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Abstract: Indoor 3D reconstruction is particularly challenging due to complex scene structures
involving object occlusion and overlap. This paper presents a hybrid indoor reconstruction method
that segments the room point cloud into internal and external components, and then reconstructs the
room shape and the indoor objects in different ways. We segment the room point cloud into internal
and external points based on the assumption that the room shapes are composed of some large
external planar structures. For the external, we seek for an appropriate combination of intersecting
faces to obtain a lightweight polygonal surface model. For the internal, we define a set of features
extracted from the internal points and train a classification model based on random forests to
recognize and separate indoor objects. Then, the corresponding computer aided design (CAD)
models are placed in the target positions of the indoor objects, converting the reconstruction into
a model fitting problem. Finally, the indoor objects and room shapes are combined to generate a
complete 3D indoor model. The effectiveness of this method is evaluated on point clouds from
different indoor scenes with an average fitting error of about 0.11 m, and the performance is validated
by extensive comparisons with state-of-the-art methods.

Keywords: indoor modeling; point cloud classification; model fitting; lightweight model

1. Introduction

Indoor 3D models exhibit considerable potential for various applications, such as
indoor positioning, architectural design, and augmented reality. In the past few decades,
extensive research has been dedicated to the automated 3D reconstruction of indoor mod-
els [1-4]. In comparison to images, 3D point clouds exhibit superior capabilities in rep-
resenting object geometry, position, and supplementary information. Nevertheless, the
reconstruction of complete indoor scenes from imperfect point clouds, characterized by
inherent noise and incompleteness, remains a persistent challenge.

For most artificial buildings, the outer surfaces of the rooms typically exhibit flat
geometries, which help to represent them as a composition of primitive surfaces (e.g.,
planes, spheres, cylinders, etc.) [2,5,6]. The modeling methods that rely on geometric
elements or specific patterns are highly beneficial in the field of building modeling [7,8].
Conversely, interior scenes are inherently more complex due to the variety and irregularity
of objects within them, presenting challenges for 3D reconstruction.

In recent years, researchers have been exploring the use of deep neural networks
to reconstruct scenes that involve occlusion relationships. Some approaches extend 2D
convolutional neural networks (CNNs) to the 3D domain and represent scenes using
voxel or truncated signed distance function (TSDF) grids [9]. However, the majority
of 3D convolution are computationally expensive, leading to inefficiency in processing.
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Subsequently, researchers have shifted their focus to directly learn object meshes at the
semantic-instance level from point clouds and attempt to reconstruct real-world objects
directly from point clouds [10,11]. However, such methods frequently encounter difficulties
in accurately reconstructing thin structures.

In this work, we provide a novel method for hybrid indoor reconstruction, which re-
constructs the room shape using intersecting faces and the indoor objects using CAD model
fitting, as shown in Figure 1. We assume that the scale of the external structure of rooms is
usually large, while the internal objects are relatively small and complex. Using different
methods for those two types of scenes can handle their differences. Our method combines
the robustness of geometric primitives” approach to data and the advantages of being
able to effectively overcome missing data, with the comprehensive and accurate results of
instance segmentation reconstruction. Specifically, the point cloud of a room is segmented
into internal and external components, and our method employs distinct reconstruction
strategies for different components. For external reconstruction, the polygonal nature of
room shapes is explored to identify appropriate combinations of intersecting faces. This
allows us to generate lightweight room models. Conversely, for internal reconstruction, we
further segment the indoor points to separate individual objects, such as chairs, tables, etc.
The corresponding CAD models of the objects are then placed at their detected locations
and oriented according to the internal orientations of the components of the objects. In
summary, the main contributions of this work are three-fold:

e  We provide a divide-and-conquer reconstruction method based on object-level fea-
tures to generate models including indoor objects and room shapes from point clouds.
We segment the room point cloud into internal and external for reconstruction, re-
spectively, and the reconstruction is carried out in light of the geometric primitive of
intersecting faces.

e  The proposed method takes the reconstruction of external point cloud as a binary
labeling problem. We seek for an appropriate combination of intersecting faces to
obtain a lightweight and manifold polygonal surface model for room shapes.

e  The method uses instance segmentation to assist in modeling individual indoor objects.
We design a random forest classifier to recognize objects using shape features, spatial
features, statistical features, and proprietary features. The reconstruction problem
is approached as a model fitting problem, wherein object-level key points are ex-
tracted and subsequent optimization is performed to minimize the distance between
corresponding key points, thus accurately placing the CAD models in target positions.

Figure 1. The hybrid 3D reconstruction method generates a lightweight compact indoor model
containing both indoor objects and room shapes.

The paper follows the following structure. Section 2 provides a concise overview of
the related work. The main methods are presented in Section 3. Section 4 outlines the
experimental setup and examines the obtained results. Section 5 presents the conclusions
and provides recommendations for future research.
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2. Related Work

There are various ways to obtain indoor 3D point clouds, such as RGB-D scan-
ners [11-13], photogrammetry, and light detection and ranging (LiDAR) technologies [14].
Automated reconstruction of building models from point clouds is an intensive and chal-
lenging research topic. One issue is the presence of noise or outliers in the collected data.
In addition, occlusions can lead to incomplete representations of objects. Pintore et al. [15]
reviewed the state-of-the-art of indoor scene reconstruction in recent years and found that
indoor scene reconstruction methods mainly focus on the following two aspects: boundary
surface reconstruction and indoor object detection and reconstruction. The former finds ge-
ometries that border room shapes (walls, ceilings, floors, and other permanent structures),
while the latter identifies objects in a room to reconstruct their shapes.

