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Abstract: All sensing systems have some inherent error. Often, these errors are systematic, and
observations taken within a similar region of space and time can have correlated error structure.
However, the data from these systems are frequently assumed to have completely independent and
uncorrelated error. This work introduces a correlated error model for GNSS reflectometry (GNSS-R)
using observations from NASA’s Cyclone Global Navigation Satellite System (CYGNSS). We validate
our model against near-simultaneous observations between two CYGNSS satellites and double-
difference our results with modeled observables to extract the correlated error structure due to the
observing system itself. Our results are useful to catalog for future GNSS-R missions and can be
applied to construct an error covariance matrix for weather data assimilation.
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1. Introduction

Launched in 2016, the Cyclone Global Navigation Satellite System (CYGNSS) mission
provides a suite of land and ocean surface sensing products through a technique known
as Global Navigation Satellite System reflectometry (GNSS-R). With GNSS-R, the eight
CYGNSS satellites act as receivers in a bistatic radar system, where GPS satellites are the
transmitters, and the Earth’s surface is the target of interest.

The CYGNSS mission aims to improve tropical cyclone prediction by measuring ocean
surface wind speeds over the tropics [1]. Other satellite observations are impaired by the
difficulty in collecting wind speeds underneath thick cloud layers in tropical cyclones, and
in situ measurements are often challenging and dangerous to collect due to extreme condi-
tions within tropical cyclones. By exploiting GPS broadcasts in the L-band, where there
is limited attenuation from thick rain and cloud layers, CYGNSS can collect observations
through mature tropical cyclones.

With eight satellites in equatorial low-Earth orbit, CYGNSS can collect global observa-
tions with a median revisit time of 3.8 h. However, the sampling characteristics of CYGNSS
differ from many other space-based weather observations. Instead of imaging, CYGNSS
data are comprised of tracks of specular points that streak across the Earth’s surface. Images
are reconstructed from composites of multiple satellites. This unique sampling mechanism
poses challenges for assimilation into numerical weather prediction (NWP) models.

Data assimilation (DA) is the component of an NWP system that incorporates obser-
vations with evolving forecast models. A common DA technique poses the problem as a
variational equation that minimizes a cost function [2]:

argmin
x

J(x) = (x − xb)
TB−1(x − xb) + (y − H[x])TR−1(y − H[x]), (1)

where J(x) represents the cost function, x is the variational argument, xb is the background
model state of dimension n, B is the n-by-n background error covariance matrix, y is the
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observation vector of dimension p, H is the forward model operator for transforming from
model space to observation space, and R is the p-by-p observation error covariance matrix.

In practice, a great deal of focus is placed on estimating B [3,4] because incorrectly
specified B can have significant impacts on the performance of the model. Famously,
introducing perfect observations to a perfect model can still lead to forecast degradations if
B is poorly constructed [5].

On the other hand, R is comparatively overlooked. NWP data assimilation (DA)
schemes often assume that each observation error is completely uncorrelated [6–8] and, as
such, treat R operationally as a diagonal matrix. This is performed for three main reasons:
to simplify the assumptions needed for minimizing the cost function in Equation (1) and
reduce the computational resources required to solve the forecast problem; to reduce
the data handling and storage requirements for observation data at low latencies; and
because frequently the information required to specify correlated observation errors was
unavailable or difficult to ascertain. Regardless of the rationale, the under-specification of
correlated observation error in R leads to the suboptimal use of the information content in
observations.

There are some major recent advancements on this front. Discussions of correlated
instrument errors are generally limited to explorations for interchannel correlated errors
in infrared [9,10] and microwave [11] sounders, with some physical models of correlation
proposed [12,13]. Spatial observation error correlation is discussed in [11,14] but is generally
restricted to estimates of total observation error correlation as estimated from a weather
model [15]. More recently, instrument error inventories for microwave sounders have been
established [13].

Nevertheless, the assumption that observation errors are independent and uncor-
related is not valid for any observatory. In practice, observation error correlations are
minimized by thinning the dataset or ‘super-obbed’ samples, which improves overall
model skill by mitigating the effects of correlated error, which may be interpreted by the
model as a real signal [16–18].

The premise of not fully exploiting observation data is unappealing, considering that
the process of acquiring these data usually requires the considerable capital expense of
building and flying remote sensing satellites. The highest utility of dense observations
in space and time occurs when the application (i.e., the model) resolution matches the
observation resolution. For many imagers and sounders, there may be a reasonable case that
thinning is an appropriate way to scale dense observation data to match model gridding.

For CYGNSS, however, thinning the data is an especially unpalatable solution, as the
peak utility of CYGNSS data is during the relatively uncommon occurrence that a specular
point passes through the eyewall of a tropical cyclone. Thinning may miss this observation
or misrepresent the structure of the storm in the model. By a similar token, ‘super-obbing’ is
not a practicable remedy because tracks are one dimensional and collocated observations are
potentially hours apart. Blending data from a wide temporal window risks misrepresenting
the dynamics of the tropical cyclone and negates the fast-revisit utility of the observatory.

Estimating the correlated error structure for observations can improve model skills
in NWP [6,14,19–21]. A number of methods have been demonstrated to estimate the
observation error correlation matrix [22,23], most notably Desroziers’ diagnostic [24].

Our work does not estimate the full observation error correlation matrix that is typical
of these prior works. Instead, we provide a first-principle, bottoms-up, tunable engineering
model for how the CYGNSS instrumentation itself can cause observations to contain corre-
lated errors. This correlation model is validated and tuned against empirical observation
data during a period when two CYGNSS assets were in a specific orbital geometry where
observations nearly coincided in space and time. We further discuss the challenges and
opportunities that result from this correlated error model, as well as highlight the potential
for applicability to future assimilation investigations.
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2. Materials and Methods
2.1. The CYGNSS Observatory

The CYGNSS main observable is normalized bistatic radar cross section (NBRCS), σo.
This is derived from the radar-range equation [25]:

σo =
Pg(4π)3Latm

PTGTλ2GRRtot Ā
, (2)

where Pg is the calibrated power received by the nadir science antenna; Latm are the losses
due to attenuation in the atmosphere; PT is the power of the transmitter, which, in this case,
is a GPS satellite; GT is the antenna gain of the GPS satellite in the direction of the Earth
specular point; λ is the wavelength of the GPS signal, which, for CYGNSS, is the GPS L1
signal at 1575 MHz; GR is the gain of the CYGNSS nadir science antenna in the direction
of the Earth specular point; Rtot is the total range loss of the transmission via the Earth
specular point; and Ā is the effective scattering area of the specular point.

NBRCS is directly related to the mean square slope (MSS) of ocean wave spectra via [25,26]:

σo(θ) =
|R(θ)|2

MSS
, (3)

where θ is the angle of incidence of the scattering geometry and R(θ) is the Fresnel electric
field reflection coefficient for the ocean surface at the specular point. CYGNSS retrieves
wind speed from σo via an empirical Geophysical Model Function (GMF) [27] that is
processed operationally via a stored look-up table (LUT).

In practice, the un-normalized bistatic radar cross section σ is calculated for every
delay and Doppler, the native coordinates of the delay–Doppler Mapping Instrument
(DDMI). σo is calculated from the average of σ over a 3-by-5 bin window centered at the
specular point and is divided by the effective area Ā corresponding to the surface area
bounded by the 3-by-5 window [m2/m2].

After the launch of the CYGNSS mission, it became clear that uncertainty in the
GPS effective isotropic radiated power (EIRP) would significantly impact calibration
quality [28–30]. The EIRP is simply the product PTGT from Equation (2). Errors are present
in both terms: not only is there general uncertainty with the actual (versus published)
transmit power of GPS satellites, but newer generations of the constellation operate with a
flexible power mode and dynamically change transmit power levels across their respective
orbits [31]. Further, only a subset of the GPS antenna patterns was published [32], and they
were not sufficiently detailed to constrain the error in EIRP for CYGNSS calibration.

To remedy this, Wang et al. developed a novel calibration technique that uses the
onboard zenith CYGNSS antenna and empirically derived relationships from measured
GPS antenna patterns to estimate GPS EIRP in the direction of the Earth’s specular point
at the time of observation [33]. This new technique has been adopted in the CYGNSS
Level 1 calibration algorithm since version 3.0 and modifies the radar equation to become
the following [34]:

σo =
Pg4πLatmLZGZ

PZζEGRRtot Ā
, (4)

where all the terms are the same as in Equation (2), with the additions of LZ, the trans-
mission range loss from the GPS source to the CYGNSS zenith antenna (written as a loss
in the numerator to distinguish from the Rtot range losses); the CYGNSS zenith antenna
gain GZ in the direction of the GPS satellite; the power received from the CYGNSS zenith
receiver PZ; and the specular–zenith ratio ζE for the GPS EIRP as described in [33].

