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Abstract: This paper proposes a quasi-dense feature matching algorithm that combines image
semantic segmentation and local feature enhancement networks to address the problem of the poor
matching of image features because of complex distortions, considerable occlusions, and a lack of
texture on large oblique stereo images. First, a small amount of typical complex scene data are used
to train the VGG16-UNet, followed by completing the semantic segmentation of multiplanar scenes
across large oblique images. Subsequently, the prediction results of the segmentation are subjected to
local adaptive optimization to obtain high-precision semantic segmentation results for each planar
scene. Afterward, the LoFTR (Local Feature Matching with Transformers) strategy is used for scene
matching, enabling enhanced matching for regions with poor local texture in the corresponding
planes. The proposed method was tested on low-altitude large baseline stereo images of complex
scenes and compared with five classical matching methods. Results reveal that the proposed method
exhibits considerable advantages in terms of the number of correct matches, correct rate of matches,
matching accuracy, and spatial distribution of corresponding points. Moreover, it is well-suitable
for quasi-dense matching tasks of large baseline stereo images in complex scenes with considerable
viewpoint variations.

Keywords: oblique stereo images; deep learning; semantic segmentation; weak texture feature
matching; quasi-dense matching

1. Introduction

In recent years, obtaining high-resolution multiview images of ground scenes has
become increasingly easier with the development of ground mobile wide-baseline pho-
tography, UAV oblique photography, and other technologies [1]. However, under large
viewpoint conditions, substantial changes in the main optical axis can lead to substantial
distortions or masking in the scale, orientation, surface brightness, and neighborhood
information of the same spatial target in stereo images. In addition, the existence of a
large number of weak texture areas poses a great challenge for dense image matching and
automated image processing [2–4].

Classical image matching methods can be divided into two categories: grayscale and
feature matching. Grayscale-based matching algorithms use the grayscale information of
the image to determine the similarity of the image for matching. Common grayscale algo-
rithms include normalized cross-correlation (NCC) [5], mean absolute difference (MAD) [6],
and least square matching (LSM) [7]. These grayscale matching algorithms have high
accuracy but require high computation and are sensitive to noise. Feature-based matching
methods first detect features in the image, subsequently extract feature descriptors, and
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finally determine matching features based on the Euclidean distance of the descriptors.
Scale-invariant feature matching methods, represented by SIFT, exhibit good scale invari-
ance but are difficult to adapt to considerable changes in viewpoint [8]. Reference [9]
optimized SIFT feature points using the NCC method, improving the matching accuracy.
Reference [10] constructed a feature extraction method combining filter decomposition and
phase consistency rules, and employed a Gaussian mixture model to determine matching
points. Reference [11] proposed an affine-invariant oblique image matching method that
estimates the initial affine transformation based on image orientation parameters, corrects
the image based on the affine transformation, and finally performs SIFT matching on the
corrected image. Reference [12] simulated the full-range viewpoint change of the image and
performed SIFT feature matching. This method exhibits good affine invariance; however,
obtaining matching features in weak texture areas is challenging.

With the rapid development of computer software and hardware, deep learning
methods based on convolutional neural networks (CNNs) have opened up a new way
for realizing image matching. Deep learning matching is a data-driven image matching
method that can autonomously learn the deep-level representation of object features from a
large amount of image data. Currently, deep learning matching is classified into dense and
sparse matching. The former achieves pixel-by-pixel dense correspondence in overlapping
areas by predicting the disparity map of stereo images and the latter is oriented toward
feature extraction, description, and matching for staged training and optimization with
high matching reliability, such as the classical L2-Net [13]. HardNet [14,15] enhances the
differentiation between descriptors by constraining the distance between nonsynonymous
descriptors through a loss function based on L2-Net. AffNet proposed in reference [16]
uses multiscale Hessian to detect feature point locations, followed by HardNet and its loss
function to estimate the affine neighborhood. R2D2 achieved improvements in network
architecture, training strategy, and visualization methods as well as improved the computa-
tional efficiency and robustness through separable convolutional layers [17]. Inspired by
SuperGlue [18], reference [19] introduced the position encoding and attention mechanism
using the Transformer network to construct a model called LoFTR, which has texture
enhancement capabilities. This method considerably improved the matching performance
in weak texture areas; however, adapting to changes in the viewpoint of the images is
challenging. Reference [20] proposed a performance baseline for deep feature matching
called DFM. It adopts a two-stage approach, where the initial transformation is performed
using feature information containing rich deep semantic information. Then, through hier-
archical matching from deep to shallow and coarse to fine levels, the final matching pairs
are obtained. Similarly inspired by SuperGlue [18], the GlueStick uses a depth map neural
network to unify the descriptors of points and lines into one framework, and employs the
information between points to glue the lines from the matching images, improving the joint
matching efficiency of the model. This indicates that the complementary performance of
using two features in a single framework greatly improves performance [21]. Furthermore,
reference [22] proposed an end-to-end deep learning network and its weighted average
loss function for wide-baseline image matching with high inclination angles. This approach
allows nonmatching similarity descriptors to participate in training through weighting,
improving the discriminability of nonmatching descriptors and matching performance
of matching descriptors. However, adapting to images with multiple planar scenes and
oblique perspectives is difficult. VGG16 is a classic deep CNN model comprising 16 convo-
lutional and three fully connected layers with powerful feature extraction capabilities [23].
UNet is a deep learning model for semantic segmentation tasks that comprises symmetric
encoder and decoder parts and can achieve pixel-level image segmentation [24]. Refer-
ence [25] proposed an integrated VGG16-UNet, which has demonstrated some reliability
in image classification and segmentation tasks and provided a feasible method for image
segmentation and matching in multiplanar complex scenes.