Some data-driven methods could directly obtain mesh models using either explicit
or implicit modeling methods. However, the reconstruction results typically comprise
numerous triangles, and they are susceptible to erroneous and incomplete data. Data-
driven methods have become increasingly popular in indoor scene modeling using visual
images, but there has been limited exploration in 3D point cloud inputs. These methods
effectively learn hidden relationships from the available data, thereby acquiring prior
knowledge that can be leveraged to enhance robustness when handling damaged inputs
and infer missing information from incomplete data [15,16]. Due to the large amount of
data and high-resolution requirements in scenes restricted by 3D point clouds, the data
volume from scanning a single room can reach up to 10 million points, and multiple scans
are often required to reconstruct a complete room. Therefore, data-driven methods using
3D point cloud have significant limitations that remain to be addressed.

On the other hand, the pattern-driven methods involve the use of specific patterns or
models to fit and represent the structures of a building. In the following two sub-sections,
we aim to present two primary perspectives for analyzing these methods: one that relies
on geometric primitives, and the other that employs instance segmentation.

2.1. Geometric Primitive-Based Modeling

Geometric primitives are commonly used to fit man-made objects for reconstruction.
Schnabel et al. [17] introduce a technique that employs RANdom SAmple Consensus
(RANSAC) strategy to extract fundamental primitives such as planes, spheres, cylinders,
and cones from point clouds. Based on the extracted geometric primitives, Li et al. [7] and
Lin et al. [18] involve decomposing the point cloud and fitting segmented building blocks
together to create rough building models. Cheng et al. [1] propose a method that involves
projecting 3D point clouds onto 2D and extracting indoor structural information from the
resulting 2D images. However, due to the complex and occlusion-rich nature of indoor
scenes, this projection-based method is not suitable for representing indoor instance objects.

Topological structure of rooms is of great significance for building information models
(BIMs). Ai et al. [19] propose a method for reconstructing indoor models based on the
spatial relationships between internal structures, but it may lose many finer details. Con-
sidering that many buildings are designed with cube-shaped structures, Wei et al. [20] and
Li et al. [7] use the Manhattan hypothesis to extract the simplified models of the building
from point clouds. Although these types of models are concise, it may overlook certain
intricate details.

Slicing-based methods can be used to deal with imperfect data through the use of a
divide-and-conquer strategy [21,22]. These methods divide the 3D space into polyhedral
cells based on the supporting planes of the identified planar primitives. These cells are
made up of polygonal faces. This partitioning approach transforms the reconstruction
process into a labeling problem, where the objective is to assign labels of either “inside”
or “outside” to the polyhedral cells, or alternatively to label other primitives. However,
a key drawback of slicing-based methods is the limited scalability of their data structure.
Nan and Wonka [23] offer a solution for generating lightweight reconstruction results by
selecting the optimal subset of planar shapes through binary linear optimization. This
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method is primarily suitable for objects consisting mainly of planar faces, such as building
surfaces. Thus, it is inadequate for complex indoor scenes that involve numerous non-
planar objects. Nevertheless, the concept of using geometric primitives to represent the
relationship between faces and transforming a reconstruction into an optimization problem
has inspired our work. We adopted the divide-and-conquer strategy, which uses the
method of plane fitting for the outer surfaces of the room and uses the method of CAD
fitting for internal objects. In this way, the approach makes full use of geometric primitives
to fit the outer surfaces of the room without being affected by complex objects inside.

2.2. Instance Segmentation-Based Modeling

Instance segmentation-based modeling goes beyond geometry fitting, as it aims to
provide more semantic information by segmenting each point in the point cloud into
distinct object instances. Instance segmentation-based modeling methods are capable of
identifying the positions and shapes of objects, even in the presence of incomplete data.

During the early years, manual feature-based classification methods played a central
role in this field. The approaches involve manually identifying and defining specific
features or structures of interest within the data. These features may be manually selected
and constructed based on the structures, shapes, distributions, and other properties of the
point clouds. They may include information such as coordinates, normal vectors, curvature,
color, density of points, and various descriptors extracted based on local or global geometric
properties [12]. Han et al. [8] introduce the use of Markov Random Fields to compute local
descriptors of points as manual features. Hedau et al. [24] propose an advanced indoor
scene object classifier based on texture information and the 3D bounding box geometry
of objects in the surroundings. Cui et al. [25] introduce an automatic semantic operator
that combines visibility analysis and physical constraints of structural elements to provide
semantic descriptions of indoor point clouds. Nan et al. [26] train a random forest classifier
with handcrafted features to recognize indoor chairs, and then they perform model fitting
on segmented point clouds.

Deep learning-based segmentation methods have been extended to process 3D point
clouds in recent years. These methods usually require training a deep neural network on a
large amount of labeled data to learn the representation of the classes. Qi et al. [10] and
Qi et al. [27] make significant impacts on the field of deep feature reconstruction of point
clouds. They are widely used in semantic segmentation and instance segmentation [28,29].
Jiang et al. [30] propose a two-branch network that predicts semantic labels and offsets.
They then use a point clustering method based on original and moving sets of coordinates
to segment instance objects. He et al. [31] introduce dynamic convolution for 3D instance
segmentation. They also develop a small and efficient transformer to capture long-range
dependencies and high-level interactions among point samples. However, one drawback of
deep feature-based reconstruction methods is that the extracted features lack interpretability
and they require a substantial training dataset.

For the reasons outlined above, we utilize handcrafted features to train a random
forest classifier using indoor point clouds as input, enabling end-to-end indoor object
detection results. The advantage of our method is its ability to efficiently perform instance
segmentation and 3D reconstruction within a few minutes. Each point in the point cloud is
assigned to a specific object instance, allowing for a better understanding and analysis of
the scene.