Each of the terms in Equation (4) can potentially be a source of correlated error, but for
practical reasons, this study only evaluates those sources with the largest error magnitude
and, therefore, the largest potential utility for future data assimilation users. We omitted
consideration of the smallest error sources that, when combined as a root sum of squares,
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contribute to less than 1% of the total error magnitude. The five largest sources of error are
explored, as shown in Table 1, representing a 1-sigma error magnitude for a reference wind
speed of 10 m/s. The following sections evaluate each of these terms in depth.

Table 1. The magnitudes of 1-sigma errors for each term in Equation (4). The shaded rows indicate
that the absolute magnitudes of these terms are negligible compared to the dominant error terms and
are neglected in the construction of the error model in this work.

Error Term Error Magnitude [dB]

E(GR) 0.43 [25]

E(Pg) 0.23 [35]

E(GZ) 0.20 [33]

E(PZ) 0.18 [33]

E(ζE ) 0.15 [33]

E(A) 0.05 [34]

E(Latm) 0.04 [34]

E(Rtot) <0.01 [34]

E(LZ) <0.01 (assumed ∼ E
(

Rtot))

2.2. The Bottoms-Up Correlated Error Model

The CYGNSS Level 1 correlated error model is constructed to represent the major error
sources based on the physical and operational characteristics of the CYGNSS observatories.
These errors are correlated over both space and time, and depend on several variables
relating to the operation of the CYGNSS constellation.

The construction of the error model is intended to be realistic enough to represent
measurable and plausible correlated errors, yet flexible enough to allow for tuning and
parameterization. The general modeled structure of correlated error takes the form:

Rmod(i, j) =
1
N ∑

n
Kn(i, j), (5)

where Rmod(i, j) is the normalized correlated error between any two samples i and j with a
domain −1 ≤ Rmod ≤ 1. There are n component terms that are added together, and each of
the nth term corresponds to a unique source of error. Kn(i, j) represents the error covariance
between any two samples i and j for a specific component n. N is a normalization constant
to ensure that the diagonal terms of the Rmod matrix is 1.

Each of the Kn terms can be further generalized as follows:

Kn(i, j) = (E(n))2 · Ecorrn(i, j) , (6)

where E(n) represents the magnitude of each error component n as calculated in [33,34,36]
and can be thought of as the variance of the error, and Ecorrn(i, j) is a derived function with
a domain −1 ≤ Ecorr ≤ 1 that represents the correlation in error between samples i and j for
each component n.

Each Ecorr function depends on different arguments depending on the nature of
the error source. The individual errors are explored in depth in the following sections.
Further, several tuning parameters have been added to assist with validation. The initial
values of the tuning parameters are 1 and essentially leave the model output unmodified.
However, this process assumes that the relative magnitude of the error components could
be incorrectly specified, and by varying the tuning parameters, the model can be shaped to
match a validation dataset.
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2.2.1. Model Assumptions

Several assumptions are made regarding the overall model and each individual Ecorr
term. The first is that the decorrelation scales of interest are on the order of seconds to
minutes. This restricts the problem to errors that decorrelate on timescales that would be
of relevance to numerical weather prediction users. CYGNSS observations may have a
correlated error structure that evolves during longer timescales, say, daily or seasonally.
However, this structure would probably be better resolved using other calibration and pro-
cessing techniques and would not add significant value to a correlated error matrix. As a
result, all errors between CYGNSS samples i and j are assumed to be 100% uncorrelated if
there is more than 10 min of separation in observation time. This corresponds to roughly
4500 km of distance, where observations could reasonably be treated as wholly uncorrelated.

Further, all error terms Ecorrn are assumed to be uncorrelated with each other. This
assumption simplifies the implementation and calculation of the model but is less supported
theoretically. There are a number of plausible rationales for why many of these error
sources are correlated. However, this model hopes to correct for these empirically with the
implementation of tuning parameters.

Finally, there is a general assumption that all the error sources in the model exhibit
wide-sense stationarity during the timescales of interest. Therefore, the error magnitude
values E(n) are treated as constants. In practice, the magnitude of errors and their cor-
relation time and space scale sizes may well vary (e.g., due to seasonal dependence). A
fully operational implementation of the methodology developed here would take these
dependencies into account, e.g., by an appropriate parameterization of the properties of the
errors. Here, we only consider stationary error properties in order to illustrate how they
are determined and how they would be combined to be used by a DA scheme.

2.2.2. The Full Correlated Error Model

Considering the terms in Table 1 and applying Equation (5), the Level 1 correlated
error model is constructed:

Rmod(i, j) =
1
N


RPg(i, j)+
RPZ (i, j)+
RGR(i, j)+
RGZ (i, j)+

Rζ(i, j)

, (7)

where RPg is the correlated error component from the calibrated nadir receiver power and
is discussed in Appendix B; RPZ is the correlated error component from the zenith receiver
and is discussed in Appendix C; RGR and RGZ are the correlated error components from the
nadir and zenith CYGNSS antenna patterns, respectively, and are discussed in Appendix D;
and Rζ is the correlated error component due to the zenith–specular ratio used for dynamic
EIRP estimation and is discussed in Appendix E.

2.3. Verification Techniques

One of the primary challenges in constructing the CYGNSS Level 1 correlated error
model Rmod is identifying a plausible validation scenario. In practice, it can be difficult to
disentangle the various sources of correlated observation error structure, e.g., those caused
by the inherent behavior and calibration of the instrument, by the geophysical retrieval
and inversion process, and by the representativity errors imposed when observations
are gridded and ingested into models. Further, the choice of ground truth may impose
an additional source of correlated error, such as when using reanalysis data or another
observation source.

In an effort to disentangle these correlated errors and isolate only those due to instru-
mental sources, this work validates the correlated error structure Rmod by matching up
near-simultaneous collocated observations made by two different observatories at nearly
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identical geometries, generating modeled NBRCS σo
mod from reanalysis data, and single-

and double-differencing the results.

2.3.1. Curating Matchup Observations

As a constellation of eight small satellites in the same orbital plane, CYGNSS is gener-
ally unable to collect collocated, near-simultaneous observations from different satellites.
If the CYGNSS observatories were equally distributed across the orbital plane, each asset
would follow the next at approximately a 10 min lag. However, in that time, both of the
uniquely defining features of the CYGNSS observation changes: (1) the surface of the Earth
rotates underneath the observatories, changing the ground track, and (2) the GPS satellites
that serve as the source of radar signal advance in their orbit. Therefore, in 10 min, it can be
quite challenging to develop one-to-one matchup conditions suitable for investigating the
correlated error structure at timescales of seconds to minutes.

CYGNSS has no onboard thrusters, and orbit phasing is controlled solely through
differential drag. At several junctures during the CYGNSS mission, one of the observatories
advanced within the plane to be nearly overlapping with another yet at a slightly different
altitude. Generally, the greater the altitude difference between the observatories, the faster
the relative precession within the orbit plane.

An exhaustive review of each observatory’s ephemerides for the life of the mission
identified a few matchup opportunities. Matchups near the beginning of the mission were
preferred, as the orbit planes of the satellites tend to drift apart over the lifetime of the
mission. After further filtering by the operational status of each observatory to ensure
that they were in similar attitude configurations and operating in similar science modes, a
24 h period starting 0Z on 11 SEP 2019 was chosen, where FM1 and FM5 were in a nearly
identical orbital phase for a sustained period. A representation of the ground sampling
during this period is shown in Figure 1.
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Figure 1. Comparison of FM1 and FM5 observations for 11 SEP 2019. (a) Rendering of the ground
samples captured during the 24 h period in the near-overlap condition; (b) A single track of samples
for both FM1 and FM5 that has been matched sample-for-sample to facilitate one-to-one comparisons
of the observations. The samples from each observatory are no more than 0.5 deg apart in distance
and were acquired approximately 3 s apart in time.

Each ‘track’ of observations (when a series of observations are made in close succession
sharing a CYGNSS receiver and GPS transmitter) was matched sample-for-sample between
FM1 and FM5 by first minimizing the distance between observations and then quality
controlling for several factors:

• Matched tracks must both contain more than 300 samples;
• Individual sample matchups are valid if samples are within 0.5 degrees (great cir-

cle distance);
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• Individual samples are screened to ensure no quality control flags apply; and
• The matched track is only valid if 60% of the data remains after all other matchup

criteria apply.

