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Abstract: Optical sensors cannot penetrate clouds and can cause serious missing data problems in optical-
based Land Surface Temperature (LST) products. Under cloudy conditions, microwave observations are
usually utilized to derive the land surface temperature. However, microwave sensors usually have coarse
spatial resolutions. High-Resolution (HR) LST data products are usually desired for many applications.
Instead of developing and launching new high-resolution satellite sensors for LST observations, a
more economical and practical way is to develop proper methodologies to derive high-resolution LSTs
from available Low-Resolution (LR) datasets. This study explores different algorithms to downscale
low-resolution LST data to a high resolution. The existing regression-based downscaling methods
usually require simultaneous observations and ancillary data. The Super-Resolution Reconstruction
(SRR) method developed for traditional image enhancement can be applicable to high-resolution LST
generation. For the first time, we adapted the SRR method for LST data. We specifically built a
unique database of LSTs for the example-based SRR method. After deriving the LST data from the
coarse-resolution passive microwave observations, the AMSR-E at 25 km and/or AMSR-2 at 10 km, we
developed an algorithm to downscale them to a 1 km spatial resolution with the SRR method. The SRR
downscaling algorithm can be implemented to obtain high-resolution LSTs without auxiliary data or
any concurrent observations. The high-resolution LSTs are validated and evaluated with the ground
measurements from the Surface Radiation (SURFRAD) Budget Network. The results demonstrate that
the downscaled microwave LSTs have a high correlation coefficient of over 0.92, a small bias of less than
0.5 K, but a large Root Mean Square Error (RMSE) of about 4 K, which is similar to the original microwave
LST, so the errors in the downscaled LST could have been inherited from the original microwave LSTs.
The validation results also indicate that the example-based method shows a better performance than the
self-similarity-based algorithm.

Keywords: LST; super-resolution reconstruction (SRR); downscaling; MODIS; GOES; AMSR-E;
AMSR-2

1. Introduction

Land surface temperature (LST) is a fast response variable that can provide valuable in-
formation for soil moisture conditions and vegetation stress, indicating significant changes
in the hydrosphere, atmosphere, and biosphere [1,2]. High-resolution LSTs are desired in
many applications, such as urban heat island effect studies [3–7], hazard assessments, soil
moisture estimations [8–10], derivation of evapotranspiration (ET) [11–14], and drought
monitoring [15–17].

Under clear conditions, good-quality LSTs can be derived from optical sensors [18–26].
But, optical sensors cannot penetrate clouds and, thus, can lead to a lot of missing LST
data under cloudy conditions. Meanwhile, microwave (MW) sensors can penetrate non-
raining clouds: thus, under cloudy conditions, LSTs are usually derived from microwave
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observations [27–38]. Recently, integrating LSTs from optical and microwave observations
has made it possible to obtain spatial continuous LSTs under all sky conditions [38–42].
However, microwave sensors usually have a lower spatial resolution than optical sensors.

Traditional methods to improve the spatial resolution of sensors have high costs.
Hence, downscaling coarse-resolution data from existing sensors is more economical and
practical. There are mainly three approaches for remote sensing data downscaling [43]:
(1) regression approaches that are the most straightforward and commonly used; (2) the
Area to Point Prediction (ATPP) that downscales the input coarse-resolution variables
via interpolations [44]; and (3) super-resolution reconstructions introduced by Nasrollahi
and Moeslund [45]. Nasrollahi and Moeslund [45] summarized most SRR approaches
used in different fields. Recently, Super-Resolution Reconstruction (SRR) has become
a promising resolution-enhancement technique used to obtain high-resolution images
from low-resolution images [45]. The main idea of the method is to use the available
low-resolution image(s) to reconstruct high-resolution image(s).