3. Method

The pipeline of the proposed algorithm is shown in Figure 2. Our method utilizes
3D point clouds of single rooms as input and generates a lightweight model with indoor
objects and room shapes. We propose an improved RANSAC method that incorporates
K-nearest neighbor (KNN) for the extraction of planar shapes and the segmentation of
internal and external components. To reconstruct the room shape model, our method
efficiently extracts planes and selects candidate faces based on their geometric properties
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of the pairwise intersections of planes. Considering that detected planar segments may
contain unnecessary elements due to noise, outliers, and missing data, we improve these
planar segments by iteratively merging planar pairs and fitting new planes. By apply-
ing binary optimization, we assemble the accurate room shape model using the optimal
subset of planar faces. For indoor object modeling, we adopt an instance segmentation
technique. Firstly, a random forest classifier is trained to segment each point into distinct
object instances. Subsequently, the corresponding CAD models of instances are accurately
positioned at the target locations, effectively transforming the reconstruction problem into
a model fitting problem. Finally, the room shape model and the indoor object models are
combined to yield an accurate representation of the indoor scene.
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Figure 2. The pipeline of the proposed algorithm, encompassing room shape reconstruction and
indoor object modeling.

3.1. Internal and External Segmentation

The method takes the indoor point cloud P as input. As the room shape is relatively
clear, complex indoor objects pose a more challenging task. To reduce the influence of
complex objects on the reconstruction and improve the efficiency of the algorithm, we
segment the overall point cloud room into two parts: the internal point cloud P, consisting
of the indoor objects, and the external point cloud P,y consisting of the room shape. This
segmentation enables us to perform separate reconstruction tasks on each part.

We follow the piecewise planarity assumption that the room shape consists of piece-
wise planar subspaces, and hence a room can be geometrically represented as a polyhedron.
In this case, the term “objects” refers to the movable parts in the environment (usually
furniture) and thus does not belong to the building structure.

Compared with the point cloud of indoor objects, the point cloud of room shape
contains more points (num(P ,,) > num(P;,)), and a significant portion of these points are
presented as large planes (walls, roof, and ground). We use KNN to improve the RANSAC-
based algorithm for plane extraction, and we obtain some planes S = {s;}, where s; is a set
of points whose distances are smaller than a threshold ¢ to a plane, as shown in Algorithm 1.
Specifically, instead of randomly sampling 3 points to form a plane, we use a neighborhood
distance-based strategy to select the 3 points. A single point is randomly sampled and
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the k-d tree is constructed to select k nearest neighbors, where we choose k = 10. Among
these neighbors, two points that are sufficiently distant from the initially sampled point are
selected to establish a plane. This strategy is intended to accurately and efficiently extract
the plane in the point cloud.

Then, we select the plane containing the most points in the planes as the output.
Considering the presence of large planar objects like tables in the room, observations have
shown that these planes typically exhibit lower centroids. To minimize the likelihood of
incorrect segmentation, we utilize the altitude of the centroids as a criterion for discarding
these planes. The above steps are repeated until the number of points of the extracted
plane is less than a certain threshold; therefore, we obtain a set of planes P,y = {S;}. After
we have extracted all the large planes, these planes are denoted as the external and the
remaining points as the internal. The result is shown in Figure 3.

Algorithm 1 Internal and External Segmentation

Require: point cloud P = {p1, p2,..., pn}
: tree < kdtree(P)

: while

: index_0 <— rand(sizeof(P))

fork=1to 10 do

. index_k < RecoverNeighborhood(tree)
end for

: plane < FitPlane(index_0, index_9, index_10)
: fori=1tondo

if distance(p;, plane) < e then

10: S < Pushback(p;)

: end if

: end for

: if Num(S) > threshold and centroid(S) > centroid_threshold then
14: P,y < Pushback(S)

15: P < Erase(P, S)

16: else

17:  if Size(P) < size_threshold then

18: P;, <= Pushback(P)

19: break

20: else

21: continue

22: end if

23: end if

24: end while

O 0N U A WN =

o
W N =

Figure 3. Illustration of the internal and external segmentation: (a) input point cloud; (b) external
points; (c) internal points.

3.2. Room Shape Reconstruction

After some planes have been extracted from external point clouds, the room shape
will be reconstructed based on these external planes. Inspired by Polyfit [23], we choose
the candidate faces according to the geometric properties of the pairwise intersections of
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planes. After that, we formulate the reconstruction of the external point cloud as a binary
labeling problem, and then select the optimal subset by binary optimization to assemble
the room shape model.

3.2.1. Candidate Face Extraction

To generate the faces that make up the room shape, we first crop the planes by the
oriented bounding box (OBB) of the point cloud, and then obtain candidate faces by
pairwise intersections. We use a simple cube-structured data as an example, as shown in
Figure 4. Two faces intersect on edge ¢, which divides them into 4 candidate faces. The
right figure is the result of extracted candidate planes.

/

Figure 4. Candidate face extraction.

As depicted in Figure 4, the proposed method may introduce redundant faces. For
instance, using a cube as an illustration, the original cube possesses 6 faces. However,
upon applying the method, a total of 30 faces might be obtained (each edge e will add two
subsidiary faces 12 x 2 + 6). If redundant planes are generated by the RANSAC algorithm,
this number will be much higher. It is worth noting that these subsidiary faces are not
supported by the points of the origin point cloud; therefore, they can be easily discarded
in the following selection. It is evident that among the four faces that share an edge e,
the model should be composed of faces (D) and () rather than @ and (), signifying their
non-coplanarity. This information serves as a basis for formulating the face constraints
utilized in the selection of the constituent manifold and watertight model.

