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Abstract: Spatiotemporally mapping winter wheat is imperative for informing and shaping global
food security policies. Traditional mapping methods heavily rely on sufficient and reliable sam-
ples obtained through labor-intensive fieldwork and manual sample collection. However, these
methods are time-consuming, costly, and lack timely and continuous data collection. To address
these challenges and fully leverage remote sensing big data and cloud computing platforms like
Google Earth Engine (GEE), this paper developed an algorithm for Auto-Generating Winter Wheat
Samples for mapping (AGWWS). The AGWWS utilizes historical samples to determine the optimal
migration threshold by measuring Spectral Angle Distance (SAD), Euclidean Distance (ED), and
Near-Infrared band Difference Index (NIRDI). This facilitates the auto-generation of winter wheat
sample sets for the years 2000, 2005, 2010, 2015, and 2021. Approximately two-thirds of the samples
were allocated for training, with the remaining one-third used for validating the mapping method,
employing the One-Class Support Vector Machine (OCSVM). The Huang–Huai–Hai (HHH) Plain,
a major winter wheat production region, was selected to perform the algorithm and subsequent
analysis on. Different combinations of the hyper-parameters, gamma and nu, of the OCSVM based on
the Gaussian Radial Basis Function Kernel were tested for each year. Following correlation analysis
between the winter wheat area derived from the generated maps and the national statistical dataset
at the city level, the map with the highest corresponding R2 was chosen as the AGWWS map for each
year (0.77, 0.77, 0.80, 0.86, and 0.87 for 2000, 2005, 2010, 2015, and 2021, respectively). The AGWWS
maps ultimately achieved an average Overall Accuracy of 81.65%. The study then explores the
Non-Grain Production of Winter Wheat (NGPOWW) by analyzing winter wheat change maps from
2000–2005, 2005–2010, 2005–2010, and 2015–2021 in the HHH Plain. Despite an overall increase in the
total planted area of winter wheat, the NGPOWW phenomena has led to concerning winter wheat
planting marginalization. Compensatory winter wheat areas are notably situated in mountainous
and suburban cultivated lands with low qualities. Consequently, despite the apparent expansion in
planted areas, winter wheat production is anticipated to be adversely affected. The findings highlight
the necessity for improved cultivated land protection policies monitoring the land quality of the
compensation and setting strict quota limits on occupations.

Keywords: winter wheat; auto-generating sample algorithm; non-grain production of winter wheat;
winter wheat planting marginalization; Huang–Huai–Hai Plain

1. Introduction

Winter wheat, a key grain crop in China and globally [1–3], necessitates comprehensive
mapping for winter wheat and analysis of Non-Grain Production (NGP) associated with it.
NGP involves cultivating land for non-food purposes, like cash crops or tree planting [4–6].
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Specifically, Non-Grain Production of Winter Wheat (NGPOWW) refers to the shift of
winter wheat to non-grain uses. The prominence of NGP has grown notably, prompting
a series of pertinent reports. Despite government discouragement and policies such as
the “Opinions on Preventing Non-Grain Production on Cultivated Land and Stabilizing
Grain Production” [6,7], challenges to food security persist due to cultivated land transfer,
urbanization, and ecological degradation [8–10]. Significantly, the substantial transfer
of cultivated land has led to food marginalization in major grain-producing areas [11].
Monitoring winter wheat planting area is thus vital for monitoring national stability and
fostering sustainable development.

The Huang–Huai–Hai (HHH) Plain, renowned as China’s “golden area” for winter
wheat production, plays a pivotal role in safeguarding national food security. This plain con-
tributes approximately 60% to the total national winter wheat production and encompasses
over 50% of the national winter wheat planting area [12]. Despite recent favorable trends in
winter wheat planting in the HHH Plain [13], challenges persist, including cultivated land
marginalization, groundwater depletion, and economic development imbalances [14–17].
The most immediate consequence of these pressures is the NGPOWW. NGPOWW in the
HHH Plain holds significant implications, demanding careful attention to ensure future
food security.

Spatiotemporally mapping winter wheat and monitoring its NGP are imperative for
informing and shaping global food security policies, leveraging advanced remote sensing
technologies and big data resources [5,18]. Google Earth Engine (GEE) offers easy access to
high-performance computing resources for big data processing. It consolidates numerous
public geospatial datasets, encompassing free image resources such as Landsat, MODIS, and
Sentinel, along with land use/cover and population distribution data [19]. It is extensively
employed across various disciplines, including crop yield estimation [20], winter wheat
mapping [21], and flood mapping [22], leveraging machine learning algorithms such as
random forests, support vector machines, classification and regression trees, and deep
neural networks [23,24]. For example, Zhang et al. [25] utilized GEE and random forest
machine learning to analyze the temporal and spatial dynamics of winter wheat planting
areas in the North China Plain from 1999 to 2019. Cai et al. [26] developed a novel multiple
phenological spectral feature on GEE and employed it as input data for a One-Class
Support Vector Machine (OCSVM) to map winter wheat. Based on field survey data,
Yao et al. [27] integrated Sentinel-1 and Sentinel-2 data, using random forest in traditional
machine learning to screen features, which were then input into a deep neural network for
efficient and accurate crop mapping. While supervised classification algorithms encounter
limitations due to the scarcity of ground truth data, unsupervised methods face challenges
in achieving better performance in crop mapping [28]. The efficient and cost-effective
application of supervised methods in crop mapping necessitates the collection of training
data, emphasizing the importance of extensive field surveys [3].