Most LST downscaling research focuses on the statistical downscaling of thermal
satellite data (often known as thermal sharpening). Kustas et al. [46] presented a simple,
generalized Thermal sHARPening (TsHARP) algorithm using functional relationships be-
tween LST and the Normalized Difference Vegetation Index (NDVI) developed at a coarser
Thermal Infrared (TIR) pixel resolution, and then applied this at a finer shortwave resolu-
tion. Gao et al. [47] applied a data mining sharpener approach designed for applications
over widely varying landscapes to enhance the TsHARP results, considering the relation
between temperature and reflectance. Therefore, a single variable was added to the models,
such as emissivity [6,48], and an LST predictor set (vegetation indexes, albedo, emissivity,
land cover, slope, etc.) [49,50]. The selection of auxiliary datasets (such as vegetation or
topographic indices) as well as the generation and application of an empirical model are
critical for deriving high-resolution LSTs. Moreover, the effectiveness is limited when
auxiliary data and predictable data are not well-correlated (such as the NDVI and LST
on an irrigation ground) [51]. The statistical downscaling methods can perform better
when carried out with localization strategies [50], such as the Geographically Weighted
Regression (GWR) model [38,52]. Recently, machine learning and data mining techniques,
such as the Support Vector Machine (SVM) [3], machine learning [53], and random forest
regression [54,55], have been applied to LST downscaling. A stepwise downscaling method
was also developed to improve the GWR method and downscale LSTs derived from the
AMSR-E to the same resolution as MODIS [56].

In recent years, the SRR method for remote sensing images has mainly focused on
multi-temporal image sequences [57,58] or multi-angle data [59]. However, multi-temporal
satellite images can be obtained over different periods; thus, the atmosphere/surface
condition or the imaging scenes can change rapidly, even over the same scene. Multi-
angles, usually also obtained multi-temporally (shorter time difference), might not have
the required scene at a certain time, or the sensors might not be available, and the spatial
resolution of different angle images is different; the nadir image resolution is hard to match
accordingly [60]. What is more, for all of the successful applications of multi-angle imagery,
the accurate registration of multiple-view images, which at times are also multi-temporal,
is a prerequisite.

In our research about LST derivations under all sky conditions [38], LSTs derived from
an optical sensor under clear conditions were integrated with LSTs derived from microwave
observations under cloudy conditions, and the GWR method was applied to downscale
microwave-based LSTs to the same resolution as TIR-based LSTs. In this study, the super-
resolution method was used to downscale LSTs derived from microwave observations,
LSTs from the AMSR-E at 25 km were downscaled to the same 1 km resolution as MODIS
LSTs, and LSTs from the AMSR-2 at 10 km were downscaled to the same resolution as the
GOES LST (4 km before GOES-16 and 1 km after GOES-16).

The microwave LST datasets used in this study are described in the next section.
Section 3 describes the SRR methodology for multiple images or single-image downscaling.



Remote Sens. 2024, 16, 739 3 of 17

Section 4 presents the downscaling results and the evaluation results against the ground-
based measurements. The last section summarizes the results obtained in this study and
discusses their application perspectives.

2. Materials
2.1. Satellite Data

In this study, brightness temperature data from the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E) at a NASA-processed resolution of
25 km [61,62], and the second Advanced Microwave Scanning Radiometer (AMSR-2) at a
resampled 10 km resolution [63] processed by the Japan Aerospace Exploration Agency
were used to derive LSTs with the algorithms developed by Sun et al. (2019) [38].

The MODIS level 3 monthly emissivity product [21] at a 0.05◦ spatial resolution [64]
was used to estimate the broadband emissivity.

The study area covered the Continental United States (CONUS: 25~50◦N; −125~−70◦W).
The AMSR-E data in 2008, the AMSR-2 data in 2015, and the MODIS emissivity data in 2008
and 2015 were used.

2.2. In Situ Data

The Surface Radiation Budget Network (SURFRAD) ground observations were used
to validate and evaluate the downscaled LSTs derived from microwave measurements. The
surface upwelling and downwelling radiative fluxes from the SURFRAD observations can
be converted to LSTs by using the following equation [38]:

Ts =

[
F↑ − (1 − εb)F↓

εbσ

] 1
4

(1)

where σ is the Stefan–Boltzmann constant, F↑ is the surface upwelling longwave radia-
tive flux, F↓ is the surface downwelling longwave radiative flux, and εb is the surface
broadband emissivity, which can be derived from the spectral emissivity by using a narrow-
to-broadband conversion with Equation (2):

εb = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (2)

where ε29, ε31, and ε32 are the spectral emissivity values at MODIS bands 29, 31, and
32, respectively.