3.2.2. Optimal Faces Selection

After generating a candidate set of faces in the previous steps, our next objective
is to select an optimal subset from that set, which will form a reasonable reconstruction
1<i< Nf}, where Nf is the number of the
candidate faces. Then, we define a data fitting cost E; and a geometric structure energy
cost Eg to form the optimization objective function.

(1) Data fitting. Considering the fitting quality and confidence of the plane to the point
cloud [23,32], the data fitting cost E £is defined as follows:

model. The set of faces is denoted as F = { fi

1Y
Ef=1- ﬁzki'suPP(ﬁ') 1)
Pi=0
supp(f) = (1= 2D cong @
p.fldist(p.f)<e

12 373 A2
cmﬂm=z<r—l>l ®
34 AL+A24 23 ) Al

where N, represents the total number of points in point cloud P. Ny denotes the total
number of detected faces. The variable k; indicates whether a candidate face f; is chosen
(k; = 1) or not (k; = 0). The term supp(f;) takes into account the distance from a point
to a plane and the notion of a certain confidence level. The Euclidean distance from a
point p to the candidate face f is denoted as dist(p, f). Only points with distances less
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than ¢ are considered. The confidence term conf(p) is determined by examining p in the
definition of the local covariance matrix. The eigenvalues of the covariance matrix at scale
i are represented by A} > A? > A3. The quality of fitting a tangent plane in the local
neighborhood at p can be assessed using the expression 1 — 313/ (A! + A% + A3). A value
close to 0 indicates a poor point distribution, while a value of 1 suggests a perfect plane
fitting. The uniformity of point sampling in the local neighborhood at p is measured by
A?/Al. The value of this eigenvalue ratio ranges from 0 to 1, with 0 representing a perfect
line distribution and 1 corresponding to a uniform disk distribution.

A small value of the data fitting cost Ef means that the reconstruction model is more
inclined to choose the faces that are close to the input point.

(2) Geometric structure. Considering that the room is composed of horizontal and
vertical shapes, such as the roof and floor are horizontal, and the walls are vertical; therefore,
in this context, we define the geometric structure energy cost E¢ as follows:

Ny
By =1 ) kygeom(f,)-(geom(fy) — 1) @
fi=0
geom(f) = average <1 - dzst(p,f)) -vert(p) )
pf dist(p.f)<e ‘

2-angle(ep, ez)
U

vert(p) =1— ’ (6)

where geom(f) is similar to supp(f) in Equation (2) and average(-) means taking the
average. The term vert(p) refers to the measure of verticality of face with range [0,1], and
the boundary values 0 and 1 correspond to parallel and vertical, respectively. As mentioned
before, we want to select the face close to the boundary value. Moreover, e, is the unit
vector along the Z-axis, and ¢ is the largest eigenvector of the 3D structure tensor C of
a given point p within its neighborhood A’**“. The 3D structure tensor C is defined in a
manner similar to Hackel et al. [33] and Weinmann et al. [34]:

k
C= ;(Pi—ﬁ)(Pi—ﬁ)T )

=

where p = argminy¥_, || p; — p|| is the centroid of \V.

A smallpgeornetric structure cost E; makes the reconstruction model more inclined to
choose large horizontal and vertical planes.

(3) Optimization. Candidate faces have been obtained through pairwise intersections,
as depicted in Figure 4. It is important to note that the desired property of manifold
and watertight model is characterized by the condition that each edge connects only two
adjacent faces. This is exemplified by the connections between faces (D and @, @ and (@),
and (@ and (@ in Figure 4. Employing the aforementioned energy terms, we can formulate
the final optimization function for face selection as follows:

in Ae-Ef+ Ao E
min Ag-EftAgeEg

Y k}zZorO, 1<j<N, (8)
s.t. JEN ()
ki € {0, 1}, 1<i<N;

where K denotes the variables k;- and k;, Y. k! denotes the number of faces connected by
JEN (ei)

edge e;, where we constrain those 0 or 2 faces of an edge which are selected. N, denotes

the number of edges in the candidate plane. We use Gurobi [35] to solve this optimization

function. The results of processing are shown in Figure 5.
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Figure 5. Pipeline: (a) input point cloud; (b) planar segments; (¢) candidate faces; (d) reconstructed
model; (e) reconstructed model (other view); the first row is Polyfit [23] results, and the second row is
our improved results.

3.3. Indoor Object Reconstruction

For the indoor objects, we perform instance segmentation by training a classifier based
on the random forest theory, and then design a model fitting method according to the
geometric prior of the objects. The CAD models are placed on positions of the segmented
instances, forming the models of indoor objects.

3.3.1. Objects Segmentation

The indoor objects segmentation method consists of feature extraction and super-
vised segmentation.

(1) Feature extraction. The first step involves defining a comprehensive set of de-
scriptive features. Within this context, it is customary to employ the spatial coordinates
of adjacent points to establish a 3D structure tensor [36,37], as utilized in our application
of geometric structure energy term in room shape reconstruction (refer to Equation (7)).
Notably, man-made objects possess distinctive architectural traits. For instance, a chair
typically presents a vertical backrest and a horizontal cushion, typically forming an angle
between 90 and 120 degrees. Similarly, a table is identified by its broad, horizontal surface,
often exhibiting a relatively elevated centroid position (external components have been
excluded from consideration).

