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Abstract: Hyperspectral imaging captures detailed spectral data for remote sensing. However,
due to the limited spatial resolution of hyperspectral sensors, each pixel of a hyperspectral image
(HSI) may contain information from multiple materials. Although the hyperspectral unmixing (HU)
process involves estimating endmembers, identifying pure spectral components, and estimating
pixel abundances, existing algorithms mostly focus on just one or two tasks. Blind source separation
(BSS) based on nonnegative matrix factorization (NMF) algorithms identify endmembers and their
abundances at each pixel of HSI simultaneously. Although they perform well, the factorization results
are unstable, require high computational costs, and are difficult to interpret from the original HSI.
CUR matrix decomposition selects specific columns and rows from a dataset to represent it as a
product of three small submatrices, resulting in interpretable low-rank factorization. In this paper, we
propose a new blind HU framework based on CUR factorization called CUR-HU that performs the
entire HU process by exploiting the low-rank structure of given HSIs. CUR-HU incorporates several
techniques to perform the HU process with a performance comparable to state-of-the-art methods but
with higher computational efficiency. We adopt a deterministic sampling method to select the most
informative pixels and spectrum components in HSIs. We use an incremental QR decomposition
method to reduce computation complexity and estimate the number of endmembers. Various
experiments on synthetic and real HSIs are conducted to evaluate the performance of CUR-HU.
CUR-HU performs comparably to state-of-the-art methods for estimating the number of endmembers
and abundance maps, but it outperforms other methods for estimating the endmembers and the
computational efficiency. It has a 9.4 to 249.5 times speedup over different methods for different
real HSIs.

Keywords: hyperspectral unmixing (HU); low-rank approximation; nonnegative matrix
factorization (NMF); CUR matrix decomposition

1. Introduction

Hyperspectral imaging technique has attracted much attention in remote sensing,
which collects reflected light of hundreds of contiguous and narrow wavelengths, having
rich spectral information about the various materials in the scene. It is a powerful tool in
different application fields, such as mineralogy, agriculture, surveillance, space exploration,
environmental monitoring, and disease diagnosis [1,2]. There is a tradeoff between the
spectral and spatial resolutions, which leads the observed signature of each pixel to be
a mixture of several materials [3]. HU techniques are source separation methods that
decompose each mixed pixel in HSI into a set of pure spectral signatures called endmembers
and their corresponding fractions called abundance maps. More specifically, the HU process
is composed of three tasks: (1) estimating the optimal number of endmembers, (2) extracting
the endmember signatures, and (3) estimating the abundance maps [4]. Estimating the
optimal number of endmembers, virtual dimensionality (VD) [5], is crucial because of the
performance of extracting endmembers and estimating the abundance maps depending
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on it. Most of HU algorithms mainly focus on the last two tasks of the HU process, i.e.,
estimating the endmembers and abundance maps sequentially or simultaneously [6,7], by
assuming that the number of endmembers is available in advance.

The hyperspectral mixing and unmixing algorithms can be classified into linear and
nonlinear models according to the assumptions of the interaction of light with the ob-
served field of view [4,8,9]. Most existing HU algorithms are based on the linear mixing
model (LMM), a straightforward and simple method for representing the mixing process.
Furthermore, two physical abundance constraints are required while considering linear
unmixing: the nonnegative abundance constraint (ANC) and the abundance sum-to-one
constraint (ASC) [10]. The endmember extraction and abundance maps estimation of the
HU process can be solved separately. Estimating the abundance maps is an ill-posed linear
inversion problem, and we can solve it using the least-squares-based methods, such as fully
constrained least squares (FCLS) [7]. To reduce the accumulative errors in two-stage-based
HU algorithms, the statistical-based HU has been proposed, where the HU is considered a
BSS problem, so the endmembers and abundance maps are estimated simultaneously [11].

Nonnegative matrix factorization (NMF) [12] is the popular method for solving BSS
problems, which has been utilized in the HU process. NMF decomposes the nonnegative
data matrix into a product of two nonnegative matrices: a source matrix and a mixing
matrix. Although standard and constrained NMF methods have been proposed for blind
HU, they do not guarantee to provide a unique solution, the decomposition results depend
on the initialization, and they require high computational costs to obtain the solution
because they are iterative methods. In addition, the interpretation and analysis of the
resultant matrices from NMF are complex.

Because HSIs consist of relatively few prominent features (i.e., endmembers), we can
approximate HSIs using the low-rank approximation method to explore those prominent
features and their fraction at each pixel. Many low-rank decomposition methods exist, such
as Singular Value Decomposition (SVD), QR factorization, NMF, Interpolative Decomposi-
tion (ID), CUR matrix decomposition, and Principal Component Analysis (PCA) [13]. In
order to demonstrate that the HSI data are almost low-rank or can be well approximated
as low-rank data, we consider a real HSI dataset known as the Samson HSI dataset [14].
It comprises 95× 95 pixels with 156 spectral bands and has three reference endmembers
(i.e., soil, tree, and water). The Samson data cub can be reshaped into an HSI data matrix of
size 156× 9025, whose rows represent the spectral bands, and its columns represent the
pixels. Figure 1a shows the Samson data matrix, which clearly can be well approximated
as low-rank data and constructed from a few components. Figure 1b shows the ground
truth of normalized endmembers and their abundance maps of the Samson HSI dataset.
Moreover, we selected 15 pixels randomly from the HSI data matrix and visualized their
reflectance along the spectral bands, as shown in Figure 1c. As can be seen, the 15 signatures
can be represented within three groups (i.e., solid, dash, and dash-dot lines), where each
member in a group is a linear combination of the group members. In other words, each
pixel of the HSI dataset can be represented as linear combinations of the main component
of each group. Thus, the HSI is almost a low-rank and well-approximated by a low rank,
and the rank here represents the number of endmembers.

Inspired by the CUR matrix factorization methods [15,16] for finding the low-rank
approximation, interpreting the resulting matrices from the decomposition, and their
performance in various application areas, we propose a novel framework for performing the
main three tasks of the HU process based on CUR factorization called CUR-HU. It is a new
blind unmixing method incorporating CUR matrix decomposition based on a deterministic
sampling method for selecting the columns and rows from the observed mixed HSIs that
have the maximum independence and provide a unique solution. CUR-HU automatically
estimates the endmembers and their abundance maps without requiring prior knowledge
about the scene. Unlike NMF, CUR-HU does not depend on the initialization method, and
the resulting matrices are easy to interpret as they contain the same data element as the
original given HSIs. To decrease the complexity of computing the SVD of an HSI, which
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the sampling method requires computing the selected indices of rows and columns, the
QR factorization based on an incremental approach is utilized to approximate the SVD
and estimate the number of endmembers in a given HSI. Figure 2 shows an overview
of the proposed framework (i.e., CUR-HU) for performing the whole HU process. The
performance of the proposed method in each stage of the complete HU process is evaluated
using synthetic and real standard HSI datasets, with a comparison with several selected
state-of-the-art HU baselines. The experiments demonstrate that CUR-HU outperforms
other state-of-the-art blind HU algorithms, especially for extracting the endmember spectra
and the computational efficiency. CUR-HU has a 9.4 to 249.5 times speedup over different
state-of-the-art methods for estimating the endmembers and their abundance maps of
different real HSI datasets.
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(a) A reshaped Samson HSI cube into HSI data matrix of size 156× 9025, which can be well approxi-
mated as low-rank data and constructed from a few components..
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(b) Ground truth of normalized endmembers and
their abundance map of the Samson HSI dataset.
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(c) The signatures of 15 random pixels selected
from the HSI data matrix of the Samson dataset.

Figure 1. Samson HSI dataset from the view of low-rank representation.

The contributions of this paper are summarized as follows:

• We propose a new framework based on CUR matrix factorization called CUR-HU for
performing the complete HU process. To the best of our knowledge, this is the first
time that CUR decomposition has been applied to solve the HU problem.

• CUR-HU incorporates several techniques to solve the blind HU problem with un-
mixing performance comparable to state-of-the-art methods but with much higher
computational efficiency. It does not require initialization or prior information about
the scene.

• Various experiments on synthetic and real HSIs were conducted, and the results show
that CUR-HU performs comparably to state-of-the-art methods for estimating the
number of endmembers, extracting the abundance maps, and robustness to spectral
variability. It outperforms other methods for estimating the endmembers and the
computational efficiency.



Remote Sens. 2024, 16, 766 4 of 34

• CUR-HU can be used to initialize the existing HU algorithms, especially iterative
methods that are sensitive to the initialization step. Furthermore, it can provide
supervised information for methods based on deep learning techniques.

• CUR-HU has a 9.4 to 249.5 times speedup over different state-of-the-art methods for
estimating the endmembers and their abundance maps of different real HSI datasets.

The rest of the paper is organized as follows. Section 2 presents the related work for
solving the HU problem. Section 3 briefly introduces the concepts and methods used in
our proposed method, including CUR decomposition, selection method, NMF, and the
linear mixture model (LMM). Section 4 presents the proposed HU method, which is called
CUR-HU. Section 5 provides extensive experiments and performance comparison with the
state-of-the-art methods using both simulated and real HSIs. Finally, the conclusion and
discussion of our future work are presented in Section 6.

𝑿 ≈ 𝑪 𝑼 𝑹

Abundance  maps

𝑿 ∈ ℝ𝑳×𝑵

𝑿
𝑸 ∈ ℝ𝑳×𝒌

𝑹 ∈ ℝ𝒌×𝑵

𝑴 ∈ ℝ𝑳×𝒑 𝑺 ∈ ℝ𝒑×𝑵

Extracted Endmembers

Figure 2. An overview of the proposed framework (i.e., CUR-HU) for solving the blind hyperspectral
unmixing problem. CUR-HU considers the main three stages of the whole HU process.

Notation

In this paper, the lower and upper case bold are used for representing vectors and
matrices, respectively, and xij is the element in i-th row and j-th column of matrix X. We
follow Matlab style notation, i.e., X(I, J) is the submatrix which contains the rows and
columns of X indexed by I and J. The SVD of X = WΣV T in which W ∈ Rm×m and
V ∈ Rn×n are the left and right singular matrices, and Σ ∈ Rm×n contains the singular
values of X. The Frobenius norm of a matrix is ∥X∥F and the Moore–Penrose inverse of X
is X†. The identity matrix of size m×m is represented by Im.