Large-scale surveying and mapping often demand substantial time and labor resources
for collecting ground reference data in the field [29]. This process, especially during the
growing season of crops, can be both costly and risky, impacting the acquisition of accurate
and reliable training data [30]. Consequently, some crop mapping studies are confined to a
single year [31,32] or resort to utilizing data from a different year when reference data for the
mapping year are unavailable [33,34]. However, these approaches hinder long-term series
crop mapping, and the quality of training data may suffer from inherent classification errors
associated with other crop products [35]. Therefore, automated generation of samples for
long-term and large-scale mapping, and which are reusable on GEE without extensive field
surveys, remains crucial for achieving efficient and cost-effective crop mapping [36]. This
study therefore aims to (1) develop an Auto-Generating Winter Wheat Samples algorithm
for mapping (AGWWS) on GEE, (2) employ the OCSVM to accurately obtain AGWWS
maps in the HHH Plain in 2000, 2005, 2010, 2015, and 2021, and (3) explore NGPOWW and
its associated effects on winter wheat planting behavior spatiotemporally over the past
two decades.
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2. Study Area and Data
2.1. Study Area

The HHH Plain, located in the eastern coastal region of China (31◦36′N–40◦29′N and
112◦13′E–120◦53′E) (Figure 1), is bordered by the northern Yanshan Mountains, the western
Taihang Mountains, the eastern Bohai Sea and Yellow Sea, and the southern Huai River [37].
Its climate falls within the East Asian Temperate Monsoon Climate zone, characterized by an
annual mean temperature ranging between 8 ◦C and 15 ◦C, and precipitation varying from
500 mm to 1000 mm, gradually decreasing from southeast to northwest [38]. Encompassing
Beijing, Tianjin, Hebei, Henan, and Shandong [39], it serves as the “gold zone” for China’s
winter wheat cultivation. The prevalent cropping system involves the rotation of winter
wheat and summer maize, with winter wheat sown in October and harvested in June of the
following year. Cash crops such as cotton, fruit trees, Chinese medicinal materials, peanuts,
and oilseeds are also cultivated in the Plain [40]. To enhance the algorithm’s efficiency,
the study area was subdivided into a 1◦ × 1◦ grid within the WGS84 coordinate system,
resulting in a total of 87 grids [41].
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2.2. Datasets
2.2.1. Landsat Surface Reflectance Imagery

This study utilized all available Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI
surface reflectance images covering the entire HHH plain on GEE from 1 April to 10 May
in 2000, 2005, 2010, 2015, and 2021. In instances where images for a specific year did not
meet quality standards or could not cover the study area, adjacent year images (1 April
to 10 May of the preceding or subsequent year) were used as replacements. The Landsat
TM and ETM+ surface reflectance datasets were derived from the Landsat Ecosystem
Disturbance Adaptive Processing System algorithm [42], while the Landsat OLI surface
reflectance products were generated employing the Landsat Surface Reflectance Code
algorithm [43]. Clouds and cloud shadows were removed from Landsat images utilizing
the QA (QA_PIXEL) band bit mask technique [44]. Specifically, this was achieved by
applying bitwise operations to the “QA_PIXEL” band, which contains encoded data about
clouds and shadows. This procedure defines two masks to identify cloud and shadow bits
within the QA band, utilizes these masks to create a cloud-free mask, and subsequently
applies this mask to the image. This process effectively filters out pixels affected by clouds
and shadows, leaving only clear pixels for analysis. Two image collections were formed by
merging Landsat 5 and Landsat 7 images into one set and Landsat 7 and Landsat 8 images
into another, ensuring the inclusion of all images from each collection. The Landsat 5
and Landsat 7 image collections were used for the years 2000, 2005, and 2010, while the



Remote Sens. 2024, 16, 659 4 of 21

Landsat 7 and Landsat 8 collections were utilized for 2015 and 2021. By leveraging six
spectral bands and calculating three spectral indices for each Landsat image (as detailed in
Table 1), composite images were generated by computing median reflectance and index
values for each pixel using unmasked pixels.

Table 1. Description of spectral bands and vegetation indices.

Band/Index Wavelength [Min–Max] (µm)/Equation

Blue (B) [0.45–0.52]
Green (G) [0.52–0.60]

Red (R) [0.63–0.69]
NIR (Near-Infrared) [0.77–0.90]

SWIR1 (Shortwave Infrared 1) [1.55–1.75]
SWIR2 (Shortwave Infrared 2) [2.08–2.35]

Normalized Difference Vegetation Index
(NDVI) [45]

NIR−R
NIR+R

Land Surface Water Index (LSWI) [46,47] NIR−SWIR1
NIR+SWIR1

Enhanced Vegetation Index (EVI) [48] 2.5 ∗ NIR−R
(NIR+6∗R−7.5∗B+1)

2.2.2. Historical Samples Used to Support the Algorithm for Auto-Generating Samples

The winter wheat maps of the early season in China at 30 m were obtained from
Dong et al. [49] (http://www.nesdc.org.cn/ (accessed on 30 July 2023)). These maps em-
ployed a phenology-based method to identify the geographic locations of winter wheat,
achieving early winter wheat identification (EWWI) in April with an Overall Accuracy
(OA) of 89.88%. The EWWI maps from 2016 to 2021 as historical winter wheat samples
were used to support the auto-generating sample algorithm.