In our method, we establish the definition of geometric features by leveraging the
principles of the 3D structure tensor. Additionally, we augment the approach with a region
growing process, which has been demonstrated to enhance both the accuracy of instance
segmentation outcomes and the computational efficiency. Notably, the inclusion of the
region growing procedure endows our method with robustness against missing data and
noise. Our features are derived from the design of a 3D structure tensor, representing
advanced geometric characteristics. Taking a chair as an example, as long as we can extract
both the backrest and seat planes from the input point cloud data, our method can identify
the chair. This is because our proprietary chair feature is specifically designed based on the
angle formed by the backrest and seat. Further information regarding the defined features
can be found in Table 1.

In Table 1, A; > Ay > A3, which are the eigenvalues of the 3D structure tensor derived
from Equation (7). As the nomenclature suggests, the first term of the shape feature
represents the structure of plane, while the subsequent measures encapsulate distinct
shape properties.
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Table 1. Feature definition.

Feature Class Features Definitions
Planarity Py = )‘2/\;1)‘3
Anisotropy Ay = Al)‘;lk
Shape features Ei t 3
igenentropy E,=— 421 Ai-In(A)
i=
; A
Change in Curvature Cr = 1o
Longest Distance within Neighborhood Dy = argma}{x” pi — pl
S
. . k

Spatial features Local Point Density 257

. 1 . k
Average Height within Neighborhood Hype z = % 121 P
1=
Absolute Moment (x2) Ay = %Z’ (p—p, gz)ﬁ‘
Statistical features )
Vertical Moment (x 6) V= %Z‘(P - ﬁ,ei)ﬁ ,1€{0,1,2}
Oriented Bounding Box Height-Size Ratio Ropp n = \/%
. Object Face and Corresponding Parallel OBB 1y Ny pll
Proprietary features Face Axis—Size Ratio Ris = N, B[f]n
Angle between Object Faces (Chair) Achair = Z(Fnors Foer)

The derivation of the spatial features relies on point-based calculations, employing
the centroid point of the 3D structure tensor as the basis for computing the 3D geometric
properties. Moreover, p7 denotes the Z-axis value of the i-th point in the neighborhood.
Additionally, we employ the concept of region growing in our approach, where the seed
point for the region growing process is determined as the farthest point within a predefined
threshold distance. This selected point serves as the center point for deriving the next
3D structure tensor. Leveraging the effectiveness of region growing as a segmentation
algorithm, the approach seamlessly integrates the segmentation process with the classifier.

The statistical features are primarily defined by the associated eigenvectors of the 3D
structure tensor, where the eigenvalues are ordered as ¢y > e; > e;. Moreover, e, denotes
the unit vector in the Z-axis direction, and B can take on the values of 1 or 2. Notably,
the first and second moments of the eigenvectors and unit Z-vectors derived from the
3D structure tensor play a pivotal role in the classification of crease edges and occlusion
boundaries [38].

Proprietary features provide an optional selection of features tailored to different
objects. By, By, and B, correspond to the height, width, and depth of the oriented bounding

box (OBB), respectively. The notation PiH represents the coordinate value along a specific
axis for the i-th point, while B represents one of the values from By, By, or B;. For

example, if we consider the horizontal face of a chair, PiH would specifically denote the P?,
and B would specifically denote the B,. Furthermore, N¢_, denotes the total number of
points contained within the selected face.

(2) Supervised segmentation. We combine base generic features, including shape
features, spatial features, and statistical features, with proprietary feature validation. This
process involves two stages: coarse segmentation followed by fine segmentation.

Initially, a pre-training phase is conducted, where a set of random forest decision-
makers is trained using the aforementioned features except for the proprietary features.
Subsequently, predictive segmentation is performed on the input point cloud, resulting in
coarse segmented labels. It is important to note that our labels are point specific, which
means that every point in the point cloud will get a label. However, it is possible that
points belonging to the same object may have different labels after coarse segmentation. To
address this issue, we utilize proprietary features to perform fine segmentation. For each
object identified during the coarse segmentation step, we incorporate proprietary features
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and retrain the model. The objective of the fine segmentation process is to minimize the
final label error rate associated with each object, thereby enhancing the overall accuracy
and consistency.

The illustration of supervised segmentation is shown in Figure 6, and the result of the
complete indoor scene segmentation is shown in Figure 7.

© @

Figure 6. Illustration of the supervised segmentation: (a) input point cloud; (b) coarse segmentation;
(c) fine segmentation; (d) ground truth. Yellow represents table, red represents cabinet, and green

represents chair.

ok

& 3
RS N »
@ ) ©

Figure 7. Result of the complete indoor scene segmentation: (a) input; (b) output; (c) ground truth.
The different colors here represent the different entities obtained through segmentation.

3.3.2. Model Fitting

Matching CAD models with scanned point clouds of the objects is an extremely chal-
lenging problem. The inconsistent scale of different data is an important issue. Avetisyan
et al. [39] propose a novel 3D convolutional neural network and introduce the Scan2CAD
dataset as input, consisting of both scan data and CAD data, to generate corresponding heat
maps. These heat maps are further reconstructed into CAD models and aligned in the input
scene using a 9DoF pose optimization algorithm. Li and Lafarge [40] propose a method for
globally registering multi-model geometric data with varying scales. Their method incor-
porates scale estimation as part of a continuous optimization problem based on distance
fields during the refinement step, eliminating the need for initial scale estimation.

Inspired by their work, we approach the reconstruction problem as a model fitting
problem, wherein object-level key points are extracted and subsequent optimization is
performed to minimize the distance between corresponding key points, thus accurately
placing the CAD model in target position.
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Different from conventional registration methods that rely on substantial large over-
laps between the source and target, our approach utilizes CAD models as the source data
and extract salient object-level key points for matching. Specifically, we select Scan2CAD as
the CAD model library. On the other hand, the target data consist of point clouds obtained
through RGBD or LiDAR sensors.