3. Methods

In our previous research, we tested both stationary and non-stationary-based LST
downscaling algorithms [38]. The TsHARP technique is a popular LST stationary downscal-
ing approach that has been studied till recently. The Geographically Weighted Regression
(GWR) is a widely used non-stationary approach. LST data derived from microwaves
(AMSR-E: 25 km) were downscaled to a fine spatial resolution as MODIS at 1 km, with
the help of the MODIS LST along with other selected auxiliary data. The Normalized
Difference Vegetation Index (NDVI) data and Digital Elevation Model (DEM) were used as
auxiliary data. The daily NDVI data were derived from MODIS at a 0.05-degree grid [65].
Since elevation can play an important role in the distribution of LSTs, as indicated by
Peng et al. [66], LSTs usually decrease with increasing elevation. The elevation data can
be obtained from the National Elevation Dataset (NED) [67] at a resolution of 100 m and
downsampled to a coarse resolution (25 km and 1 km here) via a bi-cubic interpolation.

Figure 1 demonstrates the GWR outperformed the TsHARP algorithm, and the overall
results are similar to MODIS LST. Based on this research, the GWR method was chosen
to obtain gap-free spatial continuous LSTs over the continental United States from the
AMSR-E observations at a 25 km resolution in 2008 and 10 km AMSR-2 LSTs in 2015 [38].
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However, the existence of another concurrent high-resolution image as well as other
auxiliary data are needed for both the TsHARP and the GWR methods. The AMSR-E has
full coverage (Figure 1b) while, in some places, MODIS (Figure 1a) has no valid data due to
clouds, which makes the downscaled AMSR-E LST (Figure 1c,d) lack data in areas with
MODIS missing values due to clouds. These missing values limit the wide applications of
high-resolution microwave LSTs. For example, the Atmosphere–Land Exchange Inverse
(ALEXI) model [14] requires two morning LSTs as inputs, while there is no high-resolution
data available at this time, so the LSTs cannot be downscaled using these regression-based
methods. Thus, in this study, we introduced the SRR to solve the missing-value problem in
the high-resolution LSTs obtained with the regression-based downscaling algorithms.

The SRR can be categorized into two methods: multi-image super-resolution (MISR)
and single-image super-resolution (SISR).

The MISR method is a classical solution that deals with image sequences for the same
scene (often caused by shifts), and high-resolution details are usually recovered by subpixel
realignments. The fundamental point behind this method is that several images from the
same area can often be obtained in satellite applications. Firstly, this method works with
the assumption that subpixel shifts from each other are different, i.e., it stops working
when the identic images are input. Secondly, multiple low-resolution images should be
captured for the same scene, i.e., these observations have no significant changes. For the
multi-image super-resolution method, in this study, two primary methods—the Maximum
Likelihood Estimator (ML) and the Projection onto Convex Sets (POCS)—were applied to
downscale LSTs.

The SISR method mainly includes three types. (1) Interpolation-based SISR. This
methodology has been extensively studied. Usually, this approach cannot recover lost or
degraded high-frequency components during the low-resolution sampling process [68]
and creates blurry or over-smoothed edges for the reconstructed high-resolution image.
(2) Reconstruction-based SISR. The prior knowledge of an observation model that maps
the high-resolution images from the low-resolution images. This method is numerically
limited to a scaling factor of two [68]. (3) Database-driven-based SISR. This learns the cor-
respondence between high-resolution- and low-resolution-image patches from a database.
Further detailed information is provided later.

Let x and y denote the sequences of high-resolution and low-resolution images, re-
spectively. The commonly used image can be modeled as:

yk =
1
Z

BjMkxj + Nj (3)
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where Z is a downsampling operator, B is a blurring function, M is a motion factor, and N
is an additive noise. Subscript j, k stands for the image frame number, 1 ≤ j, k ≤ t, and t is
the total frame number of images.

Shen et al. (2009) [58] also considered the photometric effects of the zenith angle
and atmosphere by adding a linear system with the gain and offset of the photometric
parameters into Equation (3). Let A be the degradation factor. The classic image restoration
model (Equation (3)) can be simplified as:

y = Ax + n (4)

The resolution enhancement thus becomes the solution for defining A, where n repre-
sents the noise vector.

