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Abstract: An adequate fusion of the most significant salient information from multiple input channels
is essential for many aerial imaging tasks. While multispectral recordings reveal features in various
spectral ranges, synthetic aperture sensing makes occluded features visible. We present a first and
hybrid (model- and learning-based) architecture for fusing the most significant features from conven-
tional aerial images with the ones from integral aerial images that are the result of synthetic aperture
sensing for removing occlusion. It combines the environment’s spatial references with features of
unoccluded targets that would normally be hidden by dense vegetation. Our method outperforms
state-of-the-art two-channel and multi-channel fusion approaches visually and quantitatively in
common metrics, such as mutual information, visual information fidelity, and peak signal-to-noise
ratio. The proposed model does not require manually tuned parameters, can be extended to an
arbitrary number and arbitrary combinations of spectral channels, and is reconfigurable for address-
ing different use cases. We demonstrate examples for search and rescue, wildfire detection, and
wildlife observation.

Keywords: image fusion; aerial imaging; multispectral; synthetic aperture sensing; Airborne Optical
Sectioning; occlusion removal

1. Introduction

Occlusion caused by dense vegetation, such as forest, represents a fundamental prob-
lem for many applications that apply aerial imaging. These include search and rescue,
wildfire detection, wildlife observation, surveillance, forestry, agriculture, and archaeology.
With Airborne Optical Sectioning (AOS) [1–5], we have introduced a synthetic aperture
imaging technique that removes occlusion in aerial images in real time (Figure 1a–d). It
computationally registers and integrates multiple (single) images captured with conven-
tional camera optics at different drone positions into an integral image that mimics a wide
(several meters) synthetic aperture camera. Thereby, the area in which the single images are
sampled represents the size of the synthetic aperture. Image registration and integration
depend both on the camera poses where the single images have been recorded and on
a given focal surface (e.g., a defined plane or a registered digital elevation model of the
ground surface). The resulting integral image have an extremely shallow depth of field.
Because of this, all targets located on the focal surface appear sharp and unoccluded, while
occluders not located on the focal surface appear severely defocused. In fact, the blur
signal of the occluders is spread widely over the integral image, which suppresses their
contribution. High spatial resolution, real-time processing capabilities, and wavelength
independents are the main advantages of AOS over alternatives such as light detecting
and ranging (LiDAR) or synthetic aperture radar (SAR). AOS can be applied to images
captured in the visible, near-infrared, or far-infrared spectrum, and its processing is in the
range of milliseconds.
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Figure 1. Airborne Optical Sectioning (AOS) principle (a): Registering and integrating multiple im-
ages captured along a synthetic aperture of size a while computationally focusing on focal plane F 
at distance h will defocus occluders O at distance o from F (with a point-spread of b) while focusing 
targets on F. Single RGB image, SRGB (b); integral thermal image, IT (c); and integral RGB image, 
IRGB (d) of dense forest captured with a square synthetic aperture area (30 m × 30 m) with 1 m × 3 
m dense sampling while computationally focusing on the forest ground. All images show the same 
scene, at the same time, from the same pose. (e) Fused result from (b–d). Close-ups are in dashed 
boxes. (f) Fusion of IT and IRGB under dark light conditions—increasing exposure through integra-
tion. Original SRGB image in solid box. (g) SRGB and IT fusion of sparse forest—highlighting the 
bottoms of tree trunks in the thermal channel. Close-up in dashed box. (h) SRGB and color-coded 
IT fusion—revealing hot ground patches in the IT channel. Color-coded IT image in sloid boxes. 