The resulting matchup conditions produced 103 matched tracks within the 24 h period
of near-simultaneous observations.

2.3.2. Generating Model NBRCS

A forward model for the CYGNSS observatory (generating σo
mod from wind data)

can be challenging. Operationally, CYGNSS uses a GMF LUT that maps between the
two quantities. However, for the purposes of this analysis, we prefer to use a physically
representative forward operator that represents the physical dynamics of the roughening
of the ocean surface due to locally driven winds.

For each sample matched up, σo
mod is generated by computing a spectrally corrected

ocean surface MSS from an ERA5-forced [37] WaveWatch III wave model as described
in [38]. Because the resolution of ERA5 is much coarser than CYGNSS Level 1 observations
in both space and time, the σo

mod is matched up with σo via a tri-linear interpolation across
three dimensions (latitude, longitude, and time).

Therefore, for every track of data, there are observations from two different CYGNSS
observatories and two modeled NBRCS from reanalysis data.

2.3.3. Estimating Total Correlated Error

Single- and double-differencing are common techniques to calibrate remote sensing
instruments, especially radiometers [39,40] and radars [41]. Both are useful for quantifying
the correlated error structures in CYGNSS observations.

For each track of data, there are two single-differenced datasets,

SDobs = σo
1 − σo

5 (8a)

SDmod = σo
mod,1 − σo

mod,5 (8b)

where SDobs is the single-differenced data from the two matched-up observations from FM1
and FM5, and SDmod is the single-differenced data of the model-generated NBRCS for the
specific coordinates of FM1 and FM5. The double-difference is computed by differencing
these two quantities:

DD = SDobs − SDmod (9)

Both the SDs and DD are useful for our analysis. The SDobs term represents the
difference in σo measured by two different CYGNSS satellites. Despite the strict matchup
conditions, these assets are still measuring different fields of view at different times. These
differences may result in some residual correlated structure. In addition, any correlated
structure in SDobs may not reveal structure imposed from fundamental properties of
the earth system. Therefore, SDmod allows us to identify the correlated structure of any
systematic differences in observation target. An example of the utility of these differencing
techniques is shown in Figure 2.

Since we are primarily interested in correlated error, and not absolute error, our
primary investigative tool is the autocorrelation function. The correlated error for each
track can be computed by autocorrelating the DD using the standard formulation:

ρ(τ) =
1

(N − τ)

1
σxi

1
σxi+τ

N−τ

∑
i=1

(Xi − X̄)(Xi+τ − X̄) (10)

where τ is the lag, N is the total number of lags observed, Xi is the value of timeseries X at
time i, X̄ is the mean of timeseries X, and the standard deviation is formulated as nor-

mal, σi =

√
∑N−τ

i=1 (Xi−X̄)2

N−τ .
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Because the error correlation behavior can vary from track-to-track, we also construct
a bulk autocorrelation which approximates the autocorrelation behavior for all tracks
sampled. For this we consolidate M tracks, the bulk autocorrelation is:

R(τ) =
1

M(N − τ)

1
σyi

1
σyi+τ

N−τ

∑
i=1

(Yi − Ȳ)(Yi+τ − Ȳ) (11)

where Yi = ∑M
j=1 Xi,j, j is the index for track number, and the standard deviation and mean

are calculated as before, but with the consolidated track series Y.
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Figure 2. A display of model (blue) and observed (green) single-differenced matchup data for a
single CYGNSS track, with the double-differenced data (red) overlaid. Note that both the model and
observed single differences are similarly high early in the track, suggesting that the differences in the
observations may be because the samples are observing fundamentally different targets, captured
in SDmod. The double-difference accounts for these types of errors, and for the entire track, the
double-difference is quite stable. The sparsity of data is caused by quality control parameters, such as
when the CYGNSS observatory is performing its onboard calibration procedure, which occurs once
every minute. Because the two matched observatories do not have synchronized calibration clocks,
the matched dataset typically flags out two of these cadences for every minute of sampling.

2.3.4. Model Tuning

The constructed correlated error model Rmod(i, j) is designed to estimate the correlated
error between arbitrary samples i and j. Validating the correlated error with empirical
matches is challenging since the empirical error correlation can only be estimated in a
broader, statistical sense. To create an appropriate comparison, we introduce the modeled
error autocorrelation

∼
ρmod, which is a function of lag τ:

∼
ρmod(τ) =

1
N − τ ∑N−τ

i=1 Rmod(i, i + τ), (12)

where Rmod is calculated using Equation (7), τ is the lag, and N is the total number of
lags observed. The quantity

∼
ρmod is reasonably comparable to the autocorrelation ρ(τ) of

observed error for a single track of samples. A similar analog can be made for the bulk
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modeled error autocorrelation
∼
Rmod(τ), which estimates the autocorrelation behavior of the

error model across M tracks:

∼
Rmod(τ) =

1
M∑M

j=1
∼
ρmod,j (τ) , (13)

where
∼
ρmod,j (τ) is the modeled autocorrelation for track j at lag τ.

A parametrized version of Rmod is constructed using the following form:

Rmod(α, β, γ, δ)|i,j =
1
N

[
RPg(α, β) + RPZ (α, β) + RGR(γ, δ) + RGZ (γ, δ) + Rζ(β)

]
, (14)

where the following is true:

• α represents the relative magnitude of the white noise component of the error, which
decorrelates at τ = 1;

• β represents the relative magnitude long-decay pedestal or any residual correlated
errors at the edge of our timescales of interest;

• γ represents the relative magnitude of the correlated error caused by the terms
RGR and RGZ , which exhibit smooth decay as samples spread apart when projected
through the nadir and zenith antenna coordinates, respectively [see Appendix D for
an in-depth discussion]; and

• δ represents the relative decorrelation roll-off in terms RGR and RGZ .

With an appropriate benchmark, the tuning parameters α, β, γ, and δ are iterated such

that
∼
Rmod matches a target signal. The tuning parameters are applied such that they can be

modified to change specific characteristics of the modeled behavior:
The parameters modify Rmod directly and are described in depth in Appendices B–E.

The target for matching the modeled autocorrelation
∼
Rmod is the bulk autocorrelation of

the double-differenced data DD:

R[DD](τ) ∼=
∼
Rmod(τ) (15)

Because this is an under-determined system, there is no unique solution to optimizing
the tuning parameters. Further, these parameters all relate to one another, and changing
one will impact the others. Instead, Rmod is tuned heuristically such that the modeled
behavior matches the empirical data at key points: to match the white noise component at
lag τ = 1; to match the rolloff at lags τ = 5 and τ = 30; and to match the endpoint behavior
at lag τ = 100.

3. Results
3.1. Bulk Behavior

The constructed model Rmod is first tuned to match the overall behavior of R[DD](τ),
as described in Section 2.3.4. With the appropriate tuning parameters, the bulk-modeled

autocorrelation
∼
Rmod closely resembles R[DD](τ) in most important aspects, including

the relative magnitude of the white noise component, the relative rate of decorrelation

roll-off, and endpoint behavior at large lags. The final tuned
∼
Rmod is shown in Figure 3

with R[SDobs], R[SDmod], and R[DD].
The behavior in Figure 3 is worth discussing in detail. The single-differenced model

generated σo
mod decays at a much slower rate than the single-differenced observations, and

double-differenced data suggests that the errors of slight mismatch in observation location
and time are generating errors on a fundamentally different scale than the instrument
errors. Further, the fact that the double-differenced decorrelation is almost identical to
the observation single-differencing suggests that single-differencing near-simultaneous
observations are a reasonable approximation for bulk error correlation.
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Figure 3. Comparison of the bulk error autocorrelation behavior for all matched tracks. The single
difference of modeled σo

mod (blue), the single difference of observed σo (green), the double-difference

DD (red), the untuned bulk model error correlation
∼
Rmod (dotted purple), and the final tuned bulk

model error correlation
∼
Rmod (orange) are shown. The shading indicates the estimated 1-sigma

standard deviation of the population decorrelation behavior for each individual trace. The lags
are computed in seconds, which correspond to single samples at 1 Hz sampling for the CYGNSS
observatory. Note that DD generally follows the SDobs trace, suggesting that single-differencing for
this particular use case may be a reasonable representation of bulk error correlation behavior.