3.1. Multi-Image SRR
3.1.1. The ML-Based SRR

We explored two popular multi-image SRRs here, namely, the ML and POCS. The
likelihood was the reverse process of possibilities. The Maximum Likelihood (ML) finds
the most likely solution for the observations by maximizing the conditional Probability
Density Function (PDF) of p{y|x}.

Assuming that the low-resolution LST images, x, are uniform, and the data are geo-
graphically corrected (no motion estimation is required), the ML-SR reconstruction can be
simplified as:

x̂ML =
argmin

x ∥y − Ax∥2 (5)

The pseudo-inverse result to x and equating to zero gives:

x̂ML =
(

ATA
)−1

ATy (6)

Irani and Peleg [69] proposed a simplified algorithm that iteratively minimizes sim-
ulation errors convolved with a Back-Projection Function (BPF). We adapted their idea
here. Firstly, an initial solution for the desired high-resolution image was estimated via a
simple interpolation. Most studies take the average of upscaled low-resolution images, yk.
We noticed that, when choosing the latest LST as the initial image, the ring effect makes
the image too blurry and noisy. So, for a low-resolution image set, {y0, y1, . . . , yt}, we
averaged image frame, yi, to set it as the initial image:

y0 = Ax + n (7)

The error between y0 and y is corrected by back-projecting to x until it meets the
pre-defined requirement.

xi+1 = xi + ∑k hbp f ∗ S↑(ŷk − yk), i = 0, . . . , t (8)

where hbp f is the back-projection kernel, S↑ is the upsampling operator, and ŷk is the
simulated k-th low-resolution frame from the current high-resolution estimation, and k is a
low-resolution pixel influenced by a high-resolution pixel.

The solution of BPF depends on the initialization and the selection of a back-projection
kernel. It affects how much the errors for low-resolution images contribute to the next high-
resolution guess. In this study, we assume that the effect is a Gaussian random process,
n is an estimate of the super-resolved image, ŷ, and the total probability of an observed
low-resolution image, yk (k = 1, . . . , t, t is the total number of low − resolut ionimages), is:

p(yk|x) = ∏
1

2
√

π
exp

{
− (ŷk − yk)

2

2σ2

}
(9)



Remote Sens. 2024, 16, 739 6 of 17

The choice of standard deviation σ is imperative, and a higher σ value creates
smoother edges.

3.1.2. The POCS-Based SRR

The POCS method is an alternative iterative approach to incorporate prior knowledge
about a solution into the reconstruction process. Let Ci(i = 1, . . . , m) be a closed convex
set that satisfies a certain property. The POCS uses prior knowledge to obtain the solution,
and to find an intersection convex set, Cs

(
Cs =

⋂m
i−1 Ci

)
, by alternating projections. Such a

process can be described as:

xn+1 = PmPm−1 . . . P2P1x0R (10)

where x0 is an initial point and Pi(i = 1, . . . , m) is the projection operator that projects each
x to the convex sets, Ci [68]. The prior knowledge, R, can be added to this equation to
define the convex sets and projection algorithm.

The key to the POCS method is to solve a constrained optimization problem [70].
With the geographically corrected data, we assume that yK denotes the observed kth
low-resolution images. The estimated low-resolution image is regarded as the image
degenerated from the high-resolution image through the degrading function, h:

yk =
w

∑
−w

hnxn (11)

where h is also called the Point Spread Function (PSF), due to the undersampling of low-
resolution images, and we assume the degrading process via Gaussian blurring with
blurring level (standard deviation) σ, and w is the PSF radius.

Define δ = cσ as a threshold that represents the observation confidence; c is a positive
constant. xn is the ideal high-resolution image. Trussell and Civanlar [71] described the
procedure as follows: if the residual r = ŷk − yk is in the threshold range, then xn remains
the same; if r is outside the threshold range, then xn is increased or decreased until it reaches
the near-zero value. During this process, a constant threshold, s, was used to constrain the
convergence speed of the iterative process. The projection yk of an arbitrary xn onto Cs can
be given as:

P[xn] = xn +


s(r + δ)hn, r < −δ
0 , −δ ≤ r ≤ δ
s(r − δ)hn, r > δ

(12)

A new projector is determined in each restriction step and the successive convex
sets converge at an intersection point to obtain the final solution [72]. The POCS utilizes
the dominant spatial domain observation model. Many studies integrate the spatial and
frequency domains to decrease the edge oscillation phenomena [70,73]. In this study, the
sharp edges of LST images were not required, and we employed the POCS only in the
space domain.

