99.39
10 93.72 98.29 98.62 99.25 98.59 98.05 98.15
11 96.97 99.42 98.35 99.34 99.08 98.44 99.34
12 96.86 99.19 99.14 99.02 98.93 98.15 99.71
13 96.35 98.73 98.98 98.29 98.83 99.31 98.89
14 96.72 99.41 98.65 95.61 99.22 98.62 99.11
15 94.84 97.19 99.13 98.81 98.64 98.96 99.07
16 96.65 98.04 99.13 99.17 98.88 98.73 99.21

OA 95.93 98.77 98.83 98.96 98.92 98.71 99.18
Kappa 95.76 98.69 98.72 98.89 98.81 98.63 99.05

AA 95.85 98.73 98.79 98.92 98.89 98.69 99.13

Table 10. Comparison of the neat outcomes including class-wise accuracies achieved using the
proposed model across three datasets, providing both mean and standard deviation values obtained
from 10 experiments.

Class
Mean Values Standard Deviation

SA IP PU SA IP PU

1 99.62 99.23 99.45 99.59 99.21 99.44
2 99.18 99.12 99.49 99.16 99.09 99.45
3 99.64 99.41 99.54 99.61 99.4 99.52
4 99.57 99.33 99.40 99.53 99.32 99.39
5 99.53 99.61 99.43 99.51 99.57 99.41
6 99.48 98.79 99.53 99.45 98.74 99.52
7 99.39 99.32 99.34 99.37 99.31 99.32
8 99.63 98.54 99.53 99.61 98.52 99.51
9 99.62 99.39 99.16 99.61 99.37 99.13

10 99.46 98.15 99.43 98.12
11 99.51 99.34 99.49 99.33
12 99.28 99.71 99.27 99.69
13 99.49 98.89 99.47 98.81
14 99.56 99.11 99.55 99.06
15 99.63 99.07 99.61 99.04
16 99.59 99.18 99.58 99.16

OA 99.58 99.18 99.46 99.56 99.14 99.42
Kappa 99.47 99.05 99.38 99.44 99.02 99.33

AA 99.51 99.13 99.43 99.49 99.10 99.41

Table 11. A comparative analysis of training times (in seconds) was conducted for various deep
learning models across three benchmark datasets, each utilizing 5% of the training data. This
comparison aimed to provide insights into the efficiency and computational performance of different
models, highlighting the training time variations among them.

Dataset

Models
2D CNN 3D CNN Fast 3D

CNN
HybridSN Spectral

NET TRI-CNN Proposed

Salinas Scene 79.62 138.43 90.62 84.46 118.6 93.99 81.44
Pavia University 75.86 129.19 86.76 85.98 110.99 87.68 78.77

Indian Pines 71.07 123.68 74.96 78.47 101.77 79.82 70.61

The experimental findings demonstrated that the suggested SENN approach had
superior performance in comparison to the other classification strategies utilized in this
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study. The inclusion of spectral–spatial information in Fast 3D-CNN, HybridSN, Spectral-
NET, and TRI-CNN led to enhanced overall accuracy in comparison to the 2D CNN method.
The Fast 3D-CNN utilizes a simultaneous extraction method to capture both spectral and
spatial information from the three-dimensional picture patch. This approach efficiently
maintains the inherent characteristics of the data. HybridSN utilized the advantageous
characteristics of both 2D-CNN and 3D-CNN to extract spectral and spatial features for
the purpose of picture classification. SpectralNET employed a wavelet-based variant
of the 2D CNN framework to effectively combine spectral and spatial data, particularly
designed for HSI classification. The categorization report, which includes a variety of
performance assessment measures, is displayed in Tables 12–14 for their respective datasets.
Figure 3 depicts the training accuracy and loss curves for the Salinas, Pavia University, and
Indian Pines datasets, all acquired from the proposed model. The curve for the SA dataset
shows a more consistent trend compared to the others; however, the training curve for
the Indian Pines dataset shows significant variations. This thorough perspective offers a
detailed analysis of outcomes particular to each class, showcasing improved results for
every class and a clear absence of overfitting. Our suggested SENN technique has shown
clear superiority over competing approaches in all three datasets examined in this study.
By leveraging the advantages of each individual branch, our model skillfully extracted
characteristics at different levels, resulting in improved classification performance.

Table 12. A thorough examination of classification performance metrics was undertaken for the
Salinas Scene dataset, utilizing 5% of the training data. This comprehensive analysis aimed to provide
a detailed assessment of the proposed spectrally segmented-enhanced neural network (SENN)
model’s effectiveness in classifying hyperspectral imagery within the specified training data subset.

Classes Precision Recall F1-Score Support

1 1.00 1.00 1.00 1909
2 1.00 1.00 1.00 3540
3 1.00 0.99 1.00 1877
4 1.00 1.00 1.00 1229
5 1.00 1.00 1.00 2544
6 1.00 1.00 1.00 3761
7 0.99 1.00 0.99 3400
8 1.00 1.00 1.00 10,707
9 1.00 1.00 1.00 5893
10 1.00 1.00 1.00 3114
11 1.00 1.00 0.99 1015
12 1.00 1.00 1.00 1831
13 1.00 0.99 0.99 870
14 1.00 0.99 1.00 1017
15 1.00 1.00 1.00 6905
16 1.00 1.00 1.00 1717

accuracy 1.00 51,329
Mac. Avg. 1.00 0.99 0.99 51,329
Wgt. Avg. 1.00 1.00 0.99 51,329

Table 13. A comprehensive analysis of classification performance metrics was conducted for the
Pavia University dataset (using 5% of training data).