Despite the lack of direct correlation between the source and target data, which may
encompass significant disparities in scale, the two types of data possess a shared semantic
label. Given this premise, we define a concept of object-level key points, which are the
two endpoints of a line segment formed by the intersections of faces. These object-level
key points exhibit remarkable accuracy and exceptional robustness, specifically tailored to
successfully handle indoor scenes characterized by a high degree of occlusion.

To ensure the accuracy and reliability of our methodology, we perform separate
preprocessing steps for both the CAD models and point clouds. Given that the CAD model
is constructed offline, it is crucial to minimize any potential uncertainties associated with it.
Consequently, we adopt the assumption that the frontal face of the CAD model aligns with
the positive direction of the X-axis, while the top face aligns with the positive direction of
the Z-axis. Following this, we extract the face intersection lines and subsequently employ
OBB for segmentation. The endpoints of these line segments serve as our object-level key
points. To determine the scale of each object, we calculate it based on the length of the
corresponding line segment:

pd — pi ©)

0_ 1
[ s
where p? and p} are the two endpoints of the line segment of the target, while p? and p!
are the two endpoints of the line segment of the source. The variable s denotes the scale.
||-|l, represents the calculation of the Euclidean distance (L2 norm) between two points.
However, it should be noted that the matching between these key points is not in-
herently unique (as shown in Figure 8, middle). To address this ambiguity, our method
achieves a distinct and reliable matching by defining the direction vector of the line seg-
ments. Firstly, we calculate the centroids of both the source and target objects. Subsequently,
we determine a vector, denoted as v1, from the midpoint of the line segment to the centroid.
In order to enforce a direction constraint, we adjust the face normal vector by considering
the angle between the face normal vector and v;. This adjustment aligns the face normal
vector towards the desired direction, which is indicated by the constraint. We denote the
horizontal face as f, the vertical plane as f,, and the direction of the cross product of f;
and f, as the direction of the line segment we defined.

possiblematch 2

possiblematch 1 _|

b G

/ direction vector (6, x ;) /

Object-level key points

Figure 8. Object-level key points extraction and matching.
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The method may produce ambiguous solutions with two pairs of corresponding
object-level key points, as illustrated in Figure 8 (middle). Initially, we considered using
the centroids as the third pair of corresponding points. However, due to the presence of
numerous occlusion relationships in the indoor context, the centroids may be unstable, as
depicted in Figure 9. As an alternative, we leverage the angle between the normal vectors
of the corresponding faces between the point cloud and the CAD model to constrain the
matching. As illustrated in Figure 8 (right), « and B are the angles that we described.

Figure 9. Comparison of centroid instability under different occlusions.

Upon successfully matching the two pairs of corresponding key points, as illustrated
in Figure 8 (right), we proceed to fit the model to the target object. This fitting process
involves the optimization of minimizing the angle between the corresponding faces. By
minimizing this angle, we aim to enhance the alignment and congruence between the
source and target objects, thereby achieving a more accurate and reliable model fit.

1 -
min E; angle(vlr,v;) (10)

where k is the number of corresponding faces, v’ is the normal vector of the i-th face of the
source point cloud, and v} is the normal vector of the i-th plane of the target point cloud.

4. Results and Discussion

In this work, we tested our method on the open-source dataset S3DIS of Stanford
University [13], along with the LiDAR point cloud collected by Leica BLK360, and the
CAD models are chosen from Scan2CAD [39]. The majority of objects featured in our
test dataset predominantly consist of furniture items, such as chairs, tables, cabinets, and
sofas. These objects represent typical examples encountered in indoor environments. Our
method is implemented in C++. To conduct our experiments, we utilized a DELL Inspiron
3910 computer equipped with Samsung 16 GB RAM and an intel Core i5-12400 4 GHz CPU
(DELL, Nanjing, China).

4.1. Qualitative Comparisons
4.1.1. Object Reconstruction

We demonstrate the good separation of the room point cloud into two parts, i.e., room
shapes and indoor objects, in Figure 3. Figures 6 and 7 demonstrate the ability of our
method for effective instance segmentation in complex scenes.

We compare our method with Polyfit [23], Polyfit with Bbox, and RfD-Net [11]. We
focus our analysis on four specific object categories: chairs, tables, cabinets, and sofas.
Although more complex objects are not explicitly considered in our evaluation, we believe
that the insights gained from this subset of objects provide valuable foundational knowl-
edge for future research and application development. To illustrate the performance of our
method across varying scene complexities, we present qualitative test results in Figure 10,
utilizing the S3DIS dataset. These results showcase the effectiveness and robustness of our
approach under different environmental conditions and object arrangements.
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Figure 10. Qualitative results of object reconstruction: (a) input data; (b) Polyfit; (c) Polyfit (Bbox);
(d) RfD-Net (data-driven); (e) ours.