3.2. Single-Image Super Resolution (SISR)

Prior information is required so that a single image can be reconstructed. Such
prior information is available either in the explicit form of an energy function defined
on the image class, or in the implicit form of example images leading to example-based
super resolutions.

In this section, we explore the SRR algorithms with external and internal databases.
External database-driven super-resolution maps of high-resolution images were learned
from a large database of low-resolution–high-resolution-image pairs, which we called
the example-based method in this study. Internal database-driven super-resolution map
high-resolution images created by exploiting similarities within the images are referred to
as the self-similarity-based method.
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3.2.1. The Example-Based Method

Freeman et al. [74] were one of the first scientists to propose example-based SRR
approaches. Such approaches are patch-based, and each patch pair is connected through
an image model (Equation (10)). The patterns between high-resolution and low-resolution
images can be learned from patch examples, and a statistical model that aims to find patch
reoccurrences is applied to a single low-resolution image to predict high-resolution images.

Ever since the example-based SISR method has been proposed and tested, further stud-
ies have been conducted [74,75], with a primary focus on natural images. Nasrollahi and
Moeslund [45] reported the databases that were built for satellite and aerial imagery [76].
To obtain high-resolution LSTs, a specific database for LST image patches should be created,
along with alleviating the data complexity and a simple prediction function.

During the training phase, 5000 available images of MODIS 1 km LSTs (cloud pixels < 10%,
size N*N) were chosen from different regions and times from 2007 to 2008. We degraded each of
the images to make the corresponding low-resolution datasets (size M*M, where N = 2,3,4,5*M).
Note that N = 2*M means we blurred and subsample half of the high-resolution pixels from
each dimension, thus the final low-resolution pixels were a quarter of high-resolution pixels.
The factor that represents the desired scale should remain the same in one database.

Following Freeman et al. [74], we assumed that high-resolution–low-resolution image
patches were independent, and normalized the image patches to increase the efficiency of
the training set.

The bicubic spline interpolation was applied to the low-resolution images, and only the
differences between high-resolution and low-resolution images were stored in the database.
Moreover, we filtered out the lowest-frequency components since the most necessary
prediction details were the highest-spatial-frequency components in this case [74]. Figure 2
presents an example of training imagery: select a region with cloud pixels < 10% (Figure 2b)
from one MODIS 1 km cloud-free LST observation (Figure 2a), fill the empty gap by the
bicubic spline interpolation to obtain a full-coverage high-resolution image (Figure 2c), and
then obtain a low-resolution image (Figure 2d) by the nearest upscaling from Figure 2c.
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resolution version of the image; (c) bicubic spline interpolation for the full-coverage high-resolution
image; (d) the low-resolution version of the image. The legend color scale is for LSTs in Kelvin (K).

While predicting the high-resolution LSTs, we performed the nearest interpolation
on the low-resolution patch, and then this low-resolution patch was compared with low-
resolution patches in the database. When matches are found, we generated a set of candi-
date estimates.

Similar to Freeman et al. [74], the Markov network was used to probabilistically
model the spatial relationships between the patches. Based on learning, we can obtain the
matrix of transition probability Ψ between high-resolution patches, as well as the matrix of
transition probability ϕ between high-resolution and low-resolution patches. For a given
low-resolution image, y, scan this with a small window (of size M), so that the corresponding
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position in the Markov network for each patch, as well as the relation between high-
resolution patches, can be found; then, we added the high-frequency component to make
the final estimation. The probability of a high-resolution patch can be given as:

p(x|y) = 1
C ∏(i,j∈Ns(i))

Ψij
(
xi, xj

)
∏i ϕi

(
xi, yj

)
(13)

where C is a normalization constant, xi is the observed high-resolution patch at node i,
and yj is the observed low-resolution patch at node j. NS (i) stands for the 8-connected
neighbors of the pixel location, i. Ψ and ϕ are specified as:

Ψij
(
xi, xj

)
= exp

(
−
∣∣x̂i − x̂j

∣∣β
2σ2

)

ϕi
(
xi, yj

)
= exp

(
− (x̂i − yi)

2

2σ2

)
(14)

σ is a noise parameter, β is used here to weigh the costs [77]. β > 1 favors a strong
edge over small edges; β < 1 creates smoother edges. Belief propagation was used to find
the best solution for Equation (14) from the candidate set. Four times iterations of the
algorithm were used, which was sufficient according to Freeman et al. [74].