3. Methods
3.1. Auto-Generating Winter Wheat Sample Algorithm

The AGWWS algorithm comprises three main steps, including historical sample
generation, optimal threshold determination, and training/validation sample generation
(Figure 2). First, historical winter wheat samples were obtained from the EWWI map of
2016 serving as the reference data through a random stratified sampling strategy [50]. The
first stratum was the equal-area quadrilateral grids of 1◦ × 1◦ (Figure 1). The second
stratum was the two classes in the study area, namely winter wheat and non-winter wheat.
Within each grid, the winter wheat and non-winter wheat attributes on the EWWI map
were stratified. For the winter wheat attribute, an initial sample size of 1000 was randomly
assigned. If the number of winter wheat pixels was less than 1000 within one grid, all winter
wheat pixels were selected as the samples for the grid. To address potential classification
errors within the EWWI map, unreliable samples were identified and removed based on
the observed characteristics of the NDVI and the LSWI of the winter wheat and other crops.
The ten-day average time series of winter wheat NDVI and LSWI, along with those of
other land use types, including other crops, forest land, built-up land, water, and barren
land, were calculated. The observed patterns revealed that during the jointing and heading
stages of winter wheat from 1 April to 10 May, winter wheat consistently displayed higher
average NDVI and LSWI values compared to other land cover types (Figure 3a). The
phenological window from 1 April to 10 May was then employed to distinguish between
reliable winter wheat samples and unreliable samples potentially representing other land
cover types. Additionally, to obtain reliable crop samples, earlier studies usually retained
samples with vegetation indices within their standard deviation range (e.g., Wen et al. [51]).
Consequently, we filtered the samples with NDVI and LSWI values outside the standard
deviation ranges of NDVI and LSWI (Figure 3b), respectively. Note that this might also
have removed some winter wheat samples; however, overall, the samples retained within
the standard deviation range were well representative.

http://www.nesdc.org.cn/
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Second, using the retained reliable historical samples, the optimal thresholds for
detecting winter wheat were determined by measuring the spectral similarity between the
reference year (2016) and the target year (2020) on GEE through three indices. These indices
are Spectral Angle Distance (SAD, Equation (1)), Euclidean Distance (ED, Equation (2)), and
Near-Infrared band Difference Index (NIRDI, Equation (3)). Larger SAD values indicate
greater similarity, while smaller ED and NIRDI values signify increased similarity [35].
These indices effectively measure the differences between the reference and target spectra,
with SAD and ED offering insights into the magnitude and direction of change between the
two [52,53]. NIRDI, reflecting the notably higher average NIR spectral reflectance of winter
wheat compared to other crops during the optimal phenological window (Figure 4), was
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crucial in indicating spectral similarity. Qiu et al. [1] also supported the efficacy of the NIR
band in distinguishing winter wheat from other crops. Jenks’ natural break method [54]
was then employed in ArcGIS version 10.7 to classify the SAD, ED, and NIRDI of historical
winter wheat samples into 5 to 9 categories. This method minimizes the variance within
each category of data and maximizes the variance between different categories [55]. It
could reasonably test as many potential threshold combinations as possible to determine
the optimal combination of the three indices with a sufficient sample size. For each category,
distinct thresholds were created by setting intersection criteria based on varying SAD, ED,
and NIRDI. The unchanged winter wheat samples were evaluated through OA, Producer’s
Accuracy (PA), User’s Accuracy (UA), and F1 score (Equation (4)) [56], utilizing the EWWI
map under each different threshold. The threshold with the highest corresponding OA and
that retained a sufficient size of samples was selected as the optimal migration threshold.
To validate the performance of the optimal thresholds, they were also applied to eleven
periods (from 2016 to 2017, 2016 to 2018, 2016 to 2019, 2016 to 2020, 2016 to 2021, 2017 to
2018, 2017 to 2019, 2017 to 2020, 2018 to 2019, 2018 to 2020, and 2019 to 2020) using the
corresponding Landsat images.

θ = cos−1 ∑N
i=1 Xi(t1)

Yi(t2)√
∑N

i=1 (Xi(t1)
)2∑N

i=1 (Yi(t2)
)2

, SAD = cos(θ) (1)

ED =
√

∑N
i=1 (Xi(t1)

− Yi(t2)
)2 (2)

NIRDI = NIRt1 − NIRt2 (3)

F1 =
2(PA × UA)

(PA + UA)
(4)

where θ is the spectral angle, Xi(t1)
is the reference spectra when the sample pixel was

collected at time t1, and Yi(t2)
is the target spectra to be measured at time t2. Variable i

corresponds to the spectral band and ranges from one to the number of bands (N). Here,
i represents bands 1–5 and band 7 for Landsat 5 TM/Landsat 7 ETM+ and bands 2–7 for
Landsat 8 OLI. If the reference spectra are identical to the image spectra, SAD is 1, and ED
and NIRDI are 0.
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Last, to generate training and validation samples, the optimal threshold was employed
to extract unchanged winter wheat sample sets and changed winter wheat sample sets for
the periods 2000–2005, 2005–2010, 2010–2015, and 2015–2020. The unchanged sample sets
were considered reliable winter wheat samples for the years 2000, 2005, 2010, 2015, and
2020, respectively. These sets served as the input for the classifier to map winter wheat for
each respective year. Approximately two-thirds of winter wheat samples and the remaining
one-third of winter wheat samples were used, respectively, for training and for validating
the mapping method. The non-winter wheat validation samples were generated from the
changed winter wheat sample set, maintaining the same ratio as the size of winter wheat
validation samples.