2. Related Work

Various methods have been proposed for estimating the number of endmembers.
They can be categorized into two groups [17]: (1) The eigen analysis-based methods,
e.g., HFC, NWHFC [5], and HySime [18]. The HySime method tries to find the optimal
signal subspace by minimizing the mean-square error (MSE) between the projected data
onto the subspace and the original data, where the number of endmembers is equal to
the optimal dimensionality of the subspace. NWHFC and HFC methods aim to find
the most significant eigenvalue gap between the eigenvalues of the sample correlation
and covariance matrices, which determines the appropriate number of eigenvectors that
can represent the HSIs data. (2) The information-theoretic criteria-based algorithms, e.g.,
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the Akaike information criterion (AIC) and the minimum description length (MDL) [19].
Many algorithms have been proposed to solve the HU problem, and they can be divided
into three classes according to the computational methods: (1) geometric algorithms,
(2) sparse regression-based algorithms [4], and (3) statistical algorithms. Geometrical
methods utilize the orientation of HSIs by assuming that the endmembers of HSI are
the vertices of a simplex with the minimum or maximum volume enclosing the data set
or contained in the convex hull of the data set, respectively. The classical geometrical
algorithms include N-FINDR [20], the pixel purity index (PPI) [21], the vertex component
analysis (VCA) [6], the simplex growing algorithm (SGA) [22], and simplex identification
via split augmented Lagrangian [23]. VCA and N-FINDR are iteratively searching about
the simplex with maximum volume, whose vertices are considered endmembers. VCA is
an iterative approach that projects data in the orthogonal direction to the subspace spanned
by the extracted endmembers in the previous steps, while N-FINDR randomly selects some
pixels as the initial endmembers matrix, then changes those pixels by other pixels to find a
set of pixels with the maximum volume to extract endmembers. Although the geometrical
unmixing methods have worked well for extracting endmembers, they may fail to extract
endmembers from the highly mixed HSI data, especially if the pure spectral signatures
do not exist. Sparse regression-based methods use large known libraries to formulate the
HU problem as a sparse linear regression problem [24,25]. Extracting realistic endmembers
directly from the HSIs data is a big challenge without prior knowledge. Because more large
spectral libraries have become openly available, many algorithms have been proposed to
select the best subset of endmembers signatures from those libraries to represent each pixel
by considering the spectral library as a priori knowledge [26]. This approach aims to use
only a few spectra in a given spectral library to model each mixed pixel in the HSI. It is
called sparse unmixing because the number of endmembers in a given HSI is much smaller
than the available spectra in the library, which leads to a sparse solution. The authors
in [26] proposed a sparse unmixing using spectral a priori information unmixing method
that uses the spectral a priori information in the HSI to address the high mutual coherence
problem of the spectral library. However, extracting the endmembers from spectral libraries
is usually inconsistent with HSI pixel signatures because of acquisition conditions, affecting
the subsequent endmember extraction step, i.e., abundance estimation.

Statistical methods of HU use statistical representation to interpret the mixed pixels.
They are powerful techniques for decreasing the accumulative errors in the two-step-based
HU methods because they consider the HU as a BSS problem to estimate the endmember
signatures and extract the abundance maps simultaneously.

Independent component analysis (ICA) [27,28], Bayesian self-organizing maps [29],
independent factor analysis (IFA) [30], and nonnegative matrix factorization (NMF) [12]
are some of the common statistical methods utilized for HU. HU based on ICA and IFA
methods has been proposed based on two assumptions: the observed spectrum vector
should be a linear of the endmember signatures weighted by the correspondent sources
(abundance fractions) and the sources should be statistically independent. Thus, the HU
itself is not a strict ICA or IFA problem. The authors in [30] claim that the ICA does not
play a competitive role in HSI because the statistical independence of the sources, i.e.,
assumed by ICA and IFA methods, is violated in the HU, compromising the performance
of ICA and IFA methods for solving HU. As a result, nonparametric statistical unmixing
methods based on the dependent component analysis are proposed in [31–33]. It models the
abundance maps as mixtures of Dirichlet densities, which enforces the non-negativity and
constant sum constraints on the abundance fractions. The mixing matrix is estimated using
a generalized expectation–maximization (GEM)-type algorithm. Although this method
provides a reasonable approach to avoid the independence assumption of ICA, the Dirichlet
densities of the abundances need to be acquired in advance. Moreover, a matrix inversion
operation is required in each iteration step, which may lead to performance degradation.
Compared with the sparse regression-based methods and geometrical algorithms, the
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NMF-based HU algorithms are powerful and widely used to extract the endmembers and
their abundance maps simultaneously [34].

NMF-based algorithms work well for solving HU, but they are ill-posed geometric
algorithms, meaning that the solution may not be unique. Various auxiliary regularizers
have been introduced to add to conventional NMF to improve the uniqueness of the HU
solution, e.g., minimum volume rank deficient NMF (Min-vol NMF) [35], l1/2-sparsity
constrained NMF (l1/2-NMF) [36], manifold regularized sparse NMF [37], spatial group
sparsity regularized NMF (SGSNMF) [38], robust collaborative NMF (R-CoNMF) [39],
graph regularized NMF [40], and subspace structure regularized NMF (SSRNMF) [41]. The
SGSNMF method incorporates a spatial group sparsity regularizer into the NMF-based HU
method to explore the sparse structure and the use of spatial information of HSIs. It exploits
the idea that the pixels within a local spatial are expected to have the same pattern in the
low-rank matrix of the abundance map. For l1/2-NMF, the l1/2-norm is used instead of the
l1-norm to obtain a sparse solution. Because the l1/2 regularization provides high unmixing
performance, it is used in different NMF-based HU methods, such as structure-constrained
sparse NMF [42] and graph regularized L1/2-NMF [37]. Recently, nonnegative tensor
factorizations have been introduced to solve the blind HU problem, e.g., Matrix-Vector
Nonnegative Tensor Factorization for Blind HU (MVNTF) [43], which preserves the spatial
and spectral information to perform the factorization on the hyperspectral alternative
2D image. Moreover, HU methods based on deep learning (DL) have been proposed to
achieve more competitive unmixing performance [44–46]. However, there are still several
drawbacks, i.e., requiring many training samples and network parameters to achieve
satisfactory performance, high computational complexity, and difficulty interpreting the
results from the network [47,48]. Most existing HU methods consider only one or two tasks
of the HU process, i.e., estimating the end members and their abundance and assuming
that the number of endmembers is available, which is uncommon in real scenarios. In this
paper, we consider the whole HU process.

3. Preliminaries

This section introduces the primary methods we build on, the Linear Mixture Model
(LMM), NMF, and CUR or Skeleton matrix factorization.

3.1. Linear Mixture Model (LMM)

In this paper, we consider the LMM model [3], in which each light ray interacts with
only an endmember in the scene before reaching the imaging sensor. The spectrum at
each pixel in HSI is modeled as a linear combination of all endmembers. Assume that
endmembers exist in the HSI dataset and the observed spectral data vectors are given by

y = x + e (1)

where x ∈ RL×1 and e ∈ RL×1 are the signal and additive noise, respectively, and L is
the number of spectral bands. The noise here includes endmember variability, model
inadequacies, and sensor noise [49,50]. The signal vectors lie on an unknown p dimension
subspace and are given by

x =
p

∑
k=1

mksk = Ms (2)

where M ∈ RL×p is a full rank matrix with a rank equal to p, where p is the number of
endmembers in HSI, and p < L. Each column of M contains an endmember signature
of HSI, and s ∈ Rp×1 is the abundance vector. Let S = [s1, s2, . . . , sN ] ∈ Rp×N represent
abundance maps matrix. The LMM model can be formulated in a matrix form as

Y = MS + E (3)
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where Y = [y1, y2, . . . , yN ] ∈ RL×N is the HSI data matrix, and E ∈ RL×N is the additive
noise matrix, where N is the number of pixels. The abundance maps matrix should obey
positivity and sum-to-one constraints to be physically meaningful.

3.2. Nonnegative Matrix Factorization

The LMM formulation of the HU problem can be considered a BSS problem to extract
the endmember spectra and the abundance maps simultaneously. NMF can be used to
solve the blind HU problem as it decomposes a given nonnegative data matrix V ∈ Rn×m

+
into two other nonnegative matrices W ∈ Rn×r

+ (the source matrix) and H ∈ Rr×m
+ (the

mixing matrix) which satisfy the following approximation.

V ≈ WH (4)

An infinite number of H and W pairs satisfy the above factorization. For example,
WH =

(
WΓ−1

)
(ΓH) for any invertible Γ ∈ Rr×r

+ matrix. The conventional procedure of
NMF is to formulate the factorization using an objective function that quantifies the quality
of approximation between V and WH, and then, an optimization algorithm is used to
minimize or maximize the defined objective function concerning H and W. One of the
widely utilized objective functions for NMF is the square of the Frobenius norm between
the given data matrix and decomposed matrices as follows,

∥V−WH∥2
F = ∑

ij

(
Vij − (WH)ij

)2. (5)

Although the above equation is convex in H and W alone, it is not convex in H and
W together [12]. Therefore, finding the global minima of this function w.r.t. H and W
analytically is difficult. It is possible to find local minima numerically using optimization
methods.

The HU problem can be represented as a conventional NMF form [12,39,51]. Let the
HSI matrix Y be V, the endmember matrix M is the source matrix, and the abundance
matrix S is the mixing matrix of NMF. Then, the HU problem can be formulated as

arg min
M,S

∥Y−MS∥2
F, s.t. M, S ⪰ 0 (6)

Although various auxiliary regularizers on M and S have been proposed to improve
the uniqueness of the solution, the NMF-based HU methods still have some drawbacks,
such as the initialization methods, the difficulty of driving the objective function, requiring
extensive computational time to solve the optimization problem, the resultant solution
is not unique, and the difficulty of interpreting the resultant matrices concerning the
original HSIs.

3.3. CUR Matrix Factorization

Low-rank matrix approximations based on the selected columns and rows from a
given data matrix naturally provide interpretable results. They have been successfully
applied in various application areas. CUR matrix factorization or CUR decomposition is a
widely-used technique representing the data matrix as a product of three small submatrices
of original data [15,16]. A visual representation of CUR matrix decomposition is shown in
Figure 3. CUR of a matrix A ∈ Rm×n is a low-rank approximation that can be represented as

A ≈ CUR (7)

where C ∈ Rm×c and R ∈ Rr×n matrices are constructed by extracting c columns and r
rows of A, respectively. The matrix U should be formed so that the CUR approximation
error ∥A − CUR∥F is very small. CUR matrix decompositions give more interpretable
results because they represent data in lower dimensional spaces using actual data points as
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basis vectors that maintain sparseness or nonnegativity properties, unlike the other matrix
factorizations. It originated with a pseudoskeleton and truncated QR approximation [52,53].