In summary, for oblique stereo images with complex scenes and geometric distortions,
it is difficult to achieve more reliable dense matching results using both classical feature
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matching algorithms and deep learning matching strategies. Deep learning segmentation
models and texture-enhanced convolutional networks are expected to be the breakthrough
in solving such image matching problems. Therefore, this paper proposes a reliable quasi-
dense feature matching algorithm that combines image semantic segmentation and local
feature enhancement network, which integrates the VGG16-UNet multiplanar semantic
segmentation and LoFTR local feature enhancement network. The proposed algorithm first
segments and extracts the corresponding planar scene and then applies the weak texture
enhancement strategy in the planar scene to obtain quasi-dense feature matching. The
effectiveness of the proposed method is verified using actual stereo images of complex
scenes with large viewpoints.

2. Materials and Methods

For stereo images of multiplanar scenes with large viewpoints, we first train the
VGG16-UNet model using typical segmented data of oblique multiplanar scenes, achiev-
ing preliminary segmentation of complex scenes into individual planes. Subsequently,
we employ a neighborhood search-based adaptive thresholding strategy to optimize the
segmented local regions. Afterward, we use affine-invariant feature matching to recognize
corresponding planes and apply the LoFTR method with local feature transformation to
extract weak texture features for each identified plane. Finally, we fuse the results of local
plane matching and obtain a semi-dense matching result. Figure 1 shows the technical
approach of the proposed algorithm.
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2.1. Automatic Semantic Segmentation Strategy
2.1.1. Multiplanar Semantic Segmentation Model

VGG16-UNet is a deep CNN model based on the fusion of VGG16 and Unet models.
It combines the powerful feature extraction capability of VGG16 and pixel-level semantic
segmentation capability of Unet. To cope with the quasi-dense matching task of complex
scenes, we propose to apply VGG16-UNet to the semantic segmentation of multiplanar
scenes. Figure 2 shows the model structure and the design of each parameter. In the
encoding stage, the first 13 convolutional layers of VGG are used as the feature extraction
network, and a 3 × 3 size convolutional kernel is used to compress the input image from
512 × 512 pixels to 32 × 32 × 512 pixels after four down-sampling steps to achieve
the feature extraction from multiplanar scenes. In the corresponding decoding part, up-
sampling and feature fusion are used to complete the segmentation of each plane, and
the decoder restores the final output layer size to 512 × 512 pixels through continuous
up-sampling and convolutional stacking, and subsequently outputs the segmentation map.
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Figure 2. VGG16-UNet network architecture diagram.

2.1.2. Training Data

Extensive testing has revealed that VGG16-UNet has strong feature extraction capabil-
ities and good transfer learning performance. Therefore, to fully train the VGG16-UNet
model, we carefully selected 80 typical building image data of various types. These data
are taken from low-altitude oblique views, and due to the presence of occlusion factors,
the buildings in the images show one top and two side views, with a paucity of texture on
the scene surface (Figure 3). These data are manually labeled into five sections: building
top (pink), building facade (yellow or purple), ground (green), and background (dark red),
corresponding to the 80 labeled images. Figure 3 shows an example of the training data.
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2.1.3. Image Segmentation and Adaptive Optimization

The trained VGG16-UNet automatically predicts a set of pixels located in the same
plane, extracts the mask map of each plane, and completes the initial segmentation of the
local plane. However, some mask maps may contain holes, and the use of segmentation re-
sults at this point will inevitably affect subsequent matching results. Therefore, we propose
an adaptive optimization method. Figure 4 shows a schematic of adaptive optimization,
which mainly includes discrete region removal outside the main plane region and the filling
of the hole region in the main plane region. Removal of the discrete region eliminates
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segmentation noise outside the main plane, whereas filling the hole eliminates the noise
inside the main plane.