3.2. One-Class Support Vector Machine for Winter Wheat Mapping

The OCSVM, a supervised one-class classification method within the SVM frame-
work [57], was employed for winter wheat identification due to its superior performance on
winter wheat mapping [26]. The OCSVM establishes an optimal hyperplane in the feature
space by training on normal data samples. This hyperplane maximizes the interval value,
effectively separating the trained samples from their origin [3]. Importantly, it only requires
training data from the target class and is used with the Radial Basis Function (RBF) [58].
To conduct the OCSVM, two hyper-parameters, gamma and nu, should be first optimized
based on sensitivity analysis [57]. The gamma parameter determines the width of the
RBF kernel, whereas nu is the lower limit of the amount of support vectors and the upper
limit of the fraction of training samples that are classified as outliers [59]. The analysis
was performed based on correlation analysis between classification results under different
combinations of the parameters and winter wheat area at the 47-city level from the National
Bureau of Statistics (NBS). The combination corresponding to the highest coefficient of
determination (R2) was selected as the optimal parameters for the identification. In this
paper, the gamma values were tested at 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, and 5, whilst the nu
values were tested at 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5.

Six spectral bands (bands 1–5 and band 7 for TM 5 and ETM+ 7, and correspond-
ing bands for OLI 8), along with NDVI, LSWI, EVI, elevation, and slope, were used as
input features for the OCSVM. The slope data were derived from a 30 m digital elevation
model [21]. To identify winter wheat, the optimal phenological window, specifically the
jointing and heading stage [21,49], was applied to select time series images. Also, three
vegetation indices, NDVI, EVI, and LSWI, were incorporated into the feature set due to
their proven efficacy in crop mapping [26,60,61]. Considering the presence of mountains
in the study area, two terrain features, elevation and slope, were included in the feature
set. The AGWWS maps at 30 m spatial resolution were then generated for 2000, 2005, 2010,
2015, and 2021.

These maps underwent assessment through two primary methods. First, the widely
accepted confusion matrix [62] was employed for map accuracy assessment. Note that
the AGWWS algorithm could not generate non-winter wheat validation samples for the
start year (2000). To overcome this limitation, for the year 2000, validation samples for the
non-winter wheat class were randomly selected from the non-cultivated land of China’s
30 m annual land cover dataset generated by Yang and Huang in 2021 [63]. A total of 306
non-winter wheat samples were selected and utilized for validation. Second, the winter
wheat area derived from the AGWWS map and the EWWI map for 2021 was compared with
the winter wheat area reported by the NBS. These two maps were also visually compared.
Note that AGSWW maps for 2000, 2005, 2010, and 2015 could not be compared to the
unavailable EWWI map.

3.3. Spatiotemporally Mapping Non-Grain Production of Winter Wheat

The NGPOWW map depicts the transformation of winter wheat to non-winter wheat
focusing on four phases (2000–2005, 2005–2010, 2010–2015, and 2015–2021). To map NG-
POWW for each phase, the winter wheat maps of the start and the end years were overlaid
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to identify pixels where winter wheat underwent changes. Note that the winter wheat
could be transited to another two main crops, maize and paddy rice. Pixels exhibiting this
grain-to-grain change were excluded, as this paper solely addresses the grain-to-non-grain
issue. To exclude pixels representing the grain-to-grain change, maize maps and paddy rice
maps from Luo et al. [64] (http://dx.doi.org/10.17632/jbs44b2hrk.2 (accessed on 30 July
2023)) for each end year of the first three phases and the maize map from Shen et al. [65]
for 2021 (https://doi.org/10.6084/m9.figshare.17091653 (accessed on 30 July 2023)) were
utilized. Maize maps from Luo et al. [64] were resampled to a 30 m resolution. Note that the
pixels of winter wheat changed to paddy rice were not removed for 2021 due to the paddy
rice map for 2021 currently being unavailable. Nevertheless, the area of winter wheat
changed to paddy rice could be disregarded due to its relatively small proportions for each
period (Table 2). Additionally, to explore the spatiotemporal pattern of the NGPOWW, the
quantile method was employed to evenly categorize the net change in winter wheat area
into four levels at the city scale. Cities with NGPOWW areas exceeding 100 × 103 ha were
chosen for detailed analysis. The NGPOWW characteristics in these representative cities
were further analyzed considering the spatial aspects of terrain and land use types.

Table 2. The area converted from winter wheat to rice and the proportion of this area converted from
winter wheat.