The reconstruction outcome of Polyfit [23] is heavily reliant on the quality of the
extracted facets. In particular, when confronted with indoor scenes containing numerous
occlusions, Polyfit encounters challenges in achieving an ideal model reconstruction. To
partially mitigate the impact of occlusion, we augment the object’s Bbox to facilitate the
extraction of facets. This augmentation compensates to some extent for the influence
posed by occlusion. In contrast, RfD-Net [11] is a state-of-the-art neural network-based
approach. It extracts object semantics and shapes from sparse point clouds and performs
instance segmentation at the same time. Subsequently, they use a jump propagation module
to bridge global object localization and local shape prediction. It is noteworthy that the
accuracy of RfD-Net'’s results heavily relies on the dataset used for training. On the contrary,
our method not only considers the inherent information embedded within the point cloud
itself but also incorporates object-level information derived from geometric features. As
demonstrated in Figure 10, our method excels in providing enhanced details and producing
lightweight models compared to other approaches

4.1.2. Scene Reconstruction

Due to the fact that Polyfit and Polyfit (Bbox) do not have the function of overall scene
reconstruction, in order to enable a fair comparison, we first manually separate the targets,
and then reconstruct the individual objects by the Polyfit [23] methods. RfD-Net [11]
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is an end-to-end neural network model, and we reproduced its method, but it does not
reconstruct the room shape surface.

The experimental results are shown in Figure 11. All the results show that our method
maintains a visually appealing room model and reasonable object placement at different
complex scenes.

(e)

Figure 11. Qualitative results of scene reconstruction: (a) input data; (b) Polyfit [23]; (¢) Polyfit (Bbox);
(d) RfD-Net [11] (data-driven); (e) ours.

4.1.3. The Effect of Occlusion

We explored the robustness of our method in reconstructing indoor scene objects under
varying levels of occlusion, as depicted in Figure 12. Results were obtained for occlusion
levels of 0%, 50%, 75%, and 90%, indicating that our method successfully reconstructed
indoor objects across different levels of occlusion. We also conducted tests in more extreme
environments. Since our method relies on intersecting faces, it works efficiently as long as
at least two key surface sources can be extracted from the occluded point cloud.
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Figure 12. Reconstruction results with different degrees of occlusion: (a) 0%; (b) 50%; (c) 75%;
(d) 90%.

4.2. Quantitative Comparisons
4.2.1. Scene Completeness

Table 2 shows the information of each scene in Figure 11, including the number of
points, the number of points with the largest object, and the total number of objects. Addi-
tionally, we evaluate the completeness of the reconstructed scene by assessing the number
of objects present in the reconstructed models, as shown in Table 3. The completeness
of the reconstructed scene showcases the ability of the algorithm to faithfully restore the
real indoor environment to its maximum extent. We find that in some scenes, the number
of objects in the reconstructed model of data-driven method RfD-Net [11] is more than
the ground truth. By combining the results of the above qualitative analysis shown in
Figure 11, it can be observed that RfD-Net may have multiple reconstruction objects for
a certain single object, such as a table with two or more reconstruction results. Figure 13
shows the confusion matrices of different methods for the object classification results. To
ensure fairness, we define objects that are not reconstructed in Polyfit [23], Polyfit (Bbox),
and RfD-Net [11] (data-driven), which is identified as clutter. It can be observed that our
method has achieved favorable results in object classification.

Table 2. Information for the room example shown in Figure 11.

Scenes in Figure 11 Points Points of the Largest Object Object
Number
Room 1 1,136,617 35,627 15
Room 2 2,314,634 21,161 33
Room 3 1,266,990 34,325 20
Room 4 1,138,116 15,221 23
Room 5 1,067,709 29,523 14
Room 6 2,065,834 33,060 16
Table 3. Objects number in the reconstructed model. Bold is better.
Scenes in . . RfD-Net [11]
Figure 11 Polyfit [23] Polyfit (Bbox) (Data-Driven) Ours

Room 1 13 (—2) 13 (—2) 12 (—3) 13 (=2)
Room 2 25 (—8) 30 (-3) 19 (—14) 30 (-3)
Room 3 15 (—5) 17 (—3) 21 (+1) 17 (—3)
Room 4 17 (—6) 21 (—2) 5(—18) 21 (-2)
Room 5 11 (-3) 12 (-2) 9 (—5) 12 (-2)
Room 6 13 (—3) 14 (—2) 15 (—1) 14 (—2)
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Figure 13. The confusion matrices of object classification results using different methods.

Rooms 1-5 in our study are sourced from the Stanford large-scale 3D indoor spaces
(S3DIS) dataset, which is a large-scale dataset specifically designed for indoor scene seg-
mentation and recognition. The S3DIS dataset used in our study consists of six large
indoor areas from three different architectural styles, encompassing 11 room categories,
271 rooms, and over 200 million points, containing typical indoor objects such as desks,
chairs, bookshelves, and sofas.

Room 6 is the conference room data captured using a BLK360 LiDAR scanner, with a
total of 13 scans resulting in a combined raw point cloud of over 200 million points. Due to
the extensive processing time required by our method, we performed down sampling to
bring its point count to a level comparable to the S3DIS dataset, resulting in approximately
2 million points after down sampling.

The Scan2CAD dataset comprises multiple CAD models from various industries and
application domains. This dataset offers researchers and developers a rich resource of CAD
data. For our testing purposes, we have selected a set of classic CAD models that closely
resemble the shapes of objects in our test data. We have included one model from each
category. Figure 14 shows some CAD models we selected.

Chair Table Cabinet Sofa

Figure 14. The CAD models we used from Scan2CAD dataset.
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4.2.2. Fitting Error

A frequently used metric for evaluating the quality of model results involves calcu-
lating the root mean square (RMS) of surface fitting errors. These errors represent the
perpendicular distances between points and their nearest facets within the model. The
visualization of these errors is represented as a pseudo-color image in Figure 15, where
the color bar depicts the error magnitude. Our method consistently achieves an average
fitting error of less than 0.11 m across the experimental trials involving the aforementioned
six rooms.

0(m)
©

-
s " 0.03
" @ ol
> % % I
o

0(m)
(e)

0(m)

Figure 15. Illustration of the model fitting error. The color bar depicts the error magnitude. (a—f) are
different rooms.