Evaluating the double-difference trace in Figure 3 also reveals important qualities of
the CYGNSS error correlation structure. First, the uncorrelated error component accounts
for roughly 5% of the total system error. Therefore, assumptions that samples may be
treated as independent with uncorrelated error are empirically refuted. Further, the error
decorrelation roll-off is swift: about 50% of the error decorrelates within 7 s of observation.
Using a flat-plane approximation of Earth, this corresponds to a distance of approximately
50 km, which is generally the scale of the gridding of modern global weather models but
much coarser than the resolution of state-of-the-art regional models. Finally, the endpoint
behavior at large lag times suggests a small, positive correlated error (~2%) at larger
timescales. The statistical properties of the lag correlation become less stable at larger
lags, but the existence of a long-timescale correlation is not surprising, considering all
observations from a single receiver share a common electronics and processing chain.

The fact that our tuned model Rmod can approximate the bulk error correlation

structure
∼
Rmod with similar features as R[DD] validates the assumption that the over-

all instrument-correlated error can be modeled from the fundamental components of the
instrument observable: in our case, the radar-range equation (Equation (2)). Further,
that Rmod can be generated between arbitrary samples suggests that an observation error
correlation matrix R can be generated dynamically from first principles given appropriate
knowledge about the instrument and retrieval.

The value of the chosen tuning parameters is also worth investigating. The untuned
model is defined by having the parameters α = β = γ = δ = 1. Figure 3 demonstrates that
the modification of tuning parameters can change the overall model behavior significantly
to match observed behavior. Figure 3 further suggests that the untuned Rmod generally
overestimates both the relative magnitudes of uncorrelated error (i.e., white noise, tuned
by α) and totally correlated error (i.e., endpoint correlation, tuned by β). The chosen
parameters for tuning are shown in Table 2.
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Table 2. The chosen magnitudes of model tuning parameters for Rmod.

Tuning Parameter Magnitude Function

α 0.005 Relative magnitude of uncorrelated error
β 0.01 Relative magnitude of endpoint correlated error
γ 1 Relative magnitude of nearby roll-off
δ 1 Steepness of roll-off component

The tuning parameter γ is used to vary the relative magnitude of the near-sample
correlated error roll-off. In our tuned model, this parameter remains at 1. The tuning
parameter δ is used to enhance or reduce the steepness of the roll-off in correlation caused
by two observations moving farther apart in the nadir and zenith coordinate systems.
If δ > 1, it enhances the steepness of decay. The fact that our optimized tuning main-
tains δ = 1 suggests that the filtering theory discussed in Lemma A1 is a reasonable model
of decay.

3.2. Single-Track Comparisons

The tuned model can be compared to single-track autocorrelations ρ(τ) of matched-
sample double-differences using the modeled error autocorrelation

∼
ρmod as described in

Equation (12). We compare three exemplar tracks in Figure 4.
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Figure 4. Comparison of the single-track error autocorrelation behavior for three selected tracks. The
autocorrelation of the NBRCS double-difference (solid lines), untuned modeled error correlation

∼
ρmod,

and tuned modeled error autocorrelation
∼
ρmod (dashed lines) for each of the three tracks are shown.

Each track is painted a different color. This figure demonstrates the wide variability of single-track
autocorrelations of double-differences, arising from the variability of the observable, the limited
amount of data in a single track, and the challenges in quality controlling sufficient observation data.
It is possible that the correlated error does vary this much from track to track. In contrast, both the
tuned and untuned modeled error autocorrelation

∼
ρmod are much more stable from track to track.

The single-track autocorrelation behavior shown in Figure 4 is also revealing of the
limitations of this work. The single-track error autocorrelation for double-differenced data
is highly variable. This may be due to both artifacts in the data (processing, quality control,
insufficient data), as well as the real behavior of the observation. It is worth articulating
that the autocorrelation of data is generally less stable with smaller datasets and at longer
lags. With our quality control parameters, we flag out significant quantities of data, which
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decreases the stability of autocorrelations from track to track. We further note the difficulty
in exploring the dynamics of this behavior in a statistical sense: our aperture of observation
where two CYGNSS assets are in a near-overlap condition is quite rare, and as the mission
progresses, the orbit planes of the satellites have drifted, making further matchup scenarios
less representative. These behaviors may evolve differently day-to-day or as a function of
observed wind speed, but the paucity of data in this configuration makes it challenging to
establish sufficient baselines to test for significance.

3.3. Dynamic Correlated Error Estimation and Impact of Tuning

The model Rmod can produce plausible dynamics, suggesting the broader importance
of a realistic dynamic correlated error model. Figure 5 plots two nearby tracks captured
nearly simultaneously by the same receiver (but different GPS transmitters).
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Figure 5. Generated untuned and tuned Rmod for two nearby tracks captured by the same CYGNSS
receiver, each with three different representations. (a) Untuned Rmod as represented by sample index.
The two tracks are concatenated in a vector, and the modeled error correlation is calculated for
each combination of indices. The green vertical line represents an exemplar index (i = 129) along
the track, where the correlated error is estimated for every other observation in the neighborhood.
(b) Untuned Rmod for the same exemplar index as represented by the physical location of sample
acquisition. (c) Untuned Rmod for the same exemplar index represented by time of acquisition. The
traces for the two different tracks are plotted in different colors. The error correlation along the
same track is in blue, while the error correlation for the adjacent track is in red. (d) Tuned Rmod as
represented by sample index for the same two tracks as in (a). (e) Tuned Rmod for the same tracks
represented in the physical location. (f) Tuned Rmod for the same exemplar index represented by
the time of acquisition. Note that for both the untuned and tuned cases, the correlated error for the
adjacent track is non-zero but generally very small compared to the error correlation along the track.

Because the correlated error Rmod can be generated for any arbitrary observation using
the bottoms-up model, the dynamics of how instrument errors decorrelate can be explored.
To illustrate, we choose an arbitrary exemplar index (i = 129) to demonstrate that this
calculation can be performed for any sample within a track. If the observations were treated
as completely independent without any correlated error, the matrix in Figure 5a would
contain non-zero elements exclusively along the main diagonal. However, we observe
several structural elements. The ‘pixelation’ pattern is largely a result of the Rζ term
and originates from the coarse mapping of the estimated GPS antenna gain pattern as a
function of scattering incidence θinc. This phenomenon is explored in depth in Appendix D.
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The smooth decorrelation roll-off is from the RGR and RGZ components of the model and
represent the direct and reflected signals moving about the nadir and zenith antenna
patterns in CYGNSS receivers as the observation is collected along the track. We note
that the model allows for cross-track correlation where the two different tracks share a
CYGNSS receiver but have a different GPS transmitter. In both the untuned and tuned cases,
these tracks appear to have uncorrelated cross-track error. There are residual correlations
between the tracks when the scattering geometry is such that the two tracks share similar
incidence angles or are near similar antenna coordinates, in addition to the shared receiver
noise at lag τ = 0.

We can also determine Rmod for our matchup tracks where CYGNSS observes similar
track geometries with the same GPS transmitter but with two different receivers. The
correlated structure for one of the tracks in the previous example (but matched by different
receivers) is shown in Figure 6.
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Figure 6. Generated untuned and tuned Rmod for two nearby tracks captured by two different
CYGNSS receivers during the overlap period, each with three different representations. (a) Un-
tuned Rmod as represented by sample index. The two tracks are concatenated in a vector, and the
modeled error correlation is calculated for each combination of indices. The green vertical line repre-
sents an exemplar index (i = 129) along the track where the correlated error is estimated for every
other observation in the neighborhood. The correlated error model allows for correlated errors across
receivers. (b) Untuned Rmod for the same exemplar index as represented by the physical location of
sample acquisition. (c) Untuned Rmod for the same exemplar index represented by the time of acquisi-
tion. The traces for the two different tracks are plotted in different colors. The error correlation along
the same track is in blue, while the error correlation for the adjacent track is in red. (d) Tuned Rmod as
represented by the sample index for the same two tracks as in (a). (e) Tuned Rmod for the same tracks
represented by the physical location. (f) Tuned Rmod for the same exemplar index represented by the
time of acquisition. Note that the tuning has virtually eliminated cross-track error correlation.