One major limitation of these integral images is their lack of spatial references, as the 
surrounding environment’s details (e.g., features of the forest structure, such as distinct 
trees, sparse and dense regions, etc.) are suppressed in the shallow depth of field. Such 
spatial references, however, are important for orientation while inspecting the images. In 
this article, we propose a novel hybrid (model- and learning-based) architecture for fusing 
the most significant (i.e., the most salient) information from single and integral aerial im-
ages into one composite image (Figure 1e–h). This composite image combines the envi-
ronment’s spatial references provided by single images (for orientation; not visible in in-
tegral images) with features of the unoccluded targets provided by integral images (not 
visible in single aerial images). Our method is the first to fuse visible and occluded fea-
tures in multiple spectral bands, outperforms the state of the art (visually and quantita-
tively), does not require manually tuned parameters, can be extended to an arbitrary num-
ber and arbitrary combinations of spectral channels, and is reconfigurable to address dif-
ferent use cases.  

Classically, the fusion of lower-resolution hyperspectral and higher-resolution mul-
tispectral images is concerned with up-sampling, sharpening, and super-resolution [6]. 
New image fusion approaches that extract and combine salient image features, especially 
for recordings in the infrared and visible spectral ranges, have become an active research 
field in recent years. Feature extraction and the fusion strategy itself are two main compo-
nents of such methods. Multi-scale transform-based approaches [7–10] split images into 
multiple scales for the analysis of both fine and coarse features. Low-rank-based methods 
[11,12] decompose the image matrix into low-rank and sparse representations. Such 
model-based approaches often require a lot of computational resources and extensive 
manual adjustments. In [13], a hybrid concept is followed, which first extracts features 
using a model-based approach and then feeds these features as input to a learning-based 

Figure 1. Airborne Optical Sectioning (AOS) principle (a): Registering and integrating multiple
images captured along a synthetic aperture of size a while computationally focusing on focal plane
F at distance h will defocus occluders O at distance o from F (with a point-spread of b) while
focusing targets on F. Single RGB image, SRGB (b); integral thermal image, IT (c); and integral RGB
image, IRGB (d) of dense forest captured with a square synthetic aperture area (30 m × 30 m) with
1 m × 3 m dense sampling while computationally focusing on the forest ground. All images show
the same scene, at the same time, from the same pose. (e) Fused result from (b–d). Close-ups are in
dashed boxes. (f) Fusion of IT and IRGB under dark light conditions—increasing exposure through
integration. Original SRGB image in solid box. (g) SRGB and IT fusion of sparse forest—highlighting
the bottoms of tree trunks in the thermal channel. Close-up in dashed box. (h) SRGB and color-coded
IT fusion—revealing hot ground patches in the IT channel. Color-coded IT image in sloid boxes.

One major limitation of these integral images is their lack of spatial references, as the
surrounding environment’s details (e.g., features of the forest structure, such as distinct
trees, sparse and dense regions, etc.) are suppressed in the shallow depth of field. Such
spatial references, however, are important for orientation while inspecting the images.
In this article, we propose a novel hybrid (model- and learning-based) architecture for
fusing the most significant (i.e., the most salient) information from single and integral
aerial images into one composite image (Figure 1e–h). This composite image combines the
environment’s spatial references provided by single images (for orientation; not visible in
integral images) with features of the unoccluded targets provided by integral images (not
visible in single aerial images). Our method is the first to fuse visible and occluded features
in multiple spectral bands, outperforms the state of the art (visually and quantitatively),
does not require manually tuned parameters, can be extended to an arbitrary number
and arbitrary combinations of spectral channels, and is reconfigurable to address different
use cases.