Period Winter Wheat to Rice
(×103 ha)

Winter Wheat
Change (×103 ha) Proportion

2000–2005 23.60 3461.30 0.68%
2005–2010 12.60 2483.00 0.51%
2010–2015 52.80 2869.70 1.84%

4. Results
4.1. Auto-Generating Winter Wheat Samples

A total of 75,846 potential samples were initially obtained from the EWWI map of
2016. Samples outside the standard deviation range of NDVI and LSWI were subsequently
filtered, resulting in a total of 16,971 reliable historical winter wheat samples for determining
the optimal migration threshold. Table 3 presents the different thresholds created based
on intersection criteria within the ninth category, with the remaining categories from
5 to 8 available in the Supplementary Materials. The Group 5 threshold of category 9,
corresponding to the highest OA of 95.07% (Figure 5a), were preliminarily identified as the
optimal migration thresholds. The size of the associated unchanged winter wheat samples
within the historical dataset was 9558. The UA, PA, and F1 scores of the unchanged samples
reached 97.90%, 96.41%, and 97.15%, respectively. For changed samples, the UA, PA,
and F1 scores were 77.98%, 85.98%, and 81.79%, respectively (Figure 5b–d). Additionally,
applying this threshold to the assessment results from eleven periods showed an average
OA of 84.07%. For the unchanged winter wheat maps, the average UA, PA, and F1
score were 91.48%, 85.90%, and 88.39%, respectively. The changed winter wheat maps
exhibited average UA, PA, and F1 score values of 68.74%, 77.04%, and 71.98%, respectively
(Figure 6). Utilizing the optimal migration threshold, two sets of samples were auto-
generated: unchanged winter wheat sample sets and changed winter wheat sample sets
(Figure 7). Table 4 displays the sample size of the training sample and the validation
sample for mapping winter wheat in 2000, 2005, 2010, 2015, and 2020, along with their
corresponding accuracy assessment.

http://dx.doi.org/10.17632/jbs44b2hrk.2
https://doi.org/10.6084/m9.figshare.17091653
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Table 3. The different thresholds created based on intersection criteria within the 9th category.

Intersection Criteria ≥SAD ≤ED ≤NIRDI

Different
thresholds

1 0.678546 0.339203 0.201108
2 0.805858 0.264924 0.104253
3 0.853300 0.205496 0.056761
4 0.892172 0.152997 0.021987
5 0.926136 0.110889 −0.004949
6 0.955699 0.080112 −0.029506
7 0.978941 0.056054 −0.054408
8 0.993051 0.034353 −0.085166
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(a–c) represent three spatial details of unchanged and changed winter wheat sample sets from 2015 to
2021, respectively, along with the corresponding Landsat imagery changes.

Table 4. The size of training samples and validation samples for each year.

Year
Training Samples Validation Samples

Winter Wheat Winter Wheat Non-Winter Wheat

2000 642 345 306
2005 631 316 361
2010 644 332 361
2015 644 332 347
2021 671 353 405

4.2. AGWWS Maps

The significance ranking of R2 for different parameter combinations shows that the
parameter combinations with relatively higher R2 are concentrated when gamma is 0.05,
0.1, and 0.5 and nu is 0.01, 0.05, 0.1, 0.15, and 0.2 in 2021 (Figure 8). The sensitivity analysis
for other years was conducted on these parameter combinations. The highest R2 values
for 2000, 2005, 2010, 2015, and 2021 were 0.77, 0.77, 0.80, 0.86, and 0.87, respectively. The
optimal gamma and nu under the highest R2 values were 0.1 and 0.01, 0.1 and 0.01, 0.1 and
0.1, 0.1 and 0.05, and 0.05 and 0.01, respectively.
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analysis between the winter wheat area depicted in AGWWS maps and the winter wheat area at the
47-city level from the National Bureau of Statistics.

The OA of AGWWS maps exceeded 82%, except for 2000 (77.27%) and 2010 (79.37%),
with the highest OA observed in 2021 (85.96%) (Table 5). The average OA of all AG-
WWS maps reached 81.65%. The average UA, PA, and F1 scores for winter wheat were
87.21%, 77.32%, and 80.43%, respectively, while for non-winter wheat, they were 80.27%,
85.05%, and 82.24%, respectively. When compared to the available EWWI map in 2021, the
errors of the EWWI map and AGWWS map were 19.90% and 6.55%, respectively. Specifi-
cally, the winter wheat planting area reported in the EWWI map for the study area was
14,457.29 × 103 ha, the AGWWS map reported 12,852.83 × 103 ha, and the NBS indicated
an area of 12,062.90 × 103 ha. The EWWI map slightly overestimated the winter wheat
planting area in the study area. Additionally, the EWWI maps tended to overestimate
the area of winter wheat across various types of land plots, including contiguous large
plots (Figure 9a), fragmented plots (Figure 9b,c), and regular-shaped plots (Figure 9d,e). In
contrast, the AGWWS maps demonstrated a closer alignment with actual land plot types,
offering particularly accurate identification of narrow roads between plots.

Table 5. The confusion matrix of the AGWWS maps.

Year Class Winter
Wheat

Non-Winter
Wheat UA (%) PA (%) F1 (%) OA (%)

2000 Winter wheat 297 100 74.81 86.09 80.05 77.27
Non-winter wheat 48 206 81.10 67.32 73.57

2005 Winter wheat 220 20 91.67 69.62 79.14 82.87
Non-winter wheat 96 341 78.03 94.46 85.46

2010 Winter wheat 261 72 78.38 78.61 78.50 79.37
Non-winter wheat 71 289 80.28 80.06 80.17

2015 Winter wheat 252 37 87.20 75.90 81.16 82.77
Non-winter wheat 80 310 79.49 89.34 84.12

2021 Winter wheat 262 24 91.61 76.38 83.31 85.96
Non-winter wheat 81 381 82.47 94.07 87.89
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Winter wheat in the HHH Plain is predominantly concentrated in the flatlands
(Figure 9), particularly in the central regions of Hebei Province, the northwest–southwest
regions of Shandong Province, and the central and eastern areas of Henan Province. Sparse
distribution is observed in northern Hebei, western Henan, and central/eastern Shan-
dong regions, primarily influenced by topographical and economic factors. Northern
and western Hebei, characterized by mountainous terrain, prioritize forestry and animal
husbandry. In the arid, water-deficient western Henan, extensive dry, thin soil areas make
it less suitable for winter wheat cultivation.