The model Rmod allows for correlated error between two different receivers that
share a GPS transmitter. We note that observations sharing the same GPS transmitter
may contain correlated error due to the correlated misestimation of GPS transmit power.
This may be an incomplete articulation of the full cross-receiver error correlation. For
example, CYGNSS assets in similar orbital regimes may experience similar thermal and
environmental conditions that cause correlated errors during our timescales of interest. We
assume that correlated error due to misestimation of GPS transmit power is nearly constant
for the timescales of interest.
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As demonstrated in Figure 6, the cross-track correlation virtually disappears after
tuning the model Rmod. Taken with the data presented in Figure 5, there appears to be
negligible cross-track error correlation, either when two tracks share a CYGNSS receiver or
when two tracks share a GPS transmitter. This is a novel result but challenging to validate
in practice, as the double-differencing may eliminate any shared error correlation between
two tracks.

4. Discussion

Rmod was designed to maintain several key features. First, Rmod can be generated for
arbitrary samples in any dataset given the appropriate inputs. Second, Rmod is designed to
maintain traceability from component error sources with reasonable physical assumptions.
Third, Rmod is designed to be tuned to allow for calibration and validation as more data
becomes available. Finally, Rmod is intended to be implementable in a dynamic error model
without significant computational expense.

4.1. Limitations

The correlated error model Rmod exhibits complex dynamics that are generally plau-
sible but difficult to validate outside of the large-scale statistical estimation discussed in
Section 3.1. The fact that the bulk statistical behavior between the estimated autocorrelation
model averaged over all tracks is consistent with the observed double-difference autocor-
relation (cf. Figure 3) is reassuring, but the disparity between the individual track model
estimated autocorrelations and the single-track double-difference estimations (c.f. Figure 4)
suggests that either the model is insufficient at capturing the dynamics track-to-track or
that the correlated error may not be as stationary as assumed.

With only about a day of data during the overlap period, there remains the possibility
that the validation dataset is unrepresentative of the overall statistical behavior of the
observation. Rmod is designed only to account for errors at short spatial and temporal scales
relevant for data assimilation purposes; therefore, this model may not necessarily account
for changes of the underlying statistical distributions at larger scales due to seasonality or
orbital precession.

The error model assumes that errors are generally isotropic and that
Rmod(i, j) = Rmod(j, i). This assumption has important practical utility for simplifying the
implementation of Rmod and the conditioning of the required matrix inversion. Anisotropies
may exist in any of the components of the error model but are assumed to be small com-
pared to the modeled behavior.

Further, this model generally assumes no spatial dependence. Spatial dependence
of the correlated error is primarily driven by the errors in the retrieval and not the in-
strumentation, which orbits Earth every 95 min. The ‘spatial’ dependence of error from
CYGNSS transiting its orbit has largely to do with the dynamics of the thermal loading of
the receiver as lighting conditions evolve in orbit. This is accounted for in the assumptions
of the component models RPg and RPZ as discussed in Appendices B and C, respectively.
The correlated error resulting from the evolution of the observing geometries as both GPS
and CYGNSS propagate in their orbits is captured in the correlated structure of the antenna
gain maps and the zenith–specular ratio explored in Appendices D and E.

4.2. Impact of Tuning Parameters

The application of tuning parameters is a design decision to capture the fact that initial
estimates of the bottom’s up error magnitudes may be incomplete and to facilitate rapid
adjustments as new calibration and validation information becomes available. The tuning
parameters attempt to weigh the value of individual component errors in comparison to
each other based on aggregate data from one day of observations during the overlap period.

The specific values of the tuning parameters recovered suggest that the correlated
error model Rmod overestimates both the uncorrelated and highly correlated components of
instrument error. This is useful information for future studies because, as an opportunistic



Remote Sens. 2024, 16, 742 15 of 28

measurement, GNSS-R has limited insight into the error structures in the source signals
from GPS.

For observations within a single track, these parameters provide evidence that nearby
samples in space and time can add significant new information to a forecast. The tuning
parameter α = 0.005 indicates that the uncorrelated component of the error is significantly
overestimated, suggesting that the constituent error magnitudes in [36] may be overesti-
mated. Further, the fact that the tuning parameters γ and δ = 1 suggest that the overall
structure of the error correlation decay is consistent with the theory posited in Appendix D
(that the primary source of error correlation is from the application of smoothing filters in
the production of antenna gain patterns) and that the application of the Filtering Lemma
(Lemma A1) is reasonable.

For observations between tracks, the tuned error model Rmod indicates that errors are
nearly uncorrelated between tracks (cf. Figures 5 and 6). This is driven primarily by the
tuning of the parameter β = 0.01. This has significant practical utility to future assimilation
strategies for CYGNSS, suggesting that two nearby tracks are essentially independent
measurements with independent instrument error (correlated error may still result from
correlated errors in the retrieval or representation).

Finally, it should be noted that the overall effect of the tuning somewhat obviates the
need for a dynamic correlated error model, as the overall behavior of the tuned model
is quite stable from track to track (cf. Figure 4). This suggests a simplified instrument-
correlated error model could be derived from the bulk behavior of

∼
ρmod, reducing many of

the required input data.

5. Conclusions

This work produces a first-principles estimate of correlated instrument error with
results that approximate observed statistical behavior. We believe that this model presents
a significant advancement in the estimation of the spatial and temporal correlation struc-
ture of instrument error for remote sensing systems and, in particular, for the unique
considerations of GNSS-R measurements by CYGNSS.

In essence, this work answers a theoretical exercise for enumerating the plausible
engineering reasons why two data points from the same observing constellation can share
correlated sources of error. We evaluate the correlated error structure for CYGNSS by exam-
ining the potential plausible sources of correlated structure from individual components of
the instrumentation, combining these sources from first principles as a tuned engineering
model, and evaluating the efficacy of the model via a robust validation during a period
when two satellites with nearly identical observing geometry captured near-simultaneous
and near-collocated samples.

The instrument-originating sources of correlated error is likely to be a small com-
ponent of the overall correlated structures of observation error. For instance, a likely
significant source of correlated error structure is the Geophysical Model Function retrieval
that converts observed NBRCS to surface wind speed. These errors can be multifaceted,
both encompassing representation error, as the ground truth for training this retrieval is
reanalysis data, which may not capture the spatial or temporal dynamics of wind speed [27].
A companion work will explore how the retrieval that maps from NBRCS to wind speed
produces correlated error structures in space and time.

Further, the fact that the single-differenced observations generally drive the double-
differenced autocorrelation behavior suggests that Powell et al.’s metric of simultaneity
and collocation [42] generally applies for CYGNSS when satellites are in a near overlap
condition. This interesting result suggests that double-differencing may not be required for
statistical estimations of GNSS-R errors given a sufficiently large dataset of observations
that nearly overlap. This implication may relax further validation requirements of Rmod and
may enable near-real-time calibration strategies when samples are sufficiently close without
the need to generate reanalysis-driven forward model NBRCS, which introduces signifi-
cant latencies.
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Finally, while the correlated error model Rmod was designed to compute the estimated
correlated error from arbitrary CYGNSS samples, this may be unnecessary in practice
as the tuning makes the model quite stable between samples and tracks. Further, given
sufficient assumptions about the stationarity of the instrument-correlated error and the
overall magnitude of the instrument-originating sources of correlated error, this information
could be conveyed as a static look-up table.
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Appendix A

The construction of Rmod makes a few important assumptions that are worth exam-
ining in depth. First, we will describe the general mathematical framework. In general,
if X and Y are random vectors of length N, then the covariance matrices of X and Y
are constructed:

KXX = ⟨X − ⟨X⟩⟩⟨X − ⟨X⟩⟩T , (A1a)

KYY = ⟨Y − ⟨Y⟩⟩⟨Y − ⟨Y⟩⟩T , (A1b)

where KXX and KYY are the N-by-N covariance matrices of X and Y, respectively, the
bracket operator denotes the expectation operation, and the superscript T denotes the
transpose vector. Notably, the covariance matrix is symmetric and positive semi-definite.
The covariance matrices can also be constructed in the following manner:

KXX = SXRXXSX , (A2)

where SX is a diagonal N-by-N matrix with the standard deviations of Xi:

SX =

σX1 0 0

0
. . . 0

0 0 σXN

, (A3)

and RXX is the correlation matrix with correlation coefficients ρi,j:

RXX =


1 ρX1,X2 · · · ρX1,XN

ρX2,X1 1
...