≈

𝑨 ∈ ℝ𝑚×𝑛 𝑪 ∈ ℝ𝑚×𝑐 𝑼 ∈ ℝ𝑐×𝑟 𝑹 ∈ ℝ𝑟×𝑛

Figure 3. An illustration of CUR matrix decomposition, C and R matrices are subsets of columns and
rows of a data matrix A, respectively.

4. CUR Factorization for Hyperspectral Unmixing (CUR-HU)

This section presents the proposed framework (i.e., CUR-HU) for performing the
main three tasks of the HU process. A general assumption is that a low-dimensional
subspace is hidden in the HSI dataset, as demonstrated in Figure 1. The endmember
signatures of the given HSI represent the macroscopic objects of the HSI scene, e.g., water,
soil, and vegetation. HU algorithms attempt to extract those macroscopic objects from
the observed mixed signals. As those endmember signatures are statistically independent,
extracting them from the mixed observed signals can be achieved by finding a group of
pixel spectra with maximum independence between them. In other words, the extracted
endmember signatures should be more mutually independent than the mixed pixel spectra.
Therefore, such a methodology would be a progression toward extracting more realistic
endmember spectra.

According to the LMM, the spectrum of each pixel of HSI is modeled as a linear
combination of all endmembers, so the HSI data matrix has a low-rank structure with a
rank almost equal to the number of endmembers. To explore the low-rank pattern of HSIs,
we can project the pixels onto low dimensional subspace as follows. Let the HSI matrix be
Y = [y1, . . . , yN ] ∈ RL×N with a span dimension r. Then the basis of the reduced dimension
k < r is a set of basis vectors {ϕ}k

i=1 ⊂ RL, which provides the best approximation to
the original span of Y. The set of basis vectors {ϕ}k

i=1 is constructed to minimize error
as follows;

min
{ϕi}k

i=1

N

∑
j=1

∥∥∥∥∥yj −
k

∑
i=1

(
yT

j ϕi

)
ϕi

∥∥∥∥∥
2

2

, with ϕT
i ϕt =

{
1 if i = t, i, t = 1, . . . , k.
0 if i ̸= t,

(8)

The set of the left singular vectors of Y gives the optimal solution to this minimization
problem. Let the SVD of the HSI data be Y = WΣVT , where W ∈ RL×r and V ∈ RN×r are
left and right singular vectors, respectively, and Σ ∈ Rr×r, with order as σ1 ≥ σ2 ≥ · · · ≥
σr > 0. So the optimal basis vectors for solving are {wi}k

i=1. Although this is an optimal
solution, it is limited to approximating the linear or low-order polynomial nonlinearity
functions. It is computationally expensive and difficult to physically interpret the resultant
singular vectors of a given HSI dataset.

We propose to utilize the CUR matrix decomposition to find the hidden structure
of HSI datasets. Therefore, HSI can be represented using CUR matrix decomposition,
such that for a given HSI matrix Y ∈ RL×N

+ , as Y ≈ CUR, where C ∈ RL×p contains the
most informative p columns that can represent the columns space of the HSI matrix Y (i.e.,
a subset of p pixels that can represent the whole N pixels of HSI), R ∈ Rp×N contains
the most informative rows from Y, and U ∈ Rp×p which makes the difference between
data matrix Y and low-rank approximation matrix CUR as small as possible. Analog to
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Equation (6) of NMF-based HU methods, the HU problem is formulated based on CUR
decomposition as follows.

arg min
C,U,R

∥Y− CUR∥2
F (9)

The C matrix contains the endmembers of HSI, and the UR matrix represents the
abundance matrix whose columns represent the fractional compositions at each of the N
pixels. To construct C and R matrices, randomized and deterministic sampling approaches
can be used. Randomized approaches are based on sampling columns and rows based
on uniform or non-uniform distributions [15,54]. Deterministic approaches consider the
matrix approximation as an optimization problem and try to find the best decomposition
that minimizes the approximation error [55]. They provide superior accuracy when re-
constructing the matrix but have higher computational costs. In this paper, we utilized a
recent deterministic selection method, the discrete empirical interpolation method (DEIM),
because it gives high approximation accuracy, provides the most informative columns
and rows approximating the whole data matrix, and approximates the nonlinear part by
considering the continuous domain as a finite set of discrete points in the continuous do-
main [55,56]. For more details about using the DEIM method to approximate the nonlinear
function, please refer to Appendix A.2.

The DEIM method is completely deterministic and involves few parameters to provide
the selected rows and columns indices of the HSI matrix Y based on the knowledge of the
SVD. Suppose the truncated SVD Y ≈ WrΣrVT

r is computed, then the DEIM algorithm
selects the best rows and columns indices q and p by processing the basis vectors W and V,
respectively, to construct the R and C matrices. Given an orthonormal matrix W ∈ RL×r

and a set of distinct indices p ∈ Rr, then the interpolatory projector for indices p onto the
column span of W is

P ≡ W
(

PTW
)−1

PT (10)

where P = IL(:, p) ∈ RL×r, and the PTW ∈ Rr×r is invertible. This projector P has a critical
characteristic not generally available by orthogonal projectors: for any vector s ∈ RL,

(Ps)(p) = PTPs = PTW
(

PTW
)−1

PTs = s(p) (11)

The original vector s and its projected vector Ps match in the p elements, so this
projector is called an interpolatory projector. DEIM processes each vector of the left singular
vectors W = [w1, . . . , wr]. Starting from the first singular vector w1, which corresponds to
the largest singular value. The first index p1 is selected as the index of the largest magnitude
element in w1, as

|w1(p1)| = ∥w1∥∞ (12)

Now, p contains only the first slected index p1 as p ≡ [p1]. The interpolatory projector
of p1 onto w1 is given by

P1 ≡ w1

(
PT

1 w1

)−1
PT

1 (13)

The second index p2 is selected as the index of the largest element in w2 but after
removing its interpolatory projection in the w1 direction.

r2 = w2 −P1w2, |r2(p2)| = ∥r2∥∞. (14)

Because the P1w2 and w2 are matched in the p1 position, the r2(p1) = 0. So there are
non-repeated indices. Generally, for selecting the index pi, the i− 1 indices are available
and the interpolatory projection matrix is given by

Pi−1 ≡ Wi−1

(
PT

i−1Wi−1

)−1
PT

i−1 (15)
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where Wi−1 is the first i− 1 left singular vectors, Wi−1 =
[

w1 · · · wi−1
]
. Then, the

index pi is computed as

ri ≡ wi −Pi−1wi, |ri(pi)| = ∥ri∥∞ (16)

The process of selecting the column indices q is the same above steps to the right
singular vectors V. Algorithm 1 shows the procedures to compute the selected row indices
p by the DEIM algorithm.

Algorithm 1: Discrete empirical interpolation method algorithm

Input : W ∈ Rm×r left singular vectors matrix (m ≥ r)
Output : p, an integer vector with r distinct entries in {1, . . . , m}

1 w = W(:, 1);
2 [∼, p1] = max(|w|);
3 p = [p1];
4 for i = 2, 3, . . . , r do
5 w = W(:, i);
6 c = W(p, 1 : i− 1)−1w(p);
7 r = w−W(:, 1 : i− 1)c;
8 [∼, pi] = max(|r|);
9 p = [p; pi]

10 end

The interpolation indices p used for constructing the R matrix of CUR decomposition
are selected inductively from the basis vectors of U. After processing all singular vectors
and obtaining the row indices vector p, the R matrix is constructed as R = Y(p, :). Similarly,
obtain q and construct the C matrix as C = Y(:, q).

4.1. Approximating the Singular Vectors

The main limitation of the selection method is requiring the top r right and left
singular vectors. For moderate-size HSI, software libraries can be used to compute SVD.
Unfortunately, this is inefficient for large-scale HSI. Therefore, iterative approaches can
be used to compute the leading r singular vectors of HSI [53,57,58]. We utilize the QR
factorization based on an incremental approach (IQR) to approximate the computation
of the singular vectors and estimate the number of endmembers in the HSI. The main
advantages of IQR are that (1) it is only required to pass once through the HSI matrix Y
for approximating the SVD, leading to efficient storage of massive data sets in memory;
and (2) it satisfies a deterministic error bound in approximating the SVD of low-rank data.
IQR approximates a matrix A ∈ Rm×n as A ≈ QR, where Q ∈ Rm×k that contains k
orthonormal column vectors and R ∈ Rk×n is the upper triangular matrix.

Based on eigenanalysis algorithms of estimating the number of endmember signatures
of HSI and considering the HSI can be well approximated using a low rank, we can
utilize the QR factorization method to estimate the rank of the HSI data matrix, which
represents the number of main components that approximate the HSI [5,17,59]. We use
the QR factorization based on incremental methods for two tasks: (1) approximating the
singular vectors required by the sampling algorithm and (2) estimating the number of
endmember signatures of HSI data. By using the IQR, Algorithm A1 in Appendix A, we
approximate the HSI matrix Y as Y ≈ QR, where Q ∈ RL×p that contains the orthonormal
column vectors, R ∈ Rp×N is the upper triangular matrix, and p is the estimated number
of endmembers. IQR processes one pixel of Y at each step to make it orthogonal with
the previously orthogonalized pixels. After the orthogonality step, the algorithm verifies
if any row of R has a tiny relative norm. If there is such a row, then this row of R and
the corresponding column of Q can be deleted because this column of Q has a small
contribution to the cumulatively computed Frobenius norm of R.
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At the start, we select the first k pixels from the HSI matrix Y which denoted as
Yk = [y1, . . . , yk] ∈ RL×k, and let k = 2, as an initial step. Then, Yk = QkRk, with
Qk ∈ RL×k and Rk ∈ Rk×k. In step 2 of the algorithm, the norm of rows in the R is
computed. According to its value, we can determine which row should be deleted by
incrementing the value of k to obtain the next pixel (column) of Y. To make the pixel yk+1
orthogonal with previously k orthogonalized pixels, the classical Gram–Schmidt operations
can be applied as

r = QT
k yk+1, f = yk+1 −Qkr (17)

For a robust and stable re-orthogonalization step, the classical Gram–Schmidt is re-
placed by the following steps (7–8) of Algorithm A1, as proposed in [60]. This modification
provides a Q matrix which is numerically orthogonal to working precision, and it can be
implemented in an efficient parallel way as it utilizes the Gram–Schmidt process. see [61]
for the full analysis.