Sufficiency and predictability are the key success factors for this method [75]. With
this specifically built LST database, the possibility of finding similar training data in the
database was greatly enhanced.

3.2.2. The Self-Similarity Method

Example-based methods assume that missing high-resolution details can be learned
and inferred from low-resolution images and a representative training set. To perform this, a
large and representative database of high-resolution–low-resolution-image pairs, as well as
mapping methods, were the two key factors to consider. Such a method has disadvantages:
(1) the requirement of a large and various dataset; (2) the database might not be able to
fully cover the missing high-frequency details; (3) the rich image structural information
is not exploited; and (4) various learning algorithms can cause uncertainties [78]. Glasner
et al. [79] combined the example-based super-resolution and self-similarity methods by
exploiting patch recurrences within and across image scales without an external database.
Nature images have self-similarity, which means that high-resolution and low-resolution
patches in a single image tend to redundantly recur within the image at varying scales [79].
A possible way to avoid the use of training images was proposed in Huang [80], where
they found patch recurrences in a single image with a pixel re-alignment similar to the
example-based super-resolution method. This method builds an internal training set from
the image pyramid itself. So, in this study, we also generated image patch pairs of one
single frame instead of training an extrinsic set of images.

4. Results
4.1. Multiple-Image Downscaling

Two examples are shown in Figure 3 to demonstrate the results from the ML and
POCS methods. The high-resolution LSTs corresponding to the low-resolution LSTs in
Figure 4a (1:30 PM, 14 February 2008) were derived. Since only two images were presented
to reconstruct high-resolution LSTs, both the ML and POCS downscaling levels were very
limited. As mentioned before, due to the ringing effect, we averaged the images as the
initial plane.
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based on (a,b2). The legend represents LSTs in Kelvin (K).

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

 

(K) 

Figure 3. Spatial distributions of (a) AMSR-E LST around 1:30 PM on 14 February 2008, (b1) AMSR-
E-based LST on previous day around 1:30 PM, (c1) the ML downscaled LST based on (a,b1), (d1) 
the POCS downscaled LST based on (a,b1); (b2) AMSR-E LST on the same day but at a different 
time at around 10:30 AM, (c2) the ML downscaled LST based on (a,b2), and (d2) the POCS 
downscaled LST based on (a,b2). The legend represents LSTs in Kelvin (K). 

 
Figure 4. An example for high-resolution LSTs on 14 February 2008 using different SRR methods: 
(a) example-based method; (b) self-similarity-based method. The color scale represents LSTs in Kel-
vin (K). 

If two images are similar, like Figure 3a, b1, both the ML (Figure 3c1) and POCS (Fig-
ure 3d1) show good performances and can be used to downscale LSTs. However, when 

Figure 4. An example for high-resolution LSTs on 14 February 2008 using different SRR methods:
(a) example-based method; (b) self-similarity-based method. The color scale represents LSTs in
Kelvin (K).

If two images are similar, like Figure 3a,b1, both the ML (Figure 3c1) and POCS
(Figure 3d1) show good performances and can be used to downscale LSTs. However, when
the two LST observations are different, like in Figure 3a,b2, the ML method (Figure 3c2)
cannot reproduce the same or similar situations for the original coarse-resolution LST
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(Figure 3a) very well; instead, it provides a result more like an average LST of the two input
observations (Figure 3a,b2). The POCS, under the same situation, demonstrates better
results (Figure 3d2). The better performance of the POCS could be due to the sorting
method initialization, where the original low-resolution LST is an input; thus, the result
is closer to the original LST. However, the problem with the POCS method is the ringing
effects [81], which are obvious in both Figure 3d1,d2. As for the Gaussian kernel, the
standard deviation, σ, was set to 400 to obtain a smoother edge. Overall, such methods
could be useful for slow-changing satellite images, like land cover type.