. . .
ρXN,X1 1

 (A4)



Remote Sens. 2024, 16, 742 17 of 28

As standard, −1 ≤ ρi,j ≤ 1, and the diagonals all must equal 1. The cross-covariance
matrices can also be defined in a similar fashion:

KXY = ⟨X − ⟨X⟩⟩⟨Y − ⟨Y⟩⟩T , (A5a)

KYX = ⟨Y − ⟨Y⟩⟩⟨X − ⟨X⟩⟩T , (A5b)

where KXY and KYX are the cross-covariance matrices and are not generally identical. The
error magnitudes in Table 1 are calculated using a standard error propagation technique as
highlighted in Gleason et al. [25]:

En =

∣∣∣∣∂F
∂n

∣∣∣∣∆n (A6)

En is the error magnitude of term n, ∆n is the estimated 1-sigma dynamic range of n and F is
an arbitrary function. We can propagate these errors as the sums of covariance matrices
with the derivation below, inspired by Chapter 9 in Taylor [45].

For an arbitrary function F with random vector arguments X and Y, F(X, Y), where
X = (X1, X2, . . . , XN) and Y = (Y1, Y2, . . . , YN), we can approximate F by its first order
Taylor Series expansion about the mean value, assuming that the errors are generally small
compared to the arguments:

Fi = F(Xi, Yi) (A7)

Fi ≈ F(⟨X⟩, ⟨Y⟩) + ∂F
∂X

(Xi − ⟨X⟩) + ∂F
∂Y

(Yi − ⟨Y⟩) (A8)

Noting that ⟨F⟩ = F(⟨X⟩, ⟨Y⟩), and using F ≈ F(⟨X⟩, ⟨Y⟩) + ∂F
∂X (X − ⟨X⟩)+

∂F
∂Y (Y − ⟨Y⟩), then,

KFF = ⟨F − ⟨F⟩⟩⟨F − ⟨F⟩⟩T , (A9)

and expanding using Equations (A5), (A7), and (A8),

KFF =
〈

∂F
∂X (X − ⟨X⟩) + ∂F

∂Y (Y − ⟨Y⟩)
〉〈

∂F
∂X (X − ⟨X⟩) + ∂F

∂Y (Y − ⟨Y⟩)
〉T

=
[〈

∂F
∂X (X − ⟨X⟩)

〉
+

〈
∂F
∂Y (Y − ⟨Y⟩)

〉][〈
∂F
∂X (X − ⟨X⟩)

〉
+

〈
∂F
∂Y (Y − ⟨Y⟩)

〉]T

=
[〈

∂F
∂X (X − ⟨X⟩)

〉][〈
∂F
∂X (X − ⟨X⟩)

〉]T
+

[〈
∂F
∂Y (Y − ⟨Y⟩)

〉][〈
∂F
∂Y (Y − ⟨Y⟩)

〉]T

+
[〈

∂F
∂X (X − ⟨X⟩)

〉] [〈
∂F
∂Y (Y − ⟨Y⟩)

〉]T
+

[〈
∂F
∂Y (Y − ⟨Y⟩)

〉][〈
∂F
∂X (X − ⟨X⟩)

〉]T

=
(

∂F
∂X

)2
KXX +

(
∂F
∂Y

)2
KYY +

(
∂F
∂X

)(
∂F
∂Y

)
K

XY
+

(
∂F
∂X

)(
∂F
∂Y

)
KYX #

(A10)

Substituting E2
n =

(
∂F
∂n

)2
σ2

n from Equation (A6), and noting the decomposition in
Equation (A2),

KFF = E2
xRXX + E2

yRYY + ExEyRXY + ExEyRYX (A11)

The construction of Rmod in Equation (7) ignores the cross-correlation between compo-
nent terms, i.e., we assert RXY = RYX = 0. This is for two main reasons:

1. The terms Kn, as described in Appendices B–E, are not constructed from random
variables but rather through analytic specification to emulate the expected correlated
behavior. We generally have insufficient knowledge to measure or estimate the cross-
correlation between error components. Instead, this model simply estimates the cross-
correlation of error within individual components, which are then added independently.

2. Any residual cross-correlation between error components can be tuned per our
tuning parameters.
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This formulation assumes that each component term of the error En comes from a
wide-sense stationary distribution where the error magnitudes are treated as constants.
This means that for each component of KFF, and noting Equation (A2),(

∂F
∂X

)2
KXX =

(
∂F
∂X

)2
SXRXXSX =

(
∂F
∂X

)2
σ2

XRXX = E2
xRXX (A12)

For our error correlation model Rmod, we simply construct RXX analytically for each
term, for which we adopt the nomenclature Ecorr to emphasize that it is an error correlation
function. Therefore, from Equation (5) (reproduced here),

Rmod(i, j) =
1
N ∑n Kn(i, j),

where Kn(i, j) = E2
n · Ecorrn(i, j).

For this model, F is drawn from Equation (4) (reproduced here):

σo =
Pg4πLatmLZGZ

PZζEGRRtot Ā
,

where we use the parameters with the largest error magnitude, σo = F(Pg, PZ, GZ, GR, ζE).
The relevant partial derivatives ∂F

∂N from Equation (A10) become the following:∣∣∣∣ ∂F
∂Pg

∣∣∣∣ = 4πLatmLZGZ

PZζEGRRtot Ā
(A13a)

∣∣∣∣ ∂F
∂Pz

∣∣∣∣ = Pg4πLatmLZGZ

(PZ)
2
ζEGRRtot Ā

(A13b)

∣∣∣∣ ∂F
∂Gz

∣∣∣∣ = Pg4πLatmLZ

PZζEGRRtot Ā
(A13c)∣∣∣∣ ∂F

∂GR

∣∣∣∣ = Pg4πLatmLZGZ

PZζE(GR)
2Rtot Ā

(A13d)

∣∣∣∣ ∂F
∂ζE

∣∣∣∣ = Pg4πLatmLZGZ

PZ(ζE)
2GRRtot Ā

(A13e)

To estimate En, as shown in Table 1, these partial derivatives are evaluated at the
1-sigma value for a reference 10 m/s wind speed using Equation (A6). The total error
model becomes the following:

Rmod(i, j) =
1
N

[
Kpg(i, j) + Kz

P(i, j) + KGZ (i, j) + KGR(i, j) + KζE(i, j)
]
, (A14)

where Kpg is described in Appendix B, Kz
P is described in Appendix C, KGZ and KGR are

described in Appendix D, and KζE is described in Appendix E. N is a normalization
constant that forces Rmod to behave like a correlation such that −1 ≤ Rmod ≤ 1 and can
be thought of as an estimate for the rolled-up variance. Because this model has tunable
parameters, it is not necessarily representative of the true variance of σo but rather of the
modeled variance from our bottoms-up model construction.

Appendix B

The term Pg represents calibrated received power from GPS signals reflected from
the Earth’s surface. Pg is calibrated both from pre-launch characterizations as well as on
an on-orbit blackbody at a known temperature, which, as of 2022, takes a reading every
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10 min to re-compute gain that may have changed due to the dynamic thermal environment
in orbit [35].

For CYGNSS, Pg is computed by the Level 1A algorithm:

Pg =
C − CN

G
, (A15)

where C is the raw counts at delay–Doppler bins, where a scattered signal is present and
is the measured parameter for an observation, CN is an estimate of the background noise
without any scattered signal, and G is the receiver gain in units of counts/watt. In current
processing, CN is an average of the raw counts at in the delay–Doppler map at coordinates
at lower delay values than the specular point [25]. Further, gain G is measured in orbit by
performing readings from an onboard blackbody at a known temperature and calibrated
via the following:

G =
CB

PB + Pr
, (A16)

where CB is the counts measured while looking at the blackbody, PB is the power in watts
from the blackbody as estimated from a thermocouple located near the receiver’s low
noise amplifier, and Pr is the receiver noise power in watts estimated from a pre-launch
parameterization. Equations (A15) and (A16) can be combined:

Pg =
(C − CN)

CB
(PB + Pr), (A17)

The magnitude of the errors for the components calculating Pg is displayed in Table A1
and has a similar calculation as before.

Table A1. The magnitudes of 1-sigma errors for each term in Equation (A17). The shaded rows
indicate that the absolute magnitude is negligible compared to the dominant error terms and is
neglected in the construction of the error model in this work.

Error Term Error Magnitude [dB]

E(CN) 0.14 [36]

E(Pr) 0.14 [36]

E(C) 0.10 [36]

E(CB) 0.07 [35]

E(PB) ~0.04 [36]

CB, PB, and Pr all vary with temperature, and the instrument gain G will fluctuate as
the satellite enters different thermal conditions in orbit. The most significant errors will
occur just as the satellite crosses the terminator. At that point, CYGNSS will go from a nearly
steady-state thermal environment, such as approximately half an orbit of illumination or
eclipse, and then quickly enter the opposite state. The fraction of orbit spent illuminated is
determined by the orbit beta angle, which varies on scales of weeks to months.