The output of the above steps is the orthonormal vector qk+1 and the corresponding
rk+1. Then, the Q and R matrices are updated, as formulated in the algorithm as

Q = [Qk, qk+1]; R =

[
R rk+1
0 ρ

]
(18)

Next is checking whether there is a truncation step by checking the row of the min-
imum relative norm in R. Suppose this row has a relative norm less than the tolerance
parameter (i.e., tol, a positive value controlling the accuracy of decomposition). In that case,
the corresponding column in Q has little contribution to the factorization. The truncation
step is required here by deleting that row from R and replacing it with the last row cor-
responding to the index k + 1 of R the matrix. Similar to how the corresponding column
of Q will delete and put it in its position in the last column of Q matrix. If the minimum
relative norm of rows in R does not achieve the truncation condition, then the last column
in Q, which is qk+1, is accepted as an orthonormal vector, and the process of the algorithm
is continuing to obtain the next pixel from Y. According to the linear model (LMM), each
pixel in HSI data is a linear combination of endmember signatures in the HSI scene. So the
number of column vectors in Q is the minimum number of the subspace dimensions that
can approximate the HSI data, representing the number of endmembers in the HSI scene
(i.e., p = k). In general, the estimated number of endmembers of HSI Y using incremental
QR factorization within a tolerance error tol is p = N − dn, where dn is the number of
times there is satisfaction of the truncation condition (number of deletions that occurred
up to the last iteration) of Algorithm A1. The tolerance parameter tol plays a vital role
in estimating the number of endmembers. A large tolerance value will lead to a smaller
endmembers number than the actual number but will require less storage and computing
time. Conversely, for a smaller tol, the estimated number of endmembers is equal to or
larger than the actual number, and the complexity becomes significant. For more details
about the complexity of approximating the singular vectors using the QR factorization,
please refer to Appendix A.1.

4.2. CUR-HU

In this section, we present the proposed HU framework (i.e., CUR-HU) for performing
the entire unmixing process (i.e., estimating the number of endmembers, estimating the end-
members, and extracting the corresponding abundance maps). As shown in Figure 2, CUR-
HU consists of three main stages, preprocessing, estimating the number of endmembers,
and CUR decomposition. Algorithm 2 shows the pseudocode of the CUR-HU framework.

In the preprocessing stage, the input HSI cube is reshaped to a matrix (i.e., HSI ob-
served data matrix Y), and then, the noise of HSI is estimated to obtain the estimated HSI
matrix X. Various methods for noise estimation have been proposed in the signal process-
ing area and utilized in hyperspectral imagery, such as the nearest neighbor difference
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(NND) [62] and multiple regression theory [63]-based methods. The most straightfor-
ward technique is the NND method, which assumes that the signal component of the
adjacent pixels is almost equal. It is also known as the shift difference method because for a
given two adjacent observed vectors y1 = x1 + n1 and y2 = x2 + n2 in a homogenous area
of the HSI, the covariance matrix of noise can be estimated using the difference between y1
and y2, which yields y1 − y2 = (x1 + n1)− (x2 + n2) ≈ n1 − n2, where x1, x2 and n1, n2
are signal and noise vectors, respectively. However, noise samples are independent and
almost have the same statistics. In this paper, we utilize the multiple regression theory-
based method [5,63]. It outperforms the shift difference technique because of the high
correlation of the neighboring spectral bands in HSIs. The second stage is performing
the QR factorization based on an incremental approach, as presented in Algorithm A1 in
Appendix A. This stage is responsible for two tasks: (1) approximating the singular vectors
for the sampling algorithm and (2) estimating the number of endmembers as presented
in Section 4.1, as shown in lines 4-7 of Algorithm 2. Suppose the number of endmembers
is available by any other existing method. In that case, this stage only approximates the
top r singular vectors of the HSI data matrix. Then, the CUR-HU can be used to estimate
the endmembers and the corresponding abundance maps. Therefore, CUR-HU has much
flexibility to cooperate with the existing algorithms at each stage.

In the third stage, the endmembers and their abundance maps are estimated using
CUR decomposition. The inputs to this stage are the estimated number of endmembers
and singular vectors of HSI data by the second stage and the HSI matrix X. At the start, the
sampling algorithm (DEIM) processes the left and right singular vectors to generate the
rows and columns indices for constructing the C and R matrices of CUR decomposition,
where C contains the most informative columns that can represent all pixels of HSI and R
contains the most informative rows (i.e., selected bands) over the whole pixels, as shown in
lines 8–11 of Algorithm 2. The C and R matrices are unique, as the deterministic sampling
algorithm provides unique indices of selected rows and columns of CUR. After getting the
C and R matrices, the U matrix is constructed to make the approximation error as small as
possible [64].

arg min
U
∥Y− CUR∥2

F (19)

Different methods for constructing the U matrix have been proposed. The simplest
method is using the pseudoinverse of the intersection matrix between C and R matrices.
Given C ∈ RL×p and R ∈ Rp×N , then U is computed as, U = Y†(I, J). Although this is the
simplest solution of U, it gives a high approximation error in approximating high-rank or
noisy data. The close form for the best middle matrix of CUR decomposition regarding the
Frobenius norm error is given by solving the optimization problem in (19), so the optimal
U matrix is given by

U = C†YR† (20)

So, Y ≈ CUR = CC†YR†R , where CC† and R†R are orthogonal projections onto the
span of the columns of C and rows of R, respectively. Therefore, using U = C†YR† gives
the best CUR approximations for given C and R matrices. In other words, the U matrix
is formed by weighting the whole elements of Y, which leads to a small approximation
error [65].

Analog to the NMF-based methods for HU, the matrix C represents the source matrix
of NMF or M matrix of HU LMM, while the UR matrix represents the mixing matrix of
NMF or S matrix in Equation (6). Finally, the nonnegative abundance (ANC) and the
abundance sum-to-one (ASC) constraints are imposed on the UR matrix. For ANC, we set
any negative value of UR to zero, while for ASC, we normalized the output from ANC
constraint to UR.
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Algorithm 2: The pseudocode of CUR-HU

Input : HSI cube Y ∈ Rm×n×L, tol a positive number for controlling the
factorization accuracy.

Output : Number of endmembers p, Endmember matrix M ∈ RL×p, and
Abundance maps S ∈ Rp×N

Preprocessing:
1 Reshape Y into Y ∈ RL×N ; // Where N = m× n.
2 Estimate the noise matrix N ∈ RL×N .
3 Compute the estimated HSI, X = Y−N.

Second Stage:
4 [Q, R, p]←− IQR(X, tol). // Where Q ∈ RL×k.
/* Compute the singular vectors */

5 [Ŵ, Σ, V]←− SVD(R); // Economy-sized SVD.
6 Set W←− QŴ;

Thrid Stage:
/* Get Row and column indices */

7 I ←− DEIM(U); Using Algorithm 1.
8 J ←− DEIM(V); Using Algorithm 1.
/* Construct C, U, and R matrices */

9 C←− X(:, J); // Where C ∈ RL×p.
10 R←− X(I, :); // Where R ∈ Rp×N .
11 Set U = C†YR† ; // Where U ∈ Rp×p.

/* Construct M and S matrices */
12 Set M←− C; and S←− UR;
13 Apply the abundance nonnegativity constraint to S;
14 Apply the abundance sum to one constraint to S;

5. Experiments

For a comprehensive and quantitative comparison between the different algorithms,
the proposed method is evaluated on synthetic and real HSIs datasets. To evaluate the
performance of each stage of the CUR-HU framework, different datasets with different
experimental settings were conducted. All experiments were implemented with MATLAB
R2022a on a desktop computer with an Intel(R) Core(TM) i7-10700 processor @ 2.90 GHz.

5.1. Estimating the Endmember Number

CUR-HU is evaluated for the first task HU process, which is estimating the number
of endmembers in the HSI data. In order to evaluate the QR factorization based on an
incremental approach for estimating the number of endmember signatures, we compare
the performance with state-of-the-art methods, including HySime [18], HFC, NWHFC [5],
SPICE [66], FUN [59], and GENE-AH [17] for synthetic and real HSI datasets.

5.1.1. Synthetic HSI Dataset

For HSI synthetic data, we follow the setup of experiments of the HySime method.
The endmember signatures are selected randomly from the USGS spectral library (https://
www.usgs.gov/labs/spectroscopy-lab/science/spectral-library, accessed on 28 December
2023), and the abundance maps are created according to a Dirichlet distribution [18]. To
evaluate our proposed algorithm in a noisy environment, additive Gaussian noise is added
to the generated HSI datasets. Let the diagonal elements of the noise correlation matrix
follow a Gaussian shape centered at L/2, i.e.,

 https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library
 https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library
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σ2
i = σ2 e

− (i−L/2)2

(2η2)

∑L
j=1 e

− (j−L/2)2

(2η2)

(21)

for i = 1, . . . , L. Here, the parameter η controls the variance of the Gaussian distribution
when η → ∞ corresponds to white noise, η → 0 corresponds to one-band noise, and the
parameter σ2

i controls the total power of noise. The amount of additive noise to HSI is set
by the signal-to-noise ratio (SNR), which is defined as

SNR = 10 log10
E
[
xTx

]
E[εTε]

(22)

where x and ε are the signal and noise, respectively. We evaluated the proposed method
under changing SNR ∈ {50, 35, 25, 15} dB and the number of endmembers p ∈ {3, 5, 10, 15}.
The NWHFC is an extension method of the HFC by adding noise whitening as a prepro-
cessing step. We report the results of both estimated and actual noise correlation matrices
with the NWHFC method. The result based on the noise correlation matrix is shown in
brackets. The false-alarm probability p f parameter is set as p f ∈

{
10−3, 10−4, 10−5} for

both HFC and NWHFC methods. We report the tolerance parameter (tol) that gives the
best estimation of the number of the endmembers.

Table 1 shows the estimated dimension of the signal subspace by different methods
as a function of endmembers number p and SNR for one-band noise η = 0. Although the
HySime method outperforms the other methods, our proposed method has a comparable
performance of estimating the number of endmember signatures with the HySime method,
especially for high SNR cases. For lower subspace dimensions, such as p = 3 and p = 5,
the proposed algorithm can estimate the exact number of endmembers under different
types of noise and different SNR values. It outperforms NWHFC, SPICE, HFC, GENE-
AH, and FUN. The proposed methods perform well for low SNR values (i.e., 25 dB and
15 dB) when setting the tolerance parameter tol to large values (e.g., 1× 10−2 or 1× 10−3).
Overall, the QR factorization based on an incremental approach can estimate the number
of endmembers with a comparable performance to the HySime method.

Table A1 shows the estimated dimension of the signal subspace by different algorithms
as a function of endmember number p and SNR for η = 1/18. For the noisy case (η = 1/18),
the HySime method outperforms all other methods. Our proposed method outperforms the
NWHFC, SPICE, HFC, FUN, and GENE-AH methods. Furthermore, it has a performance
comparable to the HySime method for estimating the number of endmembers of a given HSI.
From Tables 1 and A1, we can observe the effect of the tol parameter of IQR factorization.
For a large tol value, the estimated number of endmember signatures is smaller than the
actual number, especially for low SNR cases, while setting tol to a very small value, the
estimated number of endmembers exceeds the actual number.