Classically, the fusion of lower-resolution hyperspectral and higher-resolution mul-
tispectral images is concerned with up-sampling, sharpening, and super-resolution [6].
New image fusion approaches that extract and combine salient image features, especially
for recordings in the infrared and visible spectral ranges, have become an active research
field in recent years. Feature extraction and the fusion strategy itself are two main com-
ponents of such methods. Multi-scale transform-based approaches [7–10] split images
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into multiple scales for the analysis of both fine and coarse features. Low-rank-based
methods [11,12] decompose the image matrix into low-rank and sparse representations.
Such model-based approaches often require a lot of computational resources and extensive
manual adjustments. In [13], a hybrid concept is followed, which first extracts features
using a model-based approach and then feeds these features as input to a learning-based
approach (i.e., a pretrained neural network). Usually, convolutional neural networks
(CNNs) or generative adversarial networks (GANs) are architectures of choice for image
fusion today. CNNs are used to extract local and global features and generate the fused
image [14–18]. However, despite their remarkable fusion performance over model-based
approaches, deeper networks often lose important details due to stacking a series of pooled
convolution layers. Transformer architectures [19–22] can overcome this by extracting
complementary features from the input images. With GANs, the problem of a limited
number of ground-truth data for infrared-visible image fusion can be overcome. The GAN
learning scheme [23] depends on the generator and discriminator, and such architectures
discriminate between the generated fused image and the input images [24]. However,
using only one discriminator may lead to networks being biased towards favoring either
the generated fused images or the input images. Therefore, dual discriminators were
adopted [25,26] to ensure high-quality fusion results.

The main contributions of this work are as follows:

(1) We present the first fusion approach for multispectral aerial images that combines
the most salient features from conventional aerial images and integral images which
result from synthetic aperture sensing. While the first contains the environment’s
spatial references for orientation, the latter contains features of unoccluded targets
that would normally be hidden by dense vegetation. Our model does not require
manually tuned parameters, can be extended to an arbitrary number and arbitrary
combinations of spectral channels, and is reconfigurable for addressing different use
cases. This method is explained in Section 2.

(2) Our method outperforms state-of-the-art two-channel and multi-channel fusion ap-
proaches visually and quantitatively in common metrics, such as mutual information,
visual information fidelity, and peak signal-to-noise ratio. We demonstrate results
for various use cases, such as search and rescue, wildfire detection, and wildlife
observation. These results are presented in Section 3.

2. Materials and Methods

Our proposed architecture is depicted in Figure 2. It is motivated by the hybrid
approach in [13], but instead of relying on simple image averaging for the final fusion
process (which does not lead to better results than alpha blending, as shown in Figure 4),
we integrate feature-masked input channels. Our architecture has f + 1 input channels,
whereby one channel takes a basis image (B) that remains unmodified to provide spatial
references. The other channels take images (F1 . . . Ff ) from which features need to be
extracted and fused with the basis image. Depending on the use case, the input to the
channels can vary. For instance, single RGB (SRGB) images were used for the basis channel
in Figure 1e,g,h, while integral thermal (IT) images were used instead in Figure 1f; raw
integral images were used in the feature channels in Figure 1e–g, while color-coded IT was
used instead in Figure 1h. Integral RGB (IRGB) and SRGB images were used in the feature
channels. Note that the fusion process is the same for more than two feature channels.
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Figure 2. Proposed hybrid fusion architecture. Multiple input channels (one basis channel that re-
mains unmodified and provides spatial references, and an arbitrary number of additional channels 
from which salient features are extracted) are fused into one composite image. Each feature channel 
applies multiple model-based and learning-based feature extractors (unified filters and VGG-layers 
in our case). Variables refer to Equations (1)–(7). 

As shown in Figure 2, each 𝐹 -branch splits into two parallel branches for feature 
extraction: one with a unified filter [27] for model-based feature extraction and one with 
the pretrained very deep convolutional network, VGG-19 [28], for learning-based feature 
extraction.  

The unified filter determines the high-detail part (𝐻  of the input channel 𝐹 ) as 
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tors, respectively. 