The dominant error term in the Level 1A algorithm is CN , which also varies with
temperature. The calibration sequence is designed to correct for this, and we assume that
the errors vary slowly with the timescale of interest, which is defined to be on orders
of seconds to minutes. Therefore, all errors from CN are assumed to be 100% correlated
in time within a given track of CYGNSS observations, i.e., when a series of samples
adjacent in space and time share a GPS transmitter and a CYGNSS receiver. CN is also very
sensitive to radio-frequency interference (RFI), which will present as non-physical signals
above the specular point in a delay–Doppler map. We do not aim to model the complex
phenomenologies of RFI in this work and assume there are no correlated error structures
from RFI.
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Errors in Pr occur because of a variety of reasons. The low noise amplifiers were
all characterized on the ground prior to launch to establish the relationship of the noise
figure with respect to temperature. The values of this relationship were stored in a look-up
table (LUT) for processing science data. However, as the amplifiers age, the noise floor
characteristics may have evolved, producing errors in this mapping. Further, the thermal
environment of the thermocouple may not be exactly the same as experienced by the
amplifier itself. For the purposes of this model, we assume all errors due to incomplete or
erroneous knowledge of the true receiver noise power are 100% correlated with each other
for a given track, as we assume that the errors evolve slowly compared to the timescales
of interest.

Therefore, the error correlation terms for CN and Pr for any arbitrary CYGNSS sam-
ples xi and xj are the following:

EcorrCN

(
xi, xj

)
= EcorrPr

(
xi, xj

)
=

{
1, conditions met

0, else
(A18)

The conditions that must be met are the following: xi and xj must share a CYGNSS
receiver and a GPS transmitter and be observed within 10 min of each other.

C is the measured parameter, the raw counts of power from a science observation near
the region of the specular point. The analog-to-digital processing chain is the primary source
of errors, such as quantization errors and non-common-mode interference. We assume that
these error terms are 100% uncorrelated with each other; that is, for every sample, it can be
treated as white noise. The error correlation term for C is then the following:

EcorrC
(
xi, xj

)
=

{
1, xi = xj
0, xi ̸= xj

(A19)

The error term for counts measured during a blackbody sample CB is a source of
analytically defined correlated error. Every 10 min (earlier in the mission, every 1 min),
the receiver is switched from the nadir science antenna to look at the onboard blackbody
source for a period of 4–6 s. Science observation processing linearly interpolates the counts
between the nearest blackbody looks. When errors are made in estimating CB, those errors
are correlated linearly with all adjacent samples due to this interpolation. Correlation due
to linear interpolation has an analytical form. Assuming a blackbody look happens at
timesteps 0 and n, then, the correlation between any two samples xi and xj at arbitrary
timesteps i and j where 0 ≤ i < j ≤ n is the following:

EcorrCB

(
xi, xj

)
=

1
σiσj

(
(n − i)(n − j)

n2 +
ij
n2

)
, (A20)

where σi =

√
(n−i)2+i2

n2 and σj =

√
(n−j)2+j2

n2 . The actual values of the sampled blackbodies

do not matter, as the correlated error is simply a function of how far the samples are from
the blackbody looks in time.

Errors in PB are due to misestimations of the blackbody’s true noise power, which
may be because the thermocouple is measuring incorrectly. We assume that the errors of
this nature not only are slowly varying compared to the timescales of interest but, because
of the marginal absolute magnitude, factor a negligible and unmeasurable amount in the
overall correlated error structure. As such, the model ignores this term.
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The rolled-up correlated error model from the sources in Pg between any arbitrary
samples i and j can be expressed as follows:

KPg(i, j) =


α · E(C)2 · EcorrC(i, j)+

β · E(CN)
2 · EcorrCN (i, j)+

β · E(Pr)
2 · EcorrPr (i, j)+

E(CB)
2 · EcorrCB(i, j)

 (A21)

Because this model estimates the correlated error in each term that calculates Pg,
this contribution to the overall correlated error is not multiplied by the rolled-up error
magnitude E(Pg). As such, we do not normalize this construction, as it will be normalized
when combined with the other constituent terms in Rmod. RPg contains two tuning parame-
ters: α is used to size uncorrelated white-noise error, and β is used to size the magnitude of
totally correlated errors.

Appendix C

The zenith receiver on CYGNSS works much the same way as the nadir science
receiver. However, the zenith receiver does not have an onboard calibration system, and
data are processed from the pre-flight characterizations of the electronics. The counts
of the receiver are converted to watts via a quadratic regression. Because the satellite
is subject to the same thermal dynamics as the nadir receiver, one can expect that the
zenith power estimate contains errors due to thermally driven gain variations. We model
the EcorrPZ similarly to the nadir receiver but with some important distinctions. Because
the zenith receiver operates without an onboard blackbody to calibrate against, a number
of simplifying assumptions are made. Errors are broken up into just two components:
correlated EcorrPZ

1
and uncorrelated EcorrPZ

2
. We further assume that correlated error

due to the absence of an onboard blackbody are outside the timescale of interest. The
correlated error term EcorrPZ

1
is assumed to be totally correlated, provided that the matching

conditions are met:

EcorrPZ
1

(
xi, xj

)
=

{
1, conditions met
0, else

(A22)

The conditions for EcorrPZ
1

are that samples xi and xj are made with the same CYGNSS
observatory and within 10 min of each other. In addition, an uncorrelated component
is allowed:

EcorrPZ
2

(
xi, xj

)
=

{
1, xi = xj
0, xi ̸= xj

(A23)

The rolled-up correlated error model from the sources in PZ between any arbitrary
samples i and j can be expressed as follows:

KPZ (i, j) =
[

β · E
(

PZ
1
)2 · EcorrPZ

1
(i, j)

]
+

[
α · E

(
PZ

2

)2
· EcorrPZ

2
(i, j)

]
, (A24)

with the same tuning parameters α and β, as in Appendix A. Note that we assume
E
(

PZ
1
)
= 0.18 dB, as suggested in [33]. E

(
PZ

2
)

is estimated directly from a 24 h of CYGNSS
data as approximately 1% of the magnitude of the signal PZ; therefore, this model as-
sumes E

(
PZ

2
)
= 0.04 dB.

Appendix D

The CYGNSS observatory has three antennas: one zenith antenna that is used for
direct GPS-to-CYGNSS signal tracking, as well as two nadir science antennas that are used
to capture the scattered signal from Earth’s surface. Each of the eight spacecraft had all
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three antennas characterized pre-launch, and values were stored in a look-up table for
science processing.

Errors in the antenna gain pattern can arise for a variety of reasons. First, the measure-
ment equipment on the ground is essentially a receiver but in controlled conditions. This
means that while systematic and correlated errors are likely well-constrained, uncorrelated
speckle-type error can still occur. To produce realistic antenna gain patterns, the results of
the ground characterization were smoothed with various filters and techniques.

Another source of error is the fact that CYGNSS antennas were not characterized while
integrated with the spacecraft. This was a cost-saving measure decided by the mission
management team. However, the electromagnetic properties of the antenna couple in some
fashion with the spacecraft bus, and that will inevitably change the gain patterns.

Initial analysis of CYGNSS data shortly after launch showed significant retrieval per-
formance dependence on the observation azimuthal angle with respect to the CYGNSS
body frame, which was later hypothesized to originate in errors in the CYGNSS antenna
patterns. To compensate for this deviation from measured patterns, the CYGNSS antenna
patterns have been updated at several instances over the mission life via empirical cali-
bration. The nadir antenna patterns are updated by comparing a climatology of CYGNSS
measurements of σo (>2 years) with model-generate σo

mod and plotting a scaling factor in the
antenna reference coordinate system. σo

mod is generated by using modeled reanalysis winds
to generate mean-squared slope with the L-band spectrum extension model, as described
in [38]. However, during the generation of these updated patterns, a number of smoothing
filters are applied.

This prompts a discussion of a conjecture used extensively for this section:

Conjecture A1. Uncorrelated errors can become correlated by post-processing with averaging
and filters.

This insight drives much of this section’s analysis. Smoothing and filtering will
necessarily impose a correlation in error between previously uncorrelated errors. For white
noise, that implies that the choice of filter will add color and structure to the noise.

In particular, a handy lemma allows us to demonstrate that for white noise, the
information required to capture correlated error structure is the filtering kernel itself. We
will explore this behavior for a one-dimensional case, but it is generalizable to higher
dimensions in our application, as the two-dimensional filters used for antenna smoothing
are separable by construction.