The AGWWS maps generally align with the statistical data (Figure 10a). Before 2010,
Hebei Province’s (including Beijing and Tianjin) data exhibited significant fluctuations.
Post-2010, Shandong Province’s data displayed substantial variability. The change trend
in winter wheat area for Henan Province closely resembled the statistical data. While the
winter wheat classification results may experience fluctuations due to various factors, they
still capture the overall trend in planting area changes. The winter wheat planting area in
the study area generally demonstrated an increasing trend from 2000 to 2021, primarily
in Shandong and Henan Provinces. In contrast, the winter wheat area in Hebei Province
exhibited a “decreasing-increasing” trend before 2010, followed by a decrease after 2010.
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4.3. Spatiotemporal Pattern of NGPOWW

Figure 10b illustrates the dynamics of NGPOWW in the HHH Plain across four distinct
phases. From 2000 to 2005, the NGPOWW area expanded to 3728.60 × 103 ha. Subsequently,
during the 2005–2010 period, the expansion peaked at 3894.80 × 103 ha. A substantial
decline occurred from 2010 to 2015, reaching a minimum of 2182.90 × 103 ha. The trend
shifted from 2015 to 2021, with the NGPOWW area rebounding to 3451.97 × 103 ha. Com-
pensation trends for other land use types or crops mirrored the NGPOWW transformation
trend. Winter wheat area exhibited continuous growth from 2000 to 2015, followed by a
slight decline from 2015 to 2021. This resulted in positive net change areas in the first three
stages and a negative net change area of −190.88 × 103 ha from 2015 to 2021.

The results of the quantile method highlight distinct patterns in the net changes
of winter wheat area across different regions during specific phases (Figure 11). From
2000 to 2005, regions with lower net changes in winter wheat area were predominantly
located in the mountainous or hilly terrains of western and northern Hebei Province,
coastal zones in Shandong Province, and hilly areas in the western part of Henan Province.
For instance, Binzhou City in the coastal areas of Shandong Province exhibited a higher
NGPOWW area but fewer winter wheat compensation areas. Furthermore, in Nanyang
City, Henan Province, the NGPOWW area closely matched the winter wheat compensation
area. Notably, the winter wheat compensation area primarily expanded in the northwest
hilly regions unsuitable for grain cultivation, while the NGPOWW area was concentrated
in the central plains.

From 2005 to 2010, cities characterized by high winter wheat planting areas, intricate
topography, and rapid urbanization tended to have larger NGPOWW areas. Compared to
the first phase, the overall net winter wheat area in Hebei Province showed an increasing
trend, while the net change in winter wheat area of some cities in Shandong and Henan
Provinces showed a downward trend, including many major grain-producing cities, such
as Kaifeng City and Xinyang City in Henan Province. For these two cities, the NGPOWW
and winter wheat compensation were mainly distributed in their central and northern
areas, but smaller areas of conversion were observed in the southern forestland area.

From 2010 to 2015, the number of cities with NGPOWW areas exceeding 100 × 103 ha
decreased. Cities exhibiting lower net changes in winter wheat were situated near moun-
tains and hills in Hebei Province, particularly within the rapidly urbanizing Beijing–Tianjin
urban agglomeration. Cangzhou City, Hebei Province, stood out as a representative ex-
ample with cultivated land as the primary land use type. In this region, NGPOWW was
concentrated in the northeast and northwest near Beijing and Tianjin, while winter wheat
compensation was predominant in the southwest. In contrast to Hebei Province, the plain
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regions of Shandong and Henan provinces experienced an increasing trend in winter wheat
planting area. For instance, in Zhumadian City, Henan Province, the winter wheat compen-
sation area in the north surpassed the NGPOWW area in the south, resulting in a positive
net growth area.

From 2015 to 2021, the number of cities with NGPOWW areas exceeding 100 × 103 ha
began to rise, particularly in cities characterized by high winter wheat planting areas
and rapid urbanization. Notably, the net change in winter wheat area in Hebei Province
remained relatively low. Additionally, NGPOWW was concentrated in the eastern plain
near the Beijing–Tianjin regions, while winter wheat compensation was distributed in the
northeast and southern regions. Furthermore, certain major grain-producing cities in Henan
and Shandong Provinces exhibited negative net growth. For instance, Heze City, Shandong
Province, displayed a larger NGPOWW area than the winter wheat compensation area,
with the latter concentrated in the city’s periphery.
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5. Discussion
5.1. Algorithm Assessment of AGWWS

The determined optimal thresholds of SAD, ED, and NIRDI showed a relatively higher
accuracy in extracting unchanged winter wheat samples and changed winter wheat sam-
ples across eleven periods. By leveraging the distinctive spectral characteristics of winter
wheat within the optimal phenological window, the algorithm effectively differentiates
crop samples with similar spectral shapes but varying spectral magnitudes [35]. Using the
optimal migration threshold allows for automatically updating the winter wheat sample
set in the four periods. This differs from traditional sample migration methods that highly
rely on spectral characteristics with ground-labeled samples from historical years [53,66,67].
These characteristics were transferred to the classifiers for the target years lacking samples.
The conventional methods demand accurate reference year sample collection, involving
significant manpower, time, and financial costs, especially when field-level winter wheat
samples are challenging to acquire [66]. In contrast, the AGWWS algorithm does not
require continuous field collection efforts or substantial multiple years mapping cost. It au-
tomatically and accurately generates training samples by leveraging high spectral similarity
between samples solely relying on existing crop maps and remote sensing imagery.