The pretrained VGG-19 network architecture shows remarkable results in feature ex-
traction, which is usually applied for classification tasks. Consider that ∅  indicates the 
features map extracted from 𝑛-th channel in the 𝑖-th VGG-19 layer: ∅  𝛷 𝐹  ,  (2)

where 𝛷  .   denotes an 𝑖 -th layer. Deeper layers in VGG detect high-level features, 
while lower-level layers detect abstract features such as edges and colors. We decided to 
use only the first two layers (i.e., 𝑖 𝜖 1, 2  —which represents relu_1_1 and relu_2_1, 

Figure 2. Proposed hybrid fusion architecture. Multiple input channels (one basis channel that
remains unmodified and provides spatial references, and an arbitrary number of additional channels
from which salient features are extracted) are fused into one composite image. Each feature channel
applies multiple model-based and learning-based feature extractors (unified filters and VGG-layers
in our case). Variables refer to Equations (1)–(7).

As shown in Figure 2, each Fn-branch splits into two parallel branches for feature
extraction: one with a unified filter [27] for model-based feature extraction and one with
the pretrained very deep convolutional network, VGG-19 [28], for learning-based feature
extraction.

The unified filter determines the high-detail part ( Hn) of the input channel (Fn )
as follows:

Hn = Fn − argminHn ∥Fn − Hn∥2
2 + λ (∥gx ∗ Hn∥2

2 + ∥gy ∗ Hn∥2
2), (1)

where n ϵ {1, 2, . . . , f }; we always used the default of λ = 5, as optimized in [12], and
gx = [−1 1] and gy = [−1 1]T are the horizontal and vertical convolution gradient
operators, respectively.
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The pretrained VGG-19 network architecture shows remarkable results in feature
extraction, which is usually applied for classification tasks. Consider that ∅i

n indicates the
features map extracted from n-th channel in the i-th VGG-19 layer:

∅i
n = Φi(Fn) , (2)

where Φi( .) denotes an i-th layer. Deeper layers in VGG detect high-level features, while
lower-level layers detect abstract features such as edges and colors. We decided to use only
the first two layers (i.e., i ϵ {1, 2}—which represents relu_1_1 and relu_2_1, respectively),
as we are more interested in the abstract, low-level salient features from Fn rather than its
high-level features.

After determining the features ∅i
n, an activity level map Ai

n is calculated by the
l1 − norm:

Ai
n (x, y) = ∑x ∑y ∑c

∣∣∣∅i
n x,y,c

∣∣∣, i ϵ {1, 2}. (3)

where (x, y) is the position in the feature map and c is the channel number.
Afterwards, a weighted average map (Wn) is calculated by a soft-max operator:

Wn(x, y) = ∑k
l=1

Ai
n(x, y)

∑k
j=1 Aj

n(x, y)
, i ϵ {1, 2}, (4)

where k denotes the number of the activity level map.
The initial feature mask (FMn) is calculated by multiplying it with Wn as follows:

FMn(x, y) = ∑ f
n=1 Wn (x, y) · Hn(x, y), (5)

and the final feature map (Gn) is then:

Gn(x, y) = FMn (x, y) · Fn(x, y), (6)

where Fn are the input feature channels, as described above (see Figure 2).
Finally, the feature maps from all the feature channels are fused with the basis channel:

f used(x, y) = B(x, y) + ∑ f
n=1 Gn (x, y). (7)

Our goal with this architecture is to preserve the salient information from all input
channels. This, however, can only be achieved if multiple feature extractors (unified
filters and VGG in our case) are combined. Applying them independently fails to remove
background noise and enhance the essential target features, as demonstrated in Figure 3.

On a 3.2 GHz Intel Core CPU with 24 GB RAM and GPU GTX 1060 6 GB, our python
implementation of the proposed fusion architecture requires (for 512 × 512 px input images),
approx. 1.2 s per feature channel plus 10 ms for fusing the feature channel with the basis
channel. See Supplementary Material section for code and sample images.
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Figure 3. Comparison of fusion results with unified filter only, VGG only, and the combination of 
unified filter and VGG. Only in the latter case background noise and sampling artifacts can be 

Figure 3. Comparison of fusion results with unified filter only, VGG only, and the combination
of unified filter and VGG. Only in the latter case background noise and sampling artifacts can be
removed efficiently and essential target features are enhanced. The input images (SRGB, IT, IRGB)
show the same scene, at the same time, from the same pose.