5.1.2. Real HSI Dataset

The proposed algorithm is evaluated on two popular real HSI datasets, the Indian Pines
site and Cuprite datasets. The Indian Pines site was collected by AVIRIS [67]. It consists
of 145× 145 pixels with 185 spectral bands. The dataset contains 16 pure materials [68].
The Cuprite dataset originally contained 224 bands. A subset of the dataset was formed
after removing the low SNR bands. This subset consists of 188 spectral bands and contains
250× 190 pixels. The ground truth of the number of endmembers of the Cuprite dataset is
not known. The previous studies frequently fixed the number of endmembers between 9
and 14 [38,69]. The tolerance parameter of the proposed method is set to 1× 10−3. Table 2
shows the estimated endmembers number on the real HSI datasets by different methods.
The proposed method is comparable to the HySime method, but it outperforms the others
for estimating the closest number of endmembers to actual numbers.
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Table 1. Estimation of the number of endmembers of synthetic HSI under changing SNR and p for
(η = 0).

SNR Methods
No. of Endmembers p

3 5 10 15

50 dB

HySime 3 5 10 15
NWHFC (Pf = 1× 10−3) 3(3) 5(5) 7(7) 10(11)
NWHFC (Pf = 1× 10−4) 3(3) 5(5) 7(7) 8(8)
NWHFC (Pf = 1× 10−5) 3(3) 4(4) 7(6) 8(8)
HFC (Pf = 1× 10−3) 3 5 7 11
HFC (Pf = 1× 10−4) 3 5 7 8
HFC (Pf = 1× 10−5) 3 4 6 8
GENE-AH (Pf = 1× 10−3) 6 6 12 15
GENE-AH (Pf = 1× 10−4) 4 6 10 15
GENE-AH (Pf = 1× 10−5) 4 5 10 15
SPICE 3 6 10 15
FUN (Pf = 1) 3 5 10 15
Ours (tol = 2× 10−3) 3 5 10 15

35 dB

HySime 3 5 10 14
NWHFC (Pf = 1× 10−3) 3(3) 4(4) 7(7) 9(9)
NWHFC (Pf = 1× 10−4) 3(3) 4(4) 7(6) 8(8)
NWHFC (Pf = 1× 10−5) 3(3) 4(4) 6(6) 8(8)
HFC (Pf = 1× 10−3) 3 4 7 9
HFC (Pf = 1× 10−4) 3 4 6 8
HFC (Pf = 1× 10−5) 3 4 6 8
GENE-AH (Pf = 1× 10−3) 6 8 11 15
GENE-AH (Pf = 1× 10−4) 4 7 10 15
GENE-AH (Pf = 1× 10−5) 4 5 10 14
SPICE 5 7 11 13
FUN (Pf = 1) 3 5 9 13
Ours (tol = 1× 10−3) 3 5 9 13

25 dB

HySime 3 5 9 14
NWHFC (Pf = 1× 10−3) 3(3) 4(5) 6(6) 9(8)
NWHFC (Pf = 1× 10−4) 3(3) 5(5) 6(6) 7(7)
NWHFC (Pf = 1× 10−5) 3(3) 4(4) 5(5) 7(7)
HFC (Pf = 1× 10−3) 3 5 6 8
HFC (Pf = 1× 10−4) 3 5 6 8
HFC (Pf = 1× 10−5) 3 4 3 2
GENE-AH (Pf = 1× 10−3) 5 7 11 12
GENE-AH (Pf = 1× 10−4) 4 5 12 13
GENE-AH (Pf = 1× 10−5) 4 5 10 13
SPICE 8 7 15 12
FUN (Pf = 1) 3 5 9 12
Ours (tol = 5× 10−3) 4 6 11 12

15 dB

HySime 3 5 8 13
NWHFC (Pf = 1× 10−3) 4(3) 5(5) 11(10) 9(11)
NWHFC (Pf = 1× 10−4) 3(3) 4(4) 3(3) 3(2)
NWHFC (Pf = 1× 10−5) 3(3) 4(4) 3(3) 2(2)
HFC (Pf = 1× 10−3) 3 5 4 5
HFC (Pf = 1× 10−4) 3 4 3 2
GENE-AH (Pf = 1× 10−3) 8 10 8 10
GENE-AH (Pf = 1× 10−4) 7 7 10 9
SPICE 8 37 40 40
FUN (Pf = 1) 38 25 19 23
Ours (tol = 1× 10−2) 3 6 7 11
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Table 2. Estimation of the number of endmembers on real HSI datasets.

Methods Pf /tol
Dataset

Indian Pines Cuprite

HySime - 15 16

HFC
10−3 24 20
10−4 22 17
10−5 20 16

NWHFC
10−3 18 11
10−4 19 10
10−5 18 9

FUN 1 11 19

SPICE - 20 8

Ours
5× 10−3 9 7
1× 10−3 17 12

0.5× 10−3 21 14

5.2. Estimating the Endmembers and Abundance Maps

In this section, CUR-HU is evaluated for estimating the endmembers and their abun-
dance by comparing its performance with state-of-the-art NMF-based HU algorithms for
both synthetic and real HSI datasets. Two widely utilized evaluation metrics for HU algo-
rithms are used to evaluate the performance of the CUR-HU, i.e., Root-Mean-Square Error
(RMSE) and Spectral Angle Distance (SAD), which are computed as

RMSEi =

√√√√ 1
N

N

∑
j=1

(
Sij − Ŝij

)2
(23)

SADi = cos−1

(
m̂T

i mi

∥m̂i∥2∥mi∥2

)
. (24)

where RMSEi measures the error between the ith ground truth abundance map Si and
the corresponding extracted abundance map Ŝi, and SADi measures the spectral angle
between the ith extracted endmember m̂i and the corresponding ground truth mi. Fur-
thermore, the average values of RMSE and SAD are reported. For these experiments on
synthetic and real HSI datasets, we follow a procedure similar to [70,71]. We evaluated
the performance of CUR-HU by comparison with the state-of-the-art blind NMF-based
HU baselines, l1/2-NMF [72], R-CoNMF [39], Min-vol NMF [35], KbSNMF-div [70], SS-
RNMF [41], MVNTF [73], and SGSNMF [38].

5.2.1. Synthetic HSI Datasets

The synthetic HSI dataset contains three endmembers, seawater, clintonite, and sodium
bicarbonate, with 480 spectral bands, which were selected from the USGS spectral library.
The synthetic image was generated using the hyperspectral imagery synthesis toolbox
(HSIST) (https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_
tools_for_MATLAB, accessed on 28 December 2023). HSIST was used to generate the
abundance maps with a size of 64× 64 pixels according to the Spherical Gaussian dis-
tribution. Figure 4 shows the ground truth of the normalized endmembers and their
abundance maps.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
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Figure 4. Ground truth of the normalized endmembers and their abundance maps of the synthetic
HSI dataset.

Table 3 shows the performance of CUR-HU in terms of SAD and RMSE for a synthetic
HSI dataset. In order to see the effect of ANC and ASC constraints on the abundance maps
from the proposed method, we report the RMSE for considering UR (i.e., S) with ANC and
UR with both ASC and ANC constraints as the abundance maps (i.e., S), which is the final
output from Algorithm 2.

Table 3. The unmixing performance comparison in terms of SAD and RMSE for a simulated dataset.
The best performances are in bold typeface; the second-best performances are underlined; and the
third-best performances are italicized.

Methods

Materials
Average

Seawater Clintonite Sodium Bicarbonate

SAD RMSE SAD RMSE SAD RMSE SAD RMSE

MVNTF 0.3905 0.4088 0.1326 0.1506 0.0567 0.1324 0.1933 0.2306
l1/2-NMF 0.6855 0.2488 0.2990 0.0573 0.0168 0.2394 0.3337 0.1818
Min-vol NMF 0.8891 0.1052 0.2803 0.0854 0.0188 0.0745 0.3961 0.0884
R-CoNMF 1.7408 0.1753 0.7109 0.1473 0.0614 0.1475 0.8377 0.1569
SSRNMF 0.3017 0.0817 0.1410 0.0774 0.0160 0.0768 0.1529 0.0786
KbSNMF-div 0.2746 0.3190 0.1119 0.1200 0.1311 0.2985 0.1725 0.2458
SGSNMF 0.5416 0.3579 0.2288 0.2906 0.0090 0.1123 0.2598 0.2538
Ours-ANC 0 4.33 ×10−15 0 9.15 ×10−17 2.10 ×10−8 6.98 ×10−17 7.02 ×10−9 1.50 ×10−15

Ours-ANC-ASC 0 3.48 ×10−15 0 1.55 ×10−15 2.10 ×10−8 2.41 ×10−15 7.02 ×10−9 2.48 ×10−15

As can be seen, using the ANC constraint with abundance maps has no effect because
the CUR decomposition keeps the nonnegative property of the HSI data. The abundance
matrices of UR with ANC and UR with both ASC and ANC constraints are donated
as UR1 and UR2, respectively. Figure 5 shows the estimated abundance maps by the
HU-CUR algorithm. The proposed method can extract the exact abundance maps of the
simulated dataset. The reason for the high performance of the proposed methods is that
the synthetic HSI data consists of pure endmember signatures, which are distinguished
from each other. Therefore, the CUR-HU can extract the exact endmembers as the selection
method procedures select the most distinguished pixels in the HSI data. Considering the
R matrix as the abundance maps without weighting it by the U matrix leads to a high
estimation error, as shown in the second row of Figure 5.

In order to see the effect of selecting more rows and columns of CUR of the HSI
dataset, Figure 6 shows the ground truth and the estimated endmembers by CUR-HU of
the simulated dataset. The first six endmembers extracted by CUR-HU capture the three
endmembers, e.g., the extracted endmembers C3, C2, and C1 are almost the same as the
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ground truth endmembers GT1, GT2 and GT3, respectively. If the number of endmembers
selected by the proposed method increases, highly similar endmembers will exist (e.g.,
C5 and C6). Selecting only three columns from the HSI data using CUR-HU is enough to
capture exactly the three endmembers of the HSI simulated data.