Classes Precision Recall F1-Score Support

1 0.99 1.00 1.00 6299
2 1.00 1.00 1.00 17,717
3 1.00 0.98 1.00 1994
4 0.99 1.00 0.99 2911
5 0.99 0.99 1.00 1278
6 1.00 1.00 1.00 4778



Remote Sens. 2024, 16, 807 17 of 20

Table 13. Cont.

Classes Precision Recall F1-Score Support

7 1.00 1.00 1.00 1264
8 1.00 1.00 0.99 3498
9 0.98 1.00 0.98 900

Accuracy 1.00 40,639
Mac. Avg. 0.99 0.99 0.99 40,639
Wgt. Avg. 1.00 0.99 1.00 40,639

Table 14. A comprehensive analysis of classification performance metrics was conducted for the
Indian Pines dataset (using 5% of training data).

Classes Precision Recall F1-Score Support

1 1.00 1.00 1.00 44
2 1.00 0.96 0.98 1357
3 0.97 1.00 0.99 789
4 0.99 0.99 0.99 225
5 1.00 1.00 0.99 459
6 1.00 1.00 1.00 694
7 0.96 1.00 0.98 27
8 1.00 1.00 1.00 454
9 1.00 0.85 0.86 19
10 0.97 1.00 0.99 923
11 0.98 1.00 0.99 2332
12 0.99 0.96 0.98 563
13 1.00 1.00 1.00 195
14 1.00 1.00 1.00 1202
15 1.00 0.98 0.99 367
16 0.95 0.96 0.95 88

Accuracy 0.99 9738
Mac. Avg. 0.99 0.98 0.98 9738
Wgt. Avg. 0.99 0.99 0.99 9738
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Figure 3. Training accuracy curves, showcasing the dynamic learning process of the proposed
spectrally segmented-enhanced neural network (SENN) model across different datasets. Subfigures
(a,d) correspond to the Salinas Scene dataset, (b,e) represent the Pavia University dataset, and
(c,f) focus on the Indian Pines dataset.
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3.5. Ablation Experiments

To comprehensively demonstrate the efficacy of the proposed model, we conducted
an extensive study utilizing three distinct datasets to assess the influence of varied con-
figurations of network elements. The purpose was to evaluate the performance of our
entire spectral segmentation technique (SENN) in comparison to its different components
e.g., SVM, 2D CNN, 3D CNN, 3D 2D CNN without segmentation and with segmentation
(multibranch). This additional experimentation helps elucidate the distinct impacts of each
component of the proposed model, providing valuable insights into their contributions to
overall performance. The outcomes of this comparative analysis, as showcased in Table 15,
underscore the superior effectiveness of our spectral segmentation approach. In this analy-
sis, a pattern of segmented multibranch components outperforming components without
segmentation can be seen. Even the 3D-2D CNN-SVM without segmentation performs
slightly worse due to the inherent challenge of CNN-SVM models in effectively balancing
the trade-offs between CNNs and SVMs, particularly in high-dimensional hyperspectral
data. Overall, the proposed model (SENN) containing all its constituent components
outperforms the rest of the possible combinations of components. Additionally, it was
anticipated that these experiments might not yield impactful outcomes due to the sheer
volume of data, further justifying the use of segmentation-based dimensionality reduction
to streamline the analysis process.

Table 15. Ablation studies were conducted to analyze the impact of various components’ combina-
tions of the proposed entire SENN approach.

Dataset

Method

Without Segmentation With Segmentation (Multibranch)

2D CNN 3D CNN 3D-2D
CNN SVM

3D-2D
CNN-
SVM

2D CNN 3D CNN 3D-2D
CNN

SENN (Overall
Proposed

Approach)

SA 98.14 98.43 98.87 92.62 98.76 96.21 98.64 99.24 99.58
PU 97.96 98.31 98.65 91.23 97.96 96.86 98.93 99.19 99.46
IP 97.15 97.88 98.23 87.37 97.89 95.67 98.55 99.11 99.18

4. Conclusions and Future Work

In this article, we present the innovative spectrally segmented-enhanced neural net-
work (SENN) tailored for HSI classification. Comprising two core functional submodules,
the SENN incorporates a multi-layer network designed for segmented data to enrich
spectral–spatial information diversity, complemented by a robust SVM classifier. The
SVM’s crucial role involves effectively handling non-linearly separable data and optimiz-
ing class margins to maximize classification accuracy. The proposed model showcases
exceptional performance across three standard datasets, as evidenced by comprehensive
experimental results and insightful ablation studies. Its versatility extends to additional HSI
data, emphasizing its potential for broader applications within the field. Looking ahead,
our future research endeavors aim to explore a more streamlined architecture, strategically
reducing training parameters to diminish computational complexity while preserving
model performance.

Furthermore, our ongoing efforts are directed towards addressing the comparatively
lower classification accuracy observed in the IP dataset. This prompts a focused investi-
gation into refining the neural network model, with the goal of enhancing generalization
capabilities and achieving elevated accuracy across diverse datasets. The commitment to
continual improvement and exploration underscores our dedication to advancing the state
of the art in HSI classification.
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