3. Results and Discussion

Figure 4 presents a visual comparison of our approach with several state-of-the-art
image fusion techniques for various scenes in a search-and-rescue use case (with data
from [3]): (c) is an open field without occlusion, (a,b,d,e,f) are forest patches with different
types of vegetation and densities, (a,b,c,f) show people lying on the ground, and (d,e) are
empty forests. Useful features to be fused are contained in SRGB, IT, and IRGB for (a,b,f), in
IT and IRGB for (c), and in SRGB and IT for (d,e). The IT image is color-coded in (e,f). For
all integral images (IT and IRGB) the synthetic focal plane was set to the ground surface.

Figure 5 illustrates a visual comparison of our approach with the state of the art for
wildlife observation (nesting observation with data from [2]) and wildfire detection and
monitoring (with data from [29]). Fused are IRGB and color-coded IT for nesting locations
with breeding birds at lower layers just below tree crowns (a), and SRGB of tree vegetation
and color-coded IT of ground fires (b,c).

While some of the evaluated fusion methods support only two input channels [16,19–21],
the work in [13] scales to multiple channels. In cases only two channels are supported but
three channels could be used, we selected SRGB and IT. In cases where only grayscale input
is supported [19,20] but color input is provided, we convert color images to grayscale.
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case. Input channels (SRGB, IT, IRGB) indicated with a yellow solid box contain useful features to be fused. They show the same scene, at the same time, from the 
same pose. The data used for our experiments and details on how they were recorded can be found in [3]. All images, except for (c), have been brightness-increased 
by 25% for better visibility. References: Hui Li et. al. 2018 [13], Park et. al. 2023 [19], Zhao et. al. 2023 [16], Liu et. al. 2023 [21], and Jiayi Ma et. al. 2022 [20].  

 

Figure 4. Comparison of our approach with several state-of-the-art two- and multi-channel image fusion techniques for various scenes in a search-and-rescue use
case. Input channels (SRGB, IT, IRGB) indicated with a yellow solid box contain useful features to be fused. They show the same scene, at the same time, from the
same pose. The data used for our experiments and details on how they were recorded can be found in [3]. All images, except for (c), have been brightness-increased
by 25% for better visibility. References: Hui Li et al., 2018 [13], Park et al., 2023 [19], Zhao et al., 2023 [16], Liu et al., 2023 [21], and Jiayi Ma et al., 2022 [20].
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dataset [29], while structure-from-motion and multi-view stereo [30] was applied for pose estima-
tion of each video frame. Integral thermal images (IT) are computed from single thermal video 
frames with [1]. The IT channel is color-coded in all examples. References: Park et. al. 2023 [19], Zhao 
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gles in generalizing to our fusion problem and fails to preserve salient information in our 
data as it is trained on a very different benchmark dataset [31] that is specialized to infra-
red and visible fusion for object detection. The work in [19] cannot accurately estimate 
complementary information between input images if target objects are discriminative in 
both images. The architecture in [21] fails in generating the saliency mask, as it was only 
trained on a small dataset [32] for extracting the mask, which leads to a poor fusion output 
at the end.  

For a quantitative comparison of our results with results of the state of the art, we 
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1. Mutual Information (MI) [33] measures the amount of information transmitted from 
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its fidelity, which determines the amount of information obtained from the source 
images. 

Figure 5. Comparison of our approach with the state of the-art for wildlife observation (a) and
wildfire detection and monitoring (b,c) use cases. Input channels (SRGB, IT, IRGB) are indicated with
a yellow solid box. The example in (a) shows results from nesting observations of breeding herons.
The data are taken from [2]. The data used for the examples in (b,c) are taken from the FLAME 2
dataset [29], while structure-from-motion and multi-view stereo [30] was applied for pose estimation
of each video frame. Integral thermal images (IT) are computed from single thermal video frames
with [1]. The IT channel is color-coded in all examples. References: Park et al., 2023 [19], Zhao et al.,
2023 [16], Liu et al., 2023 [21], Jiayi Ma et al., 2022 [20], and Hui Li et al., 2018 [13].