Clintonite SodiumbicarbonateSeawater

G
T

R
UR

UR
1

UR
2

Figure 5. Ground truth and extracted abundance maps by CUR-HU of simulated HSI: 1st row, ground
truth (GT); the 2nd, 3rd, 4th, and 5th rows contain the extracted abundance maps by R, UR, UR1,
and UR2, respectively.
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Figure 6. Normalized ground truth and extracted endmembers by CUR-HU of simulated HSI: 1st
row, ground truth endmember signatures; the 2nd and 3rd rows contain the first 6 endmembers
extracted by CUR-HU.

As can be seen, the proposed method can extract the exact abundance maps and end-
member signatures. CUR-HU outperforms other methods for extracting the endmembers
and their corresponding abundances of the synthetic HSI dataset.
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5.2.2. Real HSI Datasets

In order to evaluate the performance of the CUR-HU method in the real scenario, a set
of real HSIs, including the Samson, Cuprite, and Urban datasets from [14], were used.

• Samson HSI dataset: It consists of 95× 95 pixels with 156 spectral bands and has
three reference endmembers. The ground truth of normalized endmembers and their
abundance maps of Samson HSI are shown in Figure 1b.

• Urban HSI dataset: After pre-processing, it consists of 307× 307 pixels with 162 spec-
tral bands ranging from 400 to 2500 nm and has a 10 nm spectral resolution. It has
different ground truth versions. We use the one that has five endmembers.

• The Cuprite dataset: After pre-processing, it consists of 188 spectral bands covering
wavelengths ranging from 370 to 2480 nm with 250× 190 pixels, and 12 endmembers
are selected as a reference.

Figure 7 shows the extracted endmembers using CUR-HU for the Samson HSI dataset.
Extracted endmembers C3, C1 or C8, and C2 or C6 are almost similar to the ground truth
of endmember signatures of water, tree, and soil, respectively.
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Figure 7. Normalized ground truth and extracted endmembers by CUR-HU of Samson HSI: 1st row,
ground truth endmember signatures; the 2nd, 3rd, and 4th rows contain the first 9 endmembers
extracted by CUR-HU.

Figure 8 shows the estimated abundance map of R, UR, UR1, and UR2 matrices for the
Samson dataset. As can be seen, the estimated abundance maps after applying both ANC and
ASC constraints (i.e., UR2, final S from Algorithm 2) are very close to their ground truth.

Table 4 reports the quantitative comparisons regarding SAD and RMSE metrics for the
Samson dataset. As can be seen, CUR-HU outperforms the method in terms of SAD for
estimating the endmembers. It has the best SAD value for estimating the first endmem-
ber (i.e., soil) and the second-best value for estimating the tree and water endmembers.
However, it has the best overall average performance. CUR-HU outperforms the MVNTF,
l1/2-NMF, R-CoNMF, and SSRNMF methods for extracting the abundance maps in terms
of the RMSE metric.
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Figure 8. Ground truth and extracted abundance maps by CUR-HU of Samson HSI: 1st row, ground
truth (GT); the 2nd, 3rd, 4th, and 5th rows contain the extracted abundance maps by R, UR, UR1,
and UR2 matrices, respectively.

Table 4. The unmixing performance comparison in terms of SAD and RMSE for a Samson HSI dataset.
The best performances are in bold typeface; the second-best performances are underlined; and the
third-best performances are italicized.

Methods

Materials
Average

Soil Tree Water

SAD RMSE SAD RMSE SAD RMSE SAD RMSE

MVNTF 0.1488 0.3517 0.0944 0.2454 0.0887 0.4162 0.1106 0.3378
l1/2-NMF 0.3455 0.4217 0.1433 0.0432 0.3513 0.2359 0.2800 0.2336
Min-vol NMF 0.3463 0.0967 0.2315 0.1245 0.2429 0.0432 0.2736 0.0881
R-CoNMF 0.1253 0.0431 0.0105 0.0118 0.3219 0.5321 0.1526 0.1957
SSRNMF 0.6091 0.3832 0.0750 0.0325 0.1624 0.1654 0.2822 0.1937
KbSNMF-div 0.2078 0.1574 0.0647 0.0911 0.2014 0.0967 0.1580 0.1151
SGSNMF 0.3743 0.0532 0.1721 0.0882 0.2941 0.1432 0.2802 0.0949
Ours-UR 0.0404 0.2189 0.0219 0.2765 0.1189 0.1267 0.0604 0.2073
Ours-ANC 0.0404 0.2189 0.0219 0.2764 0.1189 0.0950 0.0604 0.1968
Ours-ANC-ASC 0.0404 0.1217 0.0219 0.1040 0.1189 0.1676 0.0604 0.1311

As mentioned above, the Urban HSI version that we used has five endmembers as
the ground truth (i.e., Asphalt, Grass, Tree, Roof, and Dirt). Figure A1 shows the extracted
endmembers using CUR-HU for the Urban dataset. As can be seen, CUR-HU can estimate
accurate endmembers with almost the same shape and close to the ground truth. Figure 9
shows the estimated abundance map of R, UR, UR1, and UR2 matrices for the Urban dataset.

Table 5 reports the quantitative comparisons regarding SAD and RMSE metrics for
the Urban dataset. We report the RMSE value of the estimated abundance maps (i.e.,
UR2), which is the final output after applying both ANC and ASC constraints. CUR-HU
outperforms all other methods for extracting the endmembers of the Uraban HSI dataset,
and for estimating the abundance maps, it has the best average RMSE value compared to
other methods. Although the quantitative results of the RMSE values do not necessarily
reflect a high estimation accuracy of abundance maps, the proposed framework can be



Remote Sens. 2024, 16, 766 21 of 34

utilized with different HU algorithms as an initialization step to provide them the initial
values of the number of endmembers, endmember signatures, and abundance maps.

Grass Tree Roof DirtAsphalt
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UR
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2

Figure 9. Ground truth and extracted abundance maps by CUR-HU of the Urban HSI: 1st row, ground
truth (GT); the 2nd, 3rd, 4th, and 5th rows contain the extracted abundance maps by R, UR, UR1,
and UR2, respectively.

Table 5. The unmixing performance comparison in terms of SAD and RMSE for a real data set, “Urban
HSI”. The best performances are in bold typeface; the second-best performances are underlined; and
the third-best performances are italicized.

Methods

Materials
Average

Asphalt Grass Tree Roof Dirt

SAD RMSE SAD RMSE SAD RMSE SAD RMSE SAD RMSE SAD RMSE

MVNTF 0.1721 0.3354 0.2080 0.3164 0.2310 0.3183 0.3941 0.1858 0.3689 0.2004 0.2748 0.2713
l1/2-NMF 0.2966 0.3197 0.4993 0.2410 0.1603 0.4607 0.2518 0.5350 0.3379 0.4293 0.3092 0.3917
Min-vol NMF 0.1849 0.1376 0.1045 0.1490 0.1798 0.1064 0.1930 0.2130 0.1521 0.5409 0.1628 0.2294
R-CoNMF 0.2017 0.1980 0.2786 0.3010 0.2125 0.1258 0.2478 0.1986 0.2435 0.5210 0.2368 0.2689
SSRNMF 0.0599 0.3237 0.1780 0.2437 0.1795 0.2660 0.4217 0.2851 0.1534 0.3589 0.1985 0.2955
KbSNMF-div 0.1252 0.1654 0.2821 0.2354 0.1498 0.4240 0.1621 0.4584 0.1742 0.5789 0.1787 0.3724
SGSNMF 0.4173 0.5578 0.3434 0.2545 0.1499 0.2692 0.3822 0.2256 0.3359 0.5610 0.3257 0.3736
Ours 0.1197 0.2886 0.1485 0.4110 0.0736 0.2073 0.0981 0.1276 0.0611 0.2794 0.1003 0.2628

We only report the unmixing performance regarding the SAD values for the Cuprite
dataset because the ground truth of Cuprite HSI contains only endmember signatures [14].
Figure 10 shows the extracted endmembers using CUR-HU for the Cuprite dataset. As can
be seen, CUR-HU almost estimates the same shape of the ground truth endmembers.
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Figure 10. Ground truth endmember spectra and extracted endmember spectra of the “Cuprite
dataset”: the blue line is the ground truth, and the red line represents the estimated endmembers by
CUR-HU.

To quantify the estimated endmembers by CUR-HU with the other blind NMF-based
HU methods, Table 6 reports the SAD values for each estimated endmember and the aver-
age SAD value over the endmembers. The EM1 to EM12 represent the Alunite, Andradite,
Buddingtonite, Dumortierite, Kaolinite 1, Kaolinite 2, Muscovite, Montmorillonite, Non-
tronite, Pyrope, Sphene, and Chalcedony endmember signatures of the Cuprite HSI dataset,
respectively. As can be seen, the proposed method outperforms the MVNTF, l1/2-NMF,
R-CoNMF, and SGSNMF methods for estimating the endmembers of the Cuprite dataset in
terms of SAD value. It has comparable performance to KbSNMF-div and Min-vol NMF
methods. Overall, CUR-HU can estimate the endmember and abundance map matrices
with comparable accuracy to the state-of-the-art HU method based on the NMF.

Table 6. The unmixing performance comparison in terms of SAD for a real data set, “Cuprite HSI”.
The best performances are in bold typeface; the second-best performances are underlined; and the
third-best performances are italicized.