The EWWI maps as key inputs to the AGWWS were thus compared with the AGWWS
maps, revealing overestimations of winter wheat area in EWWI maps. A possible reason
is the interclass differences in winter wheat, such as varieties of wheat, sowing periods,
and irrigation conditions. This poses challenges in distinguishing winter wheat from other
crops [49]. In contrast, the integration of the AGWWS algorithm and the OCSVM could
accurately identify winter wheat based on reliable auto-generating samples and superior
performance in separating target class from the mixed pixels [68].

5.2. Spatiotemporally Pattern of Winter Wheat

The spatial results confirm an overall upward trend in winter wheat area in the HHH
Plain from 2000 to 2021, aligning with previous findings [13,40,69] and the corresponding
statistical data. Three factors contributed to this upward trend. First, the ample sunshine
during summer and fall in Henan and Shandong Provinces, coupled with relatively mild
winter climates, provides favorable climate conditions for winter wheat cultivation. These
climatic advantages have played a pivotal role in promoting the expansion of winter
wheat cultivation across the region. Second, the crop’s high irrigation requirements find
ample support in the abundant water resources of the HHH Plain, strategically situated
among the basins of the Yellow River, Hai River, and Yangtze River. This rich water
supply has facilitated agricultural development, particularly for crops like winter wheat
that thrive with consistent moisture. Last, government policies such as the “National
Plan to Increase Grain Production by 100 Billions Kilograms” (https://www.gov.cn/gzdt/
2009-11/03/content_1455493.htm (accessed on 11 October 2023)) and “China’s National
Agricultural Water-Saving Outline” (https://www.gov.cn/zwgk/2012-12/15/content_22
91002.htm (accessed on 11 October 2023)) [70,71] have been instrumental in incentivizing
and supporting agricultural practices. These initiatives have played a crucial role in
encouraging food production, aligning with broader national goals for food security.

The declining trend in winter wheat cultivation area in Hebei Province since 2010,
while noteworthy, has a relatively limited impact on the overall increasing trend observed
in the total study area. Urbanization and increased groundwater extraction for irrigation
purposes stand out as the primary drivers behind the decline in winter wheat cultiva-
tion [72,73]. The escalating costs associated with irrigation have prompted many cities
and counties to shift towards cultivating cash crops to enhance economic returns. For
instance, Cangzhou City has transitioned to cultivating fruit trees. Handan City is focusing
on cotton cultivation. Certain counties in Baoding City are diversifying into industries such
as nurseries, fruit trees, and medicinal plants [74]. This shift reflects the complex interplay
of economic considerations, resource management, and regional development strategies
influencing agricultural land use patterns in Hebei Province.

https://www.gov.cn/gzdt/2009-11/03/content_1455493.htm
https://www.gov.cn/gzdt/2009-11/03/content_1455493.htm
https://www.gov.cn/zwgk/2012-12/15/content_2291002.htm
https://www.gov.cn/zwgk/2012-12/15/content_2291002.htm
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5.3. Marginalization of Winter Wheat Planting Caused by NGPOWW

The marginalization of winter wheat planting occurred in the HHH Plain through
four phases, marked by the extensive compensation of winter wheat lands in mountainous
regions and city suburbs despite of the overall upward trend in winter wheat area. From
2000 to 2005, Nanyang City exhibited a quantitative balance between the “occupation-
compensation” of winter wheat, yet spatially, NGPOWW predominantly spread across the
plain regions, with compensatory winter wheat closer to the mountainous northwest area
(Figure 11). From 2005 to 2010, sporadic conversions of mountainous forestlands to winter
wheat were seen, driven by the loss of winter wheat in the central plains (Figure 11). The
winter wheat lands were mainly occupied by special economic crops such as vegetables
and fruit trees. For example, from 2000 to 2005 and from 2005 to 2010, Nanyang City and
Xinyang City, respectively, showed an increasing trend of the area of special economic
crops [75]. This resulted in the “forced uphill” planting of grain.

The current practice of “balance of occupation and compensation” in mountainous
regions poses a threat to future food security. First, the rugged terrain of mountains and hills
hampers the replacement of labor with agricultural machinery in grain planting, thereby
intensifying the challenges faced by farmers [76]. Second, escalating costs associated with
grain planting, encompassing labor, fertilizers, and land rent [77] are prompting farmers
to increasingly favor cultivating cash crops in mountainous areas. For instance, in Xixia
County, Nanyang City, situated in mountainous terrain, the economic returns from crops
such as kiwi fruit and mushrooms far exceed those derived from grains in the plains,
ensuring substantial agricultural profits [78]. If this trajectory persists, the proliferation
of NGPOWW will significantly jeopardize national food security. To prevent further
marginalization, future cultivated land regulation should restrict compensation activities
in mountainous regions, particularly with the increasing demand for special economic
crops. Such strategic interventions are pivotal to maintaining a sustainable balance and
safeguarding the long-term viability of winter wheat cultivation in the context of evolving
agricultural landscapes.