The poor quality of simple image processing, such as alpha blending with an equal
contribution per input channel, clearly calls for more sophisticated approaches that are
capable of extracting and fusing the essential image features. The only image fusion
method that is scalable to multiple (more than two) input channels [13] does not provide
significantly better results than alpha blending in our experiments. The reason for this
is that, in spite of using VGG-19 for feature extraction, the final fusion process relies on
image averaging.

All newer methods support only two input channels and still fail to differentiate
between essential image features and other high-gradient features that are considered
unimportant (e.g., noise and sampling artifacts). Consequently, the fused results appear
unnatural and do not reflect properly on the salient image features and details of the
original input channels. Although [20] uses transformers for global feature extraction, it
fails to extract the local features correctly due to the lack of sufficient correlation between
neighboring pixels. In [16], a multi-model was trained for fusion and detection tasks that
mutually shared learned features between the two models (i.e., fusion and detection). It
struggles in generalizing to our fusion problem and fails to preserve salient information in
our data as it is trained on a very different benchmark dataset [31] that is specialized to
infrared and visible fusion for object detection. The work in [19] cannot accurately estimate
complementary information between input images if target objects are discriminative in
both images. The architecture in [21] fails in generating the saliency mask, as it was only
trained on a small dataset [32] for extracting the mask, which leads to a poor fusion output
at the end.

For a quantitative comparison of our results with results of the state of the art, we
apply three metrics that are commonly used for evaluating image fusion techniques:

1. Mutual Information (MI) [33] measures the amount of information transmitted from
source images (i.e., the basis and feature channels in our case) to the fused result by
the Kullback–Leibler divergence [34].
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2. Visual Information Fidelity (VIF) [35] assesses the quality of the fused result based on
its fidelity, which determines the amount of information obtained from the source
images.

3. Peak Signal-to-Noise Ratio (PSNR) [36] quantifies the ratio of peak power to the noise
power in the fused result.

As shown in Table 1, our model is always superior compared to state-of-the-art two-
channel fusion techniques.

Table 1. Quantitative comparison with two-channel fusion techniques. The best results are bolded,
and the second-best results are underlined. Labels refer to corresponding scenes presented in
Figures 4 and 5, respectively. AVG is the average over all scenes. Higher values indicate higher
quality of the fused image with respect to the corresponding metric.

VIF
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

Park et al. [19] 0.936 0.675 0.879 0.667 0.718 0.940 0.998 0.452 0.600 0.762
Zhao et al. [16] 0.849 0.563 0.628 0.638 0.550 0.899 0.849 0.428 0.473 0.653
Liu et al. [21] 0.892 0.701 0.698 0.689 0.530 0.770 1.015 0.427 0.235 0.662

Jiayi Ma et al. [20] 0.898 0.129 0.912 0.175 0.692 0.624 0.884 0.539 0.119 0.552
ours 1.069 1.002 1.024 0.774 0.849 1.072 1.047 0.635 0.742 0.912

MI
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

Park et al. [19] 0.547 0.505 1.266 0.831 1.016 0.420 0.525 0.739 0.937 0.754
Zhao et al. [16] 0.796 0.388 1.119 0.708 1.161 0.901 0.514 0.584 0.637 0.756
Liu et al. [21] 0.643 0.552 1.444 0.606 1.194 0.634 0.605 1.023 0.750 0.828

Jiayi Ma et al. [20] 0.597 0.063 1.832 0.424 1.022 0.422 0.846 0.935 0.371 0.724
ours 1.207 1.444 1.843 1.121 1.346 1.094 1.526 1.210 1.281 1.341