4.2. Single-Image Downscaling

The single-image SRR method was applied to the previous example shown in Figure 4.
Figure 3a is the original image, with a coarse resolution of 25 km; an example-based SRR
and self-similarity-based SRR were applied separately to obtain a high-resolution LST at a
1 km resolution. σ was also set to 400. As shown in Figure 4, to derive high-resolution LSTs
corresponding to Figure 3a, both the example-based SRR and self-similarity-based SRR can
reproduce similar patterns to the original coarse-resolution LST image (Figure 3a).

As shown in Figure 5, the LST is obtained from the AMSR-2 descending data; the
GWR cannot be applied because there are no concurrent satellite observations. With the
SRR method introduced in this study, the LST can be downscaled to 1 km. Since the
example-based database used in this study was built especially for LSTs, compared with
other databases for images, the example-based SRR developed in this study should work
specifically for LST downscaling.
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Figure 5. An example of different super-resolution methods: (a) the original low-resolution image
(10 km), (b) the corresponding high-resolution LST derived from the example-based method, and
(c) the high-resolution LST derived from the self-similarity-based method. The data are the AMSR-2
LSTs during the descending pass at nighttime on 9 August 2015. The legend represents LSTs in
Kelvin (K).

In this study, examples using the SRR single-image downscaling method are shown
in Figures 6 and 7, AMSR-E LSTs are downscaled from 25 km to 1 km (the same as the
MODIS), and LSTs from the AMSR-2 are downscaled from 10 km to 4 km (the same as
the GOES).
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during daytime (a) on 8 December 2008. The legend represents LSTs in Kelvin (K).
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Figure 7. The final high-resolution AMSR-2 LSTs obtained from the example-based SRR
method (b) and the self-similarity-based SRR method (c), compared with the GOES LSTs at 1.5 h after
sunrise (a) on 29 March 2015. The legend represents LSTs in Kelvin (K).

Given the original MODIS LST observations (Figure 6a) and GOES LSTs 1.5 h after
sunrise (Figure 7a), the gap-free LSTs at the 1 km spatial-resolution observations could be
derived (Figure 6b,c and Figure 7b,c). Figures 6b and 7b are the high-resolution LSTs at
a 1 km resolution obtained from the AMSR-E 25 km LSTs (Figure 6b) and AMSR-2 10 km
LSTs with the example-based SRR method. Figures 6c and 7c are high-resolution LSTs
derived from the AMSR-E and AMSR-2 with the self-similarity-based SRR method. These
results demonstrate that the SRR can help improve the spatial resolution of LSTs derived
from the coarse-resolution passive microwave observations.

4.3. Results from the Validation against Ground Observations

The LSTs (1 km) obtained from the proposed example-based and self-similarity-based
algorithms were validated against the ground observations. Figure 8 presents the AMSR-
E LSTs compared with SURFRAD observations in 2008. For AMSR-E LSTs downscaled
from the example-based method, the correlation is 0.94, the bias is −0.31 K, and the Root
Mean Square Error (RMSE) is 3.86 K, while for the AMSR-E LSTs downscaled from the
self-similarity-based method, the correlation is 0.92, the bias is 1.51 K, and the RMSE is
4.46 K. Compared with the original coarse-resolution AMSR-E LSTs, the correlation is 0.97,
the bias is 0.43 K, and the RMSE is 3.77 K. The example-based method is better than the self-
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similarity-based method. Figure 9 presents the AMSR-2 LSTs compared with SURFRAD
observations in 2015. For the AMSR-2 LSTs downscaled from the example-based method,
the correlation is 0.94, the bias is 0.27 K, and the RMSE is 4.24 K, while for the AMSR-2
LSTs downscaled from the self-similarity-based method, the correlation is 0.94, the bias
is 0.37 K, and the RMSE is 4.44 K. Compared with the original coarse-resolution AMSR-2
LSTs, the correlation is 0.95, the bias is 0.44 K, and the RMSE is 4.13 K. The results also
indicate that, in general, the downscaled microwave LSTs have an RMSE of about 4 K.
This error is similar to the original coarse-resolution microwave-based LSTs, as shown in
Figures 8c and 9c; so, the errors in the downscaled LSTs could have been inherited from
the original microwave LSTs. The validation results from both the AMSR-E and AMSR-2
indicate the example-based method outperforms the self-similarity-based algorithm.
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Figure 8. Scatter plots of the AMSR−E LST vs. SURFRAD observations in 2008 during the daytime:
(a) LSTs derived from the example-based SRR and (b) LSTs derived from the self-similarity-based
SRR, compared with the original low-resolution AMSR−E LSTs (c). Bias refers to the Mean Bias
Error (MBE) or accuracy, the RMSE is for the Root Mean Square Error, R represents the Pearson’s
correlation coefficient, N represents the sample number. The black diagonal line refers to the 1:1 line;
the pink line is for the least squares fit line. The legend represents the RMSE in Kelvin (K).
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Figure 9. Scatter plots of the AMSR-2 LST vs. SURFRAD observations in 2015 during the daytime:
(a) LSTs obtained from the example-based SRR method and (b) LSTs obtained from the self-similarity-
based SRR method, compared with the original low-resolution AMSR-2 LST data (c). Bias refers to
the Mean Bias Error (MBE) or accuracy, the RMSE is for the Root Mean Square Error, R represents
Pearson’s correlation coefficient, and N represents the sample number. The black diagonal line refers
to the 1:1 line; the pink line is for the least squares fit line. The legend represents the RMSE in
Kelvin (K).