Methods
Materials

Average
EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 EM10 EM11 EM12

MVNTF 0.3938 0.3118 0.5634 0.3161 0.4766 0.4595 0.2555 0.3130 0.2899 0.3846 0.4048 0.3648 0.3778
l1/2-NMF 0.9145 0.5638 0.8468 0.7002 0.2366 0.5869 0.4558 0.1127 1.0758 0.9745 1.0424 0.2291 0.6449
Min-vol NMF 0.4747 0.1161 0.1908 0.1316 0.4535 0.4703 0.3358 0.1651 0.1845 0.4885 0.2821 0.3511 0.3037
R-CoNMF 0.5745 0.2054 0.1936 0.2515 0.5683 0.4079 0.3534 0.2266 0.4106 0.4181 0.3770 0.5228 0.3758
SSRNMF 0.2521 0.1760 0.1885 1.0213 0.1375 0.1625 0.2240 0.1311 0.1249 0.0595 0.6160 0.2394 0.2777
KbSNMF-div 0.3162 0.1977 0.2731 0.1864 0.2842 0.1459 0.2086 0.4222 0.5450 0.2630 0.3174 0.4818 0.3035
SGSNMF 0.7456 0.5926 0.1182 0.7599 0.5824 0.7393 0.5179 0.5160 0.2102 0.4753 0.4875 0.6865 0.5360
Ours 0.3504 0.3774 0.4062 0.2939 0.2701 0.2256 0.4268 0.3089 0.3060 0.3096 0.2803 0.3071 0.3222

5.3. Spectral Variability Point of View

In this section, we evaluate the unmixing performance of CUR-HU under the spectral
variability HSI datasets. We compare the performance with the state-of-the-art methods,
such as the fully constrained least squares (FCLS), the Perturbed LMM model (PLMM),
the Extended Linear Mixing Model (ELMM), the Generalized LMM (GLMM) [74], and
DeepGUn [75]. In all experiments, the VCA algorithm was utilized to extract the end-
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members of HSIs data and initialize the methods requiring the endmembers reference
matrix. The abundance maps from the FCLS algorithm were utilized to initialize all other
methods. CUR-HU does not require initialization for the endmembers or abundance
maps. To evaluate the performance of unmixing algorithms, we consider the Normalized
Root-Mean-Squared Error (NRMSE) for the estimated abundance maps (NRMSEA) and
reconstructed images (NRMSEY ). The NRMSE between a true, generic matrix X and its
estimate X̂ is computed as

NRMSEX =

√
∥X− X̂∥2

F
∥X∥2

F
(25)

5.3.1. Synthetic HSI Datasets

For a comprehensive and quantitative comparison between the different algorithms,
we generated four synthetic datasets, namely (SD0, SD2, SD3, and SD4), with 50× 50 pixels
for (SD1, SD2, and SD3) and 70× 70 pixels for (SD0). These synthetic datasets were created
using three and five 224-band endmember signatures for (SD0, SD1, SD2) and (SD3), respec-
tively. The endmember signatures extracted from the USGS library and their abundance
maps are represented in the last column of Figure 11. We adopted the generation of those
datasets as used in [75,76]. The spectral variability of endmembers was imposed using
different strategies for each dataset. For the SD0 dataset, we utilized the variability model
based on pixel-wise multiplicative factors generated by random piecewise-linear functions
as used in [77], while for SD1, we adopted the variability model used in [74], forming from
band-dependent scaling factors that were smoothly varying in the spectral and spatial
dimensions. For SD2, we considered a simple strategy used in [75,78] to emulate the real
scenario of errors in atmospheric compensation as a function of viewing the geometry
given the diffuse and direct light on the scene and the solar path transmittance. For SD3,
the endmembers pure pixels of five materials (tree, asphalt, metal, dirt, and roof) were
extracted manually from HSI to emulate the realistic spectral variability. Finally, white
Gaussian noise was added to all synthetic datasets to set the SNR to 30 dB. The optimal
parameters of each method were selected by using the grid search for each dataset. The grid
search ranges of each parameter were chosen according to the ranges discussed and tested
by authors in the original publications. For both GLMM and ELMM, the parameters were
chosen among the following ranges: λM, λS ∈ [0.01, 0.1, 1, 5, 10, 50], λA ∈ [0.001, 0.01, 0.05],
and λΨ, λψ ∈

[
10−6, 10−3, 1, 103]. For the PLMM, the grid search ranges of α, γ, and β

were selected as [0.01, 0.1, 0.35, 0.7, 1.4, 25], [10−2, 0.1, 1, 10, 102], and [10−9, 10−5, 10−4, 10−3],
respectively.

The execution time of each algorithm is reported as the average running time over ten
iterations. For a fair comparison, the running time performance of the FCLS method is not
included because the FCLS method is used as an initialization step for other methods. We
also used the VCA method to initialize and provide the number of endmember signatures
for all methods.

Figure 11 shows the qualitative results of estimating the abundance maps for the
synthetic datasets. For SD3 and SD4, the estimated abundance maps by CUR-HU (CUR-
Maps) are much closer to the ground truth than the other methods, as shown in Figure 11c,d.
Table 7 shows the quantitative results of the estimated abundance map, reconstruction
error of the HSI, and algorithm running time of different methods for synthetic datasets.
CUR-HU outperforms the other methods for estimating the abundance maps for SD3
and SD4 datasets and has comparable performance with other methods for estimating
abundance maps of SD0 and SD1. Furthermore, CUR-HU has comparable accuracy for the
reconstruction of the HSI data. According to the running time, our method outperforms all
other methods.
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Table 7. Performance comparison of different HU methods for synthetic HSIs. The best performances
are in bold typeface; the second-best performances are underlined; and the third-best performances
are italicized.

Methods

Data Sets

SD0 SD1 SD2 SD3

NRMSEA NRMSEY Time (s) NRMSEA NRMSEY Time (s) NRMSEA NRMSEY Time (s) NRMSEA NRMSEY Time (s)

PLMM [77] 0.2604 0.0007 100.6 0.1197 0.0336 18.87 0.2028 0.0302 37.91 0.5066 0.0320 303.5
ELMM [79] 0.2554 0.0321 49.06 0.1110 0.0231 22.64 0.1997 0.0238 25.81 0.4385 0.0106 21.97
GLMM [74] 0.2480 0.0235 41.50 0.1146 0.0226 25.60 0.1841 0.0226 36.77 0.4371 0.0108 26.45
DeepGUn [75] 0.0566 0.0448 75.20 0.0969 0.0384 36.40 0.1613 0.0457 48.96 0.2550 0.1403 96.23
Ours 0.1896 0.0320 0.27 0.3017 0.0378 0.17 0.1173 0.0450 0.11 0.2532 0.0587 0.10
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Figure 11. Abundance maps of synthetic data sets using different HU methods (FCLS, PLMM, ELMM,
GLMM, and CUR-HU). The colors represent the abundance values from blue (sk = 0) to red (sk = 1).

5.3.2. Real HSI Data

To evaluate the performance of CUR-HU by comparing it with other methods, we
considered three real HSI datasets (i.e., Samson, Houston, and Jasper Ridge datasets). The
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Samson dataset is the same HSI dataset that was utilized in the previous section. Houston
and the Jasper Ridge HSIs were captured by the AVIRIS instrument with 224 spectral bands.
After preprocessing, the Houston and the Jasper Ridge HSIs contain 188 and 198 spectral
bands, respectively, and each of them has four endmember signatures as a reference [79].
The number of pixels of the Houston and the Jasper Ridge HSIs is 105× 128 pixels and
100× 100 pixels, respectively. Figure 12 shows the estimated abundance map of the Samson
HSI dataset using different HU methods (i.e., FCLS, PLMM, ELMM, GLMM, and CUR-
HU). As can be seen, the estimated abundance map from the proposed method has a
clear performance improvement over the other methods, especially for the soil and water
abundance maps.
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Figure 12. Abundance maps of Samson HSI for all tested methods. The colors represent the abundance
values from blue (sk = 0) to red (sk = 1).

Figure A2a shows the estimated abundance map of the Houston HSI dataset. Although
the performance of the proposed method for estimating the oncrete abundance map is
weak, it leads to a considerably stronger Met, Roofs and Vegetation abundance maps but a
comparable performance for Asphalt abundance map. The estimated abundance maps for
the Jasper Ridge HSI dataset are shown in Figure A2b. The performance of the proposed
method is comparable with other methods for estimating abundance maps (i.e., Water,
Vegetation, and Soil). Although there is confusion between Water and Road abundance
maps, the estimated road region is best compared to other maps.
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Table 8 shows the quantitative results for different methods on real HSIs. Because
the ground truth of the abundance maps is not available, we use the reconstruction error
NRMSEY metric to evaluate the quality. CUR-HU has a comparable performance with
other methods. Although the ELMM, GLMM, and PLMM methods can achieve arbitrarily
small NRMSEY , it does not necessarily reflect a high estimation accuracy of abundance
maps, as shown in Figures A2a,b and 12. For the execution times, the proposed method
outperforms all other algorithms.The speedup of CUR-HU over PLMM, ELMM, GLMM,
and DeepGUn methods ranged between 9.4 to 249.5 times estimating the endmembers and
their abundance maps of Samson, Houseton, and Jasper Ridge HSI datasets.

Table 8. Performance comparison of different HU methods for real HSIs. The best performances
are in bold typeface; the second-best performances are underlined; and the third-best performances
are italicized.

Methods
Data Sets

Samson Houseton Jasper Ridge

NRMSEY Time (s) NRMSEY Time (s) NRMSEY Time (s)

PLMM [77] 0.0239 81.68 0.0713 412.65 0.0553 157.23
ELMM [79] 0.0119 33.19 0.0171 72.50 0.0278 90.87
GLMM [74] 0.0011 45.86 0.0016 75.88 0.0032 74.23
DeepGUn [75] 0.0862 121.88 0.2355 259.60 0.1094 209.64
CUR-HU 0.0425 3.54 0.0588 5.13 0.0773 0.84

Overall, the proposed method yielded a comparable unmixing performance with
no parameter tuning and at high computational efficiency. Furthermore, the proposed
framework can be utilized in the HU algorithms as an initialization step to provide the
number of endmembers, endmember signatures, and abundance maps.

6. Conclusions

In this paper, we propose a new hyperspectral unmixing (HU) framework based on
CUR matrix decomposition called CUR-HU that performs the entire HU process, which
consists of three stages (i.e., estimating the optimal number of endmembers, estimating the
endmembers and their corresponding abundance maps). However, most of the existing
HU algorithms mainly focus on only one or two tasks of the HU process. CUR-HU is a fully
unsupervised method, consists of three main stages, and incorporates several techniques to
perform the HU process with high computational efficiency. For estimating the number of
endmembers, we utilized a QR factorization based on an incremental method (IQR), used
for approximating the singular vectors of the hyperspectral image (HSI) that are required
for the deterministic selecting method, which significantly improves the scalability of the
proposed method. Then, for the blind HU that estimates the endmembers and their abun-
dance maps simultaneously, we proposed a method based on CUR matrix decomposition
with a deterministic sampling method (i.e., DEIM). A unique advantage of our method is
that the CUR decomposition based on IQR decomposition provides the matrix rank infor-
mation for estimating the number of endmembers, and at the same time, we can compute
the low-rank approximation of the original data with meaningful interpretation. Extensive
experiments were conducted on various synthetic and real HSIs datasets to demonstrate
the effectiveness of each stage of the proposed framework. The experiment results show
that CUR-HU performs comparable to state-of-the-art methods for estimating the number
of endmembers and abundance maps. However, it outperforms other methods for esti-
mating the endmembers and the computational efficiency. Furthermore, CUR-HU shows
robustness to spectral variability and is simple to implement and applicable to parallelizing.
The proposed framework can be utilized with the existing HU algorithms to initialize the
number of endmembers, signatures, and abundance maps. It can also be used to provide
supervised information for HU methods based on deep learning techniques. CUR-HU
has a 9.4 to 249.5 times speedup over different state-of-the-art methods for estimating the
endmembers and their abundance maps of different real HSI datasets.
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Appendix A. QR Factorization Based on an Incremental Method

In general, at step t of the algorithm, the approximated QR factorization is given by

Yt ≈ QtRt

where Qt contains the orthonormal columns, Rt is the triangular factor at step t, and Yt
contains the first t columns of HSI data matrix Y [55]. So,

∥Yt −QtRt∥F ≤ tol · dt · ∥Rt∥F

where ∥.∥F is the Frobenius norm, and dt is the number of row/column deletions (number
of truncation steps) that have been happened up to and including step t. At this point,
the dimension of Qt is L × (t− dt), Rt is (t− dt)× t, and dt = min{L, N}− k, where
k = rank(QR).