Lemma A1. For a filtered signal F(t) = K(t) ∗ D(t), where K(t) is a filtering kernel and D(t) is
an arbitrary data signal, the autocorrelation F ⋆ F is the convolution of the autocorrelated ker-
nel K ⋆ K and the autocorrelated signal D ⋆ D.

Proof of Lemma A1. Assume convolution and cross-correlation have the standard defini-
tions for two real-valued timeseries K(t) and D(t), that is,

K(t) ∗ D(t)[n] =
∞

∑
t=−∞

K(t)D(n − t) =
∞

∑
t=−∞

K(n − t)D(t) (A25)

and
K(t) ⋆ D(t)[n] = ∑∞

t=−∞ K(t)D(n + t) = ∑∞
t=−∞ K(t − n)D(t), (A26)

where ∗ is the convolution operator, ⋆ is the cross-correlation operator, and n is the lag
argument. Observe that convolution operations are commutative and, further, that the
cross-correlation can be written as a convolution by exploiting its symmetry:

K(t) ⋆ D(t)[n] = K(−t) ∗ D(t)[n] (A27)
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Therefore, to evaluate the correlated error imposed by kernel K(t),

F(t) ⋆ F(t) = {K(t) ∗ D(t)} ⋆ {K(t) ∗ D(t)}
= K(−t) ∗ D(−t) ∗ K(t) ∗ D(t)
= {K(−t) ∗ K(t)} ∗ {D(−t) ∗ D(t)}
= {K(t) ⋆ K(t)} ∗ {D(t) ⋆ D(t)}

If the arbitrary signal D(t) happens to be white noise, it is completely uncorrelated, and its
autocorrelation collapses to a Dirac delta function centered at t = 0. Therefore, the entire
structure of the correlated error is from the filter itself:

F(t) ⋆ F(t) = K(t) ⋆ K(t) (A28)

□

For the purposes of this work’s error model, we have no knowledge of the potential
correlated structure in the actual errors in the gain pattern. The nadir antenna patterns are
updated after applying a 6-degree boxcar averaging filter in both the azimuthal and eleva-
tion in the spacecraft coordinate frame and then an additional 10-degree two-dimensional
smoothing window. We assume that zenith antenna patterns use a similar post-processing
technique during their generation.

These filtering kernels act like low-pass filters. All correlated structure on scales
~5 degrees and smaller and uncorrelated error will be strongly influenced by the filtering
process, and the correlated structure can be estimated from the Filter Lemma. This model
assumes that there is no residual larger-scale structure in correlated error in the antenna
gain patterns.

The generated filter kernel, which applies to both the nadir and zenith antenna pat-
terns, can be shown in Figure A1. The correlated error is a function of how close any
two observations are with respect to the relevant antenna gain pattern coordinates.
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Figure A1. The filtering kernel used to smooth nadir and zenith antenna gain patterns. This kernel
imposes correlated error structure onto the antenna gain patterns. The coordinate system should be
read as distance in the relevant antenna reference frame. Therefore, if two observations are nearby in
the antenna pattern, they will have strongly correlated errors. However, if two observations are far
apart in the pattern, the correlated structure decays.
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For any arbitrary samples i and j, we compute the gain pattern coordinates (θi, ϕi) and(
θj, ϕj

)
in the relevant antenna reference frame. To retrieve how correlated the error is, we

compute the distance between the two observations in the reference frame:

∆θ = θi − θj

∆ϕ = ϕi − ϕj

The error correlation function is computed via a LUT of the filter kernel K:

EcorrGz = K(∆θZ, ∆ϕZ) (A29)

EcorrGR = K(∆θR, ∆ϕR) (A30)

This error correlation holds if the samples i and j share the same antenna and are on
the same spacecraft. If they are on separate antennas or spacecrafts, the correlated error is
zero. The rolled-up correlated errors for the gain patterns can be expressed as follows:

KGZ (i, j) = γ · E
(

GZ
)2

· EcorrGZ (i, j)
δ · (1 + ∆ϕ2 + ∆θ2)

, (A31)

KGR(i, j) = γ · E
(

GR
)2

· EcorrGR(i, j)
δ · (1 + ∆ϕ2 + ∆θ2)

, (A32)

where two new tuning parameters have been introduced. γ is used to the tune the overall
magnitude of the correlated error from these components, and δ is used to scale the
decorrelation roll-off rate as the samples spread in antenna coordinates.

Appendix E

Errors in the zenith–specular ratio ζ are defined as a function of specular incidence
angle θinc, which is a function of the geometry of a given GPS transmitter, a CYGNSS
receiver at any given sample time.

ζ is used to estimate GPS EIRP and is derived via the following, as described in [33]:

ζ ≡ EIRPz

EIRPS
=

EIRP(t, θz, ϕz)

EIRP(t, θS, ϕS)
=

PT(t)GT(θz, ϕz)

PT(t)GT(θS, ϕS)
=

GT(θz, ϕz)

GT(θS, ϕS)
, (A33)

where the angles are defined in the GPS reference frame. For specular geometries, the
azimuthal angles in the zenith direction are nearly identical to the specular direction,
so ϕz = ϕS = ϕ. In addition, the elevation angles in the GPS antenna reference frame
θz and θS can be estimated from the angle of incidence of specular reflection from Earth θinc:

θz ∼= θz(θinc) (A34a)

θS ∼= θS(θinc) (A34b)

As a result, ζ can be expressed as a function of the specular incidence angle and
azimuthal angle in the GPS antenna reference frame. While GPS antenna patterns are
known to exhibit azimuthal dependence, this variation is less significant than the elevation
angle, and CYGNSS uses the azimuthal average for its EIRP estimate:

ζ(θinc) ≡
1

2π

∫ 2π

0

GT(θz(θinc), ϕ)

GT(θS(θinc), ϕ)
dϕ (A35)

The estimated correlated error in ζ, however, comes with two steps of this processing.
First is the mapping of Earth scattering incidence angle θinc to GPS antenna elevation
angles θz and θS in Equations (A34a) and (A34b). This particular mapping is coarse, as even
the high-fidelity-derived GPS antenna maps are plotted to 0.5-degree increments. Because
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the dynamic range of θz only extends to about 15 degrees, that only leaves ~30 data points
to map the full dynamic range of scattering incidence angles.

The second aspect has to do with the way in which ζ is processed and generated
and invokes the same logic as in the Filter Lemma. For every GPS satellite, a ζ LUT is
generated as a function of observation incidence angle θinc. To minimize discontinuities, a
fourth-order power series is fit. We argue that this smoothing is the predominant source of
correlated error structure. An example of this is demonstrated in Figure A2.

Figure A2. This figure illustrates a calculated zenith–specular ratio ζ as a function of observation
incidence angle θinc at a fixed GPS antenna azimuth for GPS PRN 2. The blue trace is interpolated
from raw observations over a two-year period at each of the elevation gridpoints in the GPS antenna
pattern for a single azimuthal cut of PRN 2. The red trace is a generated smoothed zenith–specular
ratio ζ that would be similar to the ones used in the operational LUTs using a 4th-order power series
fit. Note that at large incidence angles, i.e., grazing observations, there is a great deal of uncertainty
in ζ because there are few valid observations in those regions. In practice, only data at incidence
angles < 60 degrees constrain error in ζ.

While linear interpolation itself imparts some degree of error structure, we believe it
is the most representative way to express ‘raw’ data in a continuous series for the purposes
of exploring correlated error due to the power series smoothing. For each GPS PRN, we
calculate the difference between these estimates:

∆ζϕ(θinc) =

(
GT(θz(θinc), ϕ)

GT(θS(θinc), ϕ)

)
interp

−
(

GT(θz(θinc), ϕ)

GT(θS(θinc), ϕ)

)
smooth

Then, the error correlation is simply the following:

Ecorrζ

(
θi, θj

)
= corr

(
∆ζϕ(θi), ∆ζϕ

(
θj
))

, (A36)

where θi is the incidence angle of the observation at sample i, and θj is the incidence angle
of the observation at sample j. In practice, the correlation is computed by using each
azimuthal cut as an instance and building a LUT of correlation as a function of incidence
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angles for samples i and j. An example of this LUT for GPS PRN 2 is shown in Figure A3.
The rolled-up correlated error for ζ can then be expressed as follows:

Rζ(i, j) =
(

β · E(ζ)2 · Ecorrζ(i, j)
) 1

2 , (A37)

with the same tuning parameter β as introduced in Appendix B.
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