Additionally, compensation activities occurring in suburban regions due to urban-
ization negatively affect the sustainability of cultivated land development. Urbanization-
driven NGPOWW trends, observed in cities like Binzhou (from 2000 to 2005) and Kaifeng
(from 2005 to 2010), are linked to the development of secondary and tertiary industries,
placing substantial pressure on grain planting in the southern plains [79,80]. Leveraging a
significant consumer market and convenient transportation infrastructure, Kaifeng City
emerged as a key national base for planting and exporting cash crops. Its NGPOWW trends
were closely tied to its favorable geographic position. The establishment of Xiongan New
District near Baoding City in 2017 further exacerbated the situation, inevitably occupying
cultivated land and reducing the area available for food planting [81]. From 2010 to 2015,
rapid urbanization around Cangzhou City, located in the low plain areas surrounding the
Bohai Sea, led to a notable increase in NGPOWW in suburban regions (Figure 11) [82]. This
prompted a considerable amount of winter wheat to be planted in the south as compensa-
tion, escalating the pressure on grain planting in the southern plains. From 2015 to 2021,
Heze City experienced extensive NGPOWW in its central part, with compensation areas
closer to the city’s edge (Figure 11) [83]. Heze City, a significant peony export base, has
vigorously developed a cultural industry, emerging as a new pillar industry for economic
development [84]. These findings confirm that the compensation of winter wheat in the
HHH plain frequently occurred due to urbanization. This recurrent pattern of urbanization-
induced NGPOWW (the marginalization) poses a significant threat to the sustainability of
cultivated land development, aligning with earlier research [11]. Suitable regulations for
the “balance of occupation and compensation” of cultivated land are urgently needed to
ensure sustainability in the face of evolving urbanization and agricultural landscapes.
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5.4. Issues for AGWWS Algorithm and Mapping Winter Wheat

We are aware that the AGWWS algorithm may not perform optimally in the following
scenarios due to the biased spectral characteristics of winter wheat in the optimal phenolog-
ical window. First, areas frequently exposed to extreme weather events, such as droughts
or floods, may exhibit spectral characteristics deviating significantly from those of healthy
winter wheat [85]. This leads to unreliable samples being used to train the algorithm, con-
sequently reducing its accuracy. Second, new agricultural practices involving new winter
wheat varieties can result in spectral characteristics differing significantly from the training
samples [86,87]. The optimal migration threshold may not be suitable for identifying these
new varieties, posing a challenge for the AGWWS. Last, the rainy or cloudy areas lacking
high-quality optical images may not obtain the optimal performance, given the AGWWS’s
reliance on such images. The low-quality images contaminated by cloud or shadow were
replaced by images from the adjacent year in our work. This could potentially lead to
biased spectral characteristics being input into the algorithm. The performance of the
AGWWS would be negatively impacted. Future work needs to explore how to integrate
non-optical imagery such as LiDAR, SAR, or InSAR [88–90] into the AGWWS to improve
its accuracy of identification.

The accuracy of winter wheat maps faced two challenges. First, the few Landsat 7
imagery used to fill the data gap when the Landsat 8 OLI and Landsat 5 imagery were
unavailable had low quality due to the failure of its scan line corrector. Future work should
consider alternative remotely sensed imagery, such as utilizing MODIS data, to mitigate
the impact of compromised data quality. Second, given that the OCSVM is sensitive to the
spectral noise caused by the landscape heterogeneity [91], cautions must be taken when
it is conducted. Future work should entail the training of OCSVM across diverse regions
exhibiting distinct landscape heterogeneity. Despite these challenges, the AGSWW maps,
characterized by notable accuracy and alignment with NBS data, offer valuable insights
into the dynamics of winter wheat cultivation in the HHH Plain from 2000 to 2021.

6. Conclusions

This study developed an algorithm for Auto-Generating Winter Wheat Samples (AG-
WWS). It employs measurements of Spatial Angle Distance (SAD), Euclidean Distance (ED),
and Near-Infrared band Difference Index (NIRDI) using historical samples to determine
the optimal migration threshold, enabling the auto-generation of winter wheat sample sets
for the years 2000, 2005, 2010, 2015, and 2021. The average Overall Accuracy (OA) of winter
wheat sample sets is 84.07%. Approximately two-thirds of winter wheat samples and the
remaining one-third of winter wheat samples were used, respectively, for training and
validating the classifier. The One-Class Support Vector Machine (OCSVM) was employed
to map winter wheat for these five years. Based on the correlation analysis between the
derived AGWWS maps and the national statistical dataset at the city level, the map with
the highest corresponding R2 was chosen as the AGWWS map for each year (0.77, 0.77,
0.80, 0.86, and 0.87 for 2000, 2005, 2010, 2015, and 2021, respectively). The AGWWS maps
ultimately yield an average OA of 81.65%. This study delves into the Non-Grain Production
of Winter Wheat (NGPOWW) by analyzing winter wheat change maps from 2000–2005,
2005–2010, 2005–2010, and 2015–2021 in the HHH Plain. Despite an overall increase in the
total planted area of winter wheat, the NGPOWW phenomena reveals concerning winter
wheat planting marginalization, particularly driven by specialized agriculture and regional
economic development. The marginalization was mainly observed in mountainous regions
and around suburban regions. This paper emphasizes the need for regulations that re-
strict occupation and compensation in suitable regions, considering the sustainability of
cultivated land development.
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