PSNR
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

Park et al. [19] 20.942 20.509 17.915 19.475 13.723 12.849 20.336 11.250 12.455 16.606
Zhao et al. [16] 24.642 19.808 16.912 21.904 15.049 16.819 19.792 10.728 10.921 17.397
Liu et al. [21] 20.923 18.110 12.495 21.100 14.298 16.004 19.258 12.111 7.084 15.709

Jiayi Ma et al. [20] 24.791 18.304 20.792 20.989 14.460 14.051 19.535 12.003 10.791 17.301
ours 26.503 23.523 21.899 26.850 16.514 18.865 25.501 12.917 12.861 20.603

In contrast to two-channel fusion techniques, our method is scalable with respect to
the number of input channels to be fused. The comparison with multi-channel techniques
in Table 2 also reveals its clear advantage over the state of the art. See Supplementary
Material section for results.

Table 2. Quantitative comparison with multi-channel fusion techniques. The best results are bolded,
and the second-best results are underlined. Labels refer to corresponding scenes presented in
Figures 4 and 5, respectively. AVG is the average over all scenes. Higher values indicate higher
quality of the fused image with respect to the corresponding metric.

VIF
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

alpha blending 0.623 0.685 0.779 0.579 0.447 0.422 0.616 0.434 0.524 0.568
Hui Li et al. [13] 0.732 0.797 0.803 0.627 0.515 0.434 0.637 0.462 0.562 0.619

ours 1.068 1.040 1.023 0.774 0.863 1.088 1.047 0.635 0.742 0.920

MI
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

alpha blending 1.006 1.230 1.231 0.909 0.877 1.134 0.699 0.828 1.245 1.018
Hui Li et al. [13] 1.020 1.245 1.228 0.904 1.190 1.102 0.675 0.939 1.189 1.055

ours 1.149 1.940 1.837 1.121 1.419 1.173 1.526 1.210 1.281 1.406

PSNR
(Figure 4a) (Figure 4b) (Figure 4c) (Figure 4d) (Figure 4e) (Figure 4f) (Figure 5a) (Figure 5b) (Figure 5c) AVG

alpha blending 18.827 21.461 18.138 24.832 15.227 14.938 20.080 11.032 11.068 17.289
Hui Li et al. [13] 16.307 19.291 18.131 24.800 14.130 14.930 19.987 9.511 9.112 16.244

ours 20.581 22.068 21.350 26.850 16.695 16.904 25.501 12.917 12.861 19.525
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4. Conclusions

An adequate fusion of the most significant salient information from multiple input
channels is essential for many aerial imaging tasks. While multispectral recordings reveal
features in various spectral ranges, synthetic aperture sensing makes occluded features
visible. Our proposed method effectively fuses all these features into one composite image
which provides important spatial reference queues for orientation and reveals hidden target
objects in addition. It outperforms state-of-the-art image fusion approaches visually and
quantitatively, is extendable to an arbitrary number of input channels, is easy to use as it
does not require manually tuned parameters, and is reconfigurable to address different use
cases. Such use cases include search and rescue, soil moisture analysis, wildfire detection
and monitoring, observation and tracking of wildlife, surveillance, border control, and
others. Occlusion caused by dense vegetation is often a limiting factor for these tasks.

In addition to VGG-19, we evaluated ResNet-50 [37] for feature extraction. However, it
turned out that the lower VGG-19 layers extract features significantly better than ResNet-50.
This might also be a reason for VGG-19 outperforming ResNet-50 in other domains, such
as segmentation and classification in medical images [38]. In future, we want to explore
whether extending our architecture by more than two feature-extractor branches per feature
channel further improves results and how to achieve real-time performance.

Supplementary Materials: The source code and sample images can be downloaded at: https:
//doi.org/10.5281/zenodo.10450971. Additional information is available at: https://github.com/
JKU-ICG/AOS/, (accessed on 5 February 2024).
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