Assume that the difference error matrix at the step t is Et = At −QtRt, and let

∥Et∥F ≤ tol · dt · ∥Rt∥F

By using Gram–Schmidt to orthogonalize the next column t + 1 of Y, the QR factoriza-
tion will update as

Yt+1 = Qt+1Rt+1 + [Et, 0]

In the case of no truncation occurring, then dt+1 = dt and ∥Rt∥F ≤ ∥Rt+1∥F. The
norm of the error matrix is

∥Et+1∥F = ∥[Et, 0]∥F ≤ tol · dt · ∥Rt∥F ≤ tol · dt+1 · ∥Rt+1∥F.

In other words, each step has a row and column deleted from or added to R and Q,
respectively, according to the truncation condition.

Assume that after the number deletions dt, the matrix Rt has dimension m× j (i.e.,
m = j− dj ) and the index of the row of the minimum norm is i. Furthermore, assume
that R̂t+1 and Q̂t+1 are obtained from Rt+1 and Qt+1 by removing the ith row and column,
respectively. The truncation case occurs if rT

i = eT
i Rt+1 satisfies

∥∥rT
i

∥∥ ≤ tol ·
∥∥∥R̂t+1

∥∥∥
F
,

then deleting row i of Rt+1 and column i of Qt+1 column i of Qj+1 and row i of Rj+1 and
replacing Qt+1 and Rt+1 with Q̂t+1 and R̂t+1. So,

Q̂t+1R̂j+1 = Qt+1

(
Rt+1 − eirT

i

)
Hence,

Yt+1 = Qt+1

(
Rt+1 − eirT

i

)
+ [Et, 0] + Qt+1eirT

i
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Furthermore, R̂t+1 contains row m + 1 of Rt+1, which has a norm larger than the row
determined for deletion. At the end of the truncation step, the Qt+1 and Rt+1 replaced with
Q̂t+1 and R̂t+1 to obtain the approximation within

∥Yt+1∥ ≤ tol · dt+1 · ∥Rt+1∥F

where dt+1 = dt + 1.

Algorithm A1: Estimating the endmembers number

Input : HSI data matrix Y ∈ RL×N and tol.
Output : Q ∈ RL×p, R ∈ Rp×N , and the number of endmembers p.

1 Select k≪ min(L, N) ;
2 Compute QR decomposition for the first k pixels of Y , and N(i) = ∥R(i, :)∥2 for

i = 1, . . . , k ;
3 Set t = k + 1 ;
4 while (t ≤ n) do
5 y = Y(: t) ;

/* Re-orthogonalization step */
6 r = QTy;
7 f = y−Qr; c = QTf; f = f−Qc;
8 r = r + c; ρ = ∥f∥; q = f/ρ;

/* Updating step */

9 Q = [Q, q]; R =

[
R r
0 ρ

]
;

10 N(i) = N(i) + r(i)2 for i = 1, . . . , k;
11 N(k + 1) = ρ2; FnormR = sum(N);
12 [σ, imin] = min(N(1 :k+1));
13 if σ < ( tol 2) ∗ ( FnormR − N (imin)) then

/* truncation required */
14 if imin < k + 1 then
15 R(imin, :) = R(k + 1, :) ;
16 Q(:, imin) = Q(:, k + 1);
17 N(imin) = N(k + 1)
18 end
19 Q = Q(:, 1 : k);
20 R = R(1 : k, :);
21 else

/* no truncation */
22 k = k + 1;
23 end
24 t = t + 1 ;
25 end
26 Set p ≡ k;

Appendix A.1. The Complexity of Computing the Singular Vectors of HSI

The optimal computing of SVD of a large HSI dataset Y of size L by N requires
O(LN2 + L2N + N3). By approximating the HSI Y using the QR factorization as follows,
Y ≈ QR where Q ∈ RL×p that contains the orthonormal column vectors, R ∈ Rp×N is
the upper triangular matrix, and p is the estimated number of endmembers. Therefore,
computing the SVD based on the QR factorization requires O(LNp2), which is more
efficient [58].
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Table A1. Estimation of the number of endmembers of synthetic HSI under changing SNR and p for
(η = 1/18).

SNR Methods
No. of Endmembers p

3 5 10 15

50 dB

HySime 3 5 10 15
NWHFC (Pf = 1× 10−3) 9(3) 10(5) 12(7) 10(11)
NWHFC (Pf = 1× 10−4) 48(3) 33(5) 54(10) 34(10)
NWHFC (Pf = 1× 10−5) 43(3) 28(5) 41(9) 27(10)
GENE-AH (Pf = 1× 10−3) 4 7 11 16
GENE-AH (Pf = 1× 10−4) 5 5 11 15
GENE-AH (Pf = 1× 10−5) 3 5 10 20
SPICE 3 5 11 14
FUN (Pf = 1) 3 5 10 14
Ours (tol = 2× 10−3) 3 6 9 14

35 dB

HySime 3 5 10 14
NWHFC (Pf = 1× 10−3) 3(3) 4(4) 7(7) 9(9)
NWHFC (Pf = 1× 10−4) 9(3) 9(5) 11(7) 8(10)
NWHFC (Pf = 1× 10−5) 3(3) 4(4) 6(6) 8(8)
GENE-AH (Pf = 1× 10−3) 4 8 18 23
GENE-AH (Pf = 1× 10−4) 3 6 15 21
GENE-AH (Pf = 1× 10−5) 5 5 19 18
SPICE 4 5 9 13
FUN (Pf = 1) 3 5 9 13
Ours (tol = 1× 10−3) 3 6 9 13

25 dB

HySime 3 5 9 13
NWHFC (Pf = 1× 10−3) 4(3) 5(5) 11(10) 9(11)
NWHFC (Pf = 1× 10−4) 4(3) 5(5) 11(9) 9(10)
NWHFC (Pf = 1× 10−5) 4(3) 5(5) 11(8) 8(10)
GENE-AH (Pf = 1× 10−3) 5 13 19 26
GENE-AH (Pf = 1× 10−4) 8 7 19 17
GENE-AH (Pf = 1× 10−5) 4 5 17 26
SPICE 18 35 30 17
FUN (Pf = 1) 4 8 12 14
Ours (tol = 5× 10−3) 3 7 11 16
Ours (tol = 1× 10−2) 3 5 7 11

15 dB

HySime 3 5 9 13
NWHFC (Pf = 1× 10−3) 4(3) 5(5) 11(10) 9(11)
NWHFC (Pf = 1× 10−4) 4(3) 5(5) 11(9) 9(10)
NWHFC (Pf = 1× 10−5) 4(3) 5(5) 11(8) 8(10)
GENE-AH (Pf = 1× 10−3) 7 8 17 29
GENE-AH (Pf = 1× 10−4) 9 10 19 12
GENE-AH (Pf = 1× 10−5) 5 9 21 24
SPICE 36 40 40 40
FUN (Pf = 1) 14 23 17 30
Ours (tol = 2× 10−2) 5 8 11 17

Appendix A.2. DEIM for Approximating the Nonlinear Functions

The discrete empirical interpolation method (DEIM) was proposed in [56] to efficiently
approximate the nonlinear function f (τ) by projecting it onto a subspace that approximates
space of f (τ) and is spanned by the standard basis W (left singular vectors). In other
words, the DEIM method approximates f (τ) by combining projection with interpolation,
as it constructs specially selected interpolation indices to specify the interpolation-based
projection that provides a nearly optimal subspace approximation to f (τ).

The approximation from projecting f (τ) onto the subspace spanned by the basis
{w1, . . . , wr} is given as f̃ (τ) ≈ Wz(τ), where z(τ) is the corresponding coefficients. To
determine z(τ), DEIM constructs r row indices based on the standard basis W, at which the
function f (τ) is evaluated. Suppose the selecting matrix P defined as P = [et1, . . . , etr] ∈
Rn×r, where et j is the tj-th column of the identity matrix In ∈ Rn×n. If PTW ∈ Rr×r is
nonsingular, then the coefficient vector z(τ) can be computed uniquely from

PT f (τ) = (PTW)z(τ)
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So,
z(τ) = (PTW)

−1
PT f (τ)

Therefore, the final approximation of f (τ) is

f̃ (τ) ≈ Wz(τ) = W(PTW)
−1

PT f (τ)

where P ≡ W(PTW)
−1PT is called as the DEIM projector. So, given the DEIM projector P ,

DEIM approximates the function f (τ) as f̃ (τ) = P f (τ). To obtain the approximation of
the nonlinear function using the DEIM method, we need to find the standard projection
basis {W1, . . . , Wr} and the interpolation indices {t1, . . . , tr} that used to form the matrix P.
Those interpolation indices used to determine the DEIM projector are selected inductively
on the basis {W1, . . . , Wr} by the DEIM procedures as shown in Algorithm 1. It treats the
continuous domain as a finite set of discrete points in this continuous domain. The selection
procedure of the DEIM method essentially involves minimizing the approximation error
through the selected interpolation index in each iteration.

Appendix B

Figure A2a shows the estimated abundance map of the Houston HSI dataset. Although
the performance of the proposed method for estimating the Concrete abundance map is
weak, it leads to a considerably stronger Met. Roofs and Vegetation abundance maps but a
comparable performance for Asphalt abundance map.

The estimated abundance maps for the Jasper Ridge HSI dataset are shown in Figure A2b.
The performance of the proposed method is comparable with other methods for estimating
abundance maps (i.e., Water, Vegetation, and Soil). Although there is confusion between Water
and Road abundance maps, the estimated road region is best compared to other maps.
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Figure A1. Ground truth and extracted endmembers of the Urban HSI: the 1st row, ground truth
(GT); and the 2nd row contain the estimated endmembers.
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(a) Abundance maps of Houston HSI for all tested
methods. The colors represent the abundance
values from blue (sk = 0) to red (sk = 1).
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(b) Abundance maps of Jaster Ridge HSI for all
tested methods. The colors represent the abun-
dance values from blue (sk = 0) to red (sk = 1).

Figure A2. Abundance maps of real HSI datasets for all tested methods.
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