According to the results of comparative analysis, it is observed that within the entire
scene involving room shape reconstruction, the elements responsible for large errors pertain
to unclassified or unsegmented point clouds, such as the doors depicted in Figure 15. We
perform a separate error analysis for the objects shown in Figure 10, as illustrated in
Figure 16. These results distinctly illustrate the promising level of accuracy achieved by
our method in terms of object fitting. The detailed results are shown in Tables 4 and 5. The
single object RMS of Polyfit [23] is better than ours, because Polyfit fits planes from the
point cloud and selects the optimal subset to form the final reconstruction result, and these
facets already have small RMS errors with the point cloud. However, due to occlusions
in the point cloud, the results reconstructed using Polyfit also show missing regions, as
shown in Figure 10, while our method can be completely restored.

4.2.3. Efficiency

The execution time for each step of our method is presented in Table 6 and the largest
object reconstruction time is shown in Table 7. We note that our method achieves efficient
completion of both classification and reconstruction tasks within a few minutes. However,
it is important to highlight that Polyfit [23] exhibits a relatively longer reconstruction time,
particularly in the case of objects with a large number of planes. The runtime remains
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longer even after implementing Bbox optimization. The data-driven method RfD-Net [11]
is not comparable due to its long training time.

0.04 0.04

I /

0 (m) ) 0 (m)

0 (m)
(d (e)

Figure 16. Illustration of the model fitting error for a single object. The color bar depicts the error
magnitude. (a—c) is chair, (d) is cabinet, (e) is table, (f) is sofa.

Table 4. Model fitting errors of internal objects (m). Bold is better.

Scenes in . . RfD-Net [11]

Figure 11 Polyfit [23] Polyfit (Bbox) (Data-Driven) Ours
Room 1 0.11 0.11 0.07 0.05
Room 2 0.34 0.09 0.10 0.11
Room 3 0.29 0.21 0.12 0.05
Room 4 0.02 0.02 0.28 0.06
Room 5 0.05 0.05 0.09 0.03
Room 6 0.44 0.38 0.22 0.04

Table 5. Model fitting error for a single object (m). Bold is better.
. - . . RfD-Net [11]
Objects in Figure 10 Polyfit [23] Polyfit (Bbox) (Data-Driven) Ours
Chair 1 in 1st row 0.02 0.02 0.05 0.04
Chair 2 in 2nd row 0.02 0.02 0.05 0.04
Chair 3 in 2nd row 0.01 0.01 0.06 0.03
Table in 3rd row 0.10 0.10 0.28 0.02
Cabinet in 4th row 0.53 0.48 0.49 0.02
Sofa in 5th row 0.01 0.01 0.11 0.03
Table 6. Computational efficiency of each step.

Scenes in Scene . Room Shap_ae Instance_ Model Fitting
. Segmentation Reconstruction Segmentation

Figure 11 (s)

(s) (s) (s)

Room 1 8.54 35.88 2.61 205.45
Room 2 23.62 69.36 7.28 381.08
Room 3 9.12 40.38 2.80 254.99
Room 4 6.54 40.02 2.05 265.06
Room 5 5.14 33.86 248 186.92

Room 6 10.80 43.04 494 406.23
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Table 7. The largest object reconstruction (s). Bold is better.

Scenes in Figure 11 Polyfit Polyfit (Bbox) Ours
Room 1 409.47 179.24 39.87
Room 2 288.55 99.22 13.60
Room 3 563.45 117.44 39.91
Room 4 168.78 97.33 13.67
Room 5 352.49 156.65 33.71
Room 6 388.64 161.76 37.40

4.3. Exploring Complex Scenes

We assessed the performance of our method in complex scenarios, characterized by
irregular shapes, occlusion, clutter, and noise. The reconstruction results, as illustrated in
Figure 17, demonstrate that our method produces satisfactory overall scene reconstructions
(left image) and accurate fitting of interior objects. However, there are instances where
objects are not fully reconstructed, such as scene 1 where three chairs are present but our
reconstruction only shows two due to the missing cushion of the third chair. Additionally,
there may be overlapping between nearby objects, like the table and bookcase in scene 2,
which appear merged due to the selected subset of intersecting patches for the exterior
facade reconstruction. Nevertheless, our method successfully captures the original poses of
interior objects and preserves the original concave—convex details of the exterior facades in
complex scenes.

Figure 17. The more complex scene experiments of the S3DIS dataset.

5. Conclusions and Future Work

In this work, we propose a new approach for the reconstruction of indoor envi-
ronments, seamlessly blending indoor object models with the room shapes. We have
demonstrated the capabilities of our approach through the integration of the point cloud
segmentation, classification, and model fitting techniques. The suggested divide-and-
conquer strategy deals with room shapes and indoor objects separately with respect to
varying point density. The CAD model fitting method facilitates the computation of precise
indoor object reconstruction. Extensive experimentation has showcased the efficacy of our
proposed methodology, successfully completing classification and reconstruction steps
within minutes, significantly enhancing the efficiency of the reconstruction process without
compromising on quality.
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Our method has limitations as it relies on extracting plane information from the
original point cloud. If there are significant omissions in the original point cloud, or if we
are unable to extract the correct planes, our method may fail and produce inaccurate results.
Future considerations include addressing potential errors or inconsistencies between CAD
models and point clouds, which would aid the algorithm in automatically selecting and
aligning with the point cloud from Scan2CAD. As the extraction and screening of geometric
primitives pose considerable computational challenges, a future improvement will focus
on optimizing this process to elevate the efficiency and performance of the approach.
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