5. Discussion

Under clear-sky conditions, LSTs can be derived from optical sensors, such as the
MODIS and GOES, with a reasonable quality [18–26]. However, a lot of areas (more than
60%) in the MODIS LST examples show missing data because of cloud contamination [41].
Under cloudy conditions, LSTs can be retrieved from passive microwave sensors, like the
AMSR-E and AMSR-2, as they can penetrate non-rainy clouds, but the spatial resolution of
passive microwave sensors is usually much more coarse than optical sensors.

In this study, the super-resolution technique was applied to downscale the LSTs de-
rived from passive microwave sensors, such as the AMSR-E and AMSR-2, to the same
spatial resolution as the optical LST products. With this new technology, further im-
provements can help to enhance the spatial resolution of LSTs derived from microwave
measurements. With the method proposed here, spatial continuous LSTs on a daily basis
can be obtained from passive microwave observations at the same spatial resolution as
optical-based LSTs. The main objective of this study was to develop new methods to obtain
spatial continuous LSTs under cloudy conditions. It is expected that daily LSTs with con-
tinuous spatial distributions obtained in this way can help soil moisture, surface-sensible
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and latent heat fluxes, evapotranspiration (ET), and drought index, like the Evaporative
Stress Index (ESI), estimations on a daily basis under all sky conditions, and benefit future
drought monitoring outcomes and improve urban heat island and environment studies.

The super-resolution technique can be implemented to obtain high-resolution LSTs
without auxiliary data or any concurrent observations, while the existence of other concur-
rent high-resolution images as well as other auxiliary data are needed for other downscaling
algorithms. When using other algorithms for LST downscaling, the selection of auxiliary
datasets (such as vegetation or topographic indices) is critical for deriving high-resolution
LSTs; if the auxiliary data and predictable data are not well-correlated (such as the NDVI
and LST on an irrigation field), the effectiveness is limited.

Validations or evaluations of the downscaled microwave LSTs against ground obser-
vations were conducted. The validation results for both downscaled AMSR-E and AMSR-2
LSTs indicate the example-based method outperforms the self-similarity-based algorithm.

6. Conclusions

As clouds obscure thermal infrared LST observations, microwave sensors can pen-
etrate most non-rainy clouds and observe the Earth’s surface. Therefore, under cloudy
conditions, LSTs can be derived from passive microwave sensors, but usually at a coarse
spatial resolution. In this study, the super-resolution method was applied to downscale
LSTs derived from the microwave AMSR-E and AMSR-2 observations to the same spatial
resolutions as the thermal MODIS and GOES LST products. In this way, daily spatial con-
tinuous LSTs can be obtained from coarse-resolution microwave observations at the same
spatial resolution as thermal LST products. The downscaled LSTs with super-resolution
techniques were validated against ground observations from the SURFRAD networks. The
results indicate that, in general, downscaled microwave LSTs have an RMSE of about 4 K.
This error is similar to the original microwave LSTs, so the errors in the downscaled LSTs
could have been inherited from the original microwave LSTs. The validation results also
indicate the example-based method outperforms the self-similarity-based algorithm.
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