r =
1

2max(R)
, R = ∪n

i=1Si, (1)

where R represents the area of the connected region, n denotes the number of iterations,
and Si represents the area of the region obtained by expanding in the i-th iteration. The
maximum value of R corresponds to the area of the main plane region.
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Next, to obtain the optimized results inside and outside the main region, the locally
connected regions are color-inverted based on the adaptive threshold r. Considering the
optimization accuracy and efficiency, an eight-neighborhood template is used to retrieve
small discrete areas, whereas a four-neighborhood template is used to fill small hole areas.
When segmenting, the local plane segmentation can be achieved by performing a Bitwise-
AND operation between the mask map and the original image. This operation results
in an image content containing only the mask region. Figure 5 shows the effect of each
plane segmentation optimization. It shows that the proposed strategy achieves adaptive
optimization of the planar scene by correcting the noise in the internal and external body
regions, ensuring the reliability of segmentation and laying the foundation for subsequent
quasi-dense matching of the planar scenes.
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2.2. Quasi-Dense Matching Method
2.2.1. Automatic Identification of Corresponding Planes

Before performing the enhancement matching of weak texture features, it is necessary
to first pair and recognize the corresponding plane scenes in the left and right images for
obtaining corresponding planes. The affine-invariant feature matching algorithm described
in reference [22] can robustly extract corresponding features from plane scenes with large
viewpoint variations. Therefore, in this section, we employ this algorithm to automatically
recognize corresponding planes. The process can be briefly described as follows: extract
any plane from the left image, match it with each plane in the right image, identify the
corresponding plane with the most corresponding features, and >m (matching points,
set to 8) is identified as the corresponding plane. Similarly, we iterate through all the
planes in the left image, complete the feature matching with each plane of the right image
and discriminate, and finally obtain each corresponding plane pair. Figure 6 shows the
automatic identification process.
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2.2.2. LoFTR-Based Weak Texture Feature Enhancement Matching

The LoFTR strategy proposed in reference [19] can effectively enhance feature dis-
tinctiveness in weak texture regions; however, it struggles to adapt to affine deformations
between images. Therefore, in this section, we first estimate the perspective transformation
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matrix based on the obtained corresponding planes and their corresponding features to
minimize the geometric deformations between corresponding planes. Subsequently, we
apply the LoFTR algorithm to extract weak texture features from the corresponding planes.
Figure 7 shows the specific matching process, which primarily comprises the five key steps
outlined below.
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(1) Large viewpoint correction: First, using the IA and IB matching points obtained in
the previous plane recognition process, we estimate the projection transformation
matrix H based on Equation (2) and the random sample consensus (RANSAC)
algorithm as follows: x′ = h11x+h12y+h13

h31x+h32y+h33

y′ = h21x+h22y+h23
h31x+h32y+h33

, (2)

where (x, y) and (x′, y′) represent the feature matching points in IA and IB, respectively,
and h11, h12 . . ., h33 represent the nine projection transformation parameters in H. Sub-
sequently, according to Equation (3), the right image is corrected through projective
transformation as follows: x′′

y′′

1

 =

h11
h21
h31

h12
h22
h32

h13
h23
h33

x′

y′

1

, (3)

where (x′, y′) and (x′′, y′′) represent the pixel coordinates of IB and IB’ before and after
the correction of the projective deformation in the right image, respectively. After
correcting the right image through projective deformation, the affine distortion of
the corresponding region is considerably improved, and the geometric consistency
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of the plane tends to be better than before. Thus, the LoFTR strategy is introduced
for matching.

(2) Feature extraction: For the image pair IA and IB
′, feature extraction is first performed

using VGG CNN, resulting in 1/8 coarse feature and 1/2 fine feature maps for
both images.

(3) Generating coarse-level feature prediction results: The coarse extracted feature maps
∼
F

A
and

∼
F

B
are flattened into one-dimensional vectors, and position encoding is added

to each vector. These vectors with position encoding are then inputted into the LoFTR
module, which comprises N (N = 4) self-attention and cross-attention layers. The
LoFTR module utilizes a self-attention mechanism to capture the correlations between
different positions within the image, learning the importance of local features and
enhancing the discriminative ability of the convolutional model for different texture
features. After processing through this module, two enhanced texture feature maps

with higher discriminability, labeled as
∼
F

A

tr and
∼
F

B

tr, are outputted. Subsequently, the
similarity between these two feature maps is calculated to perform the matching of
corresponding features.

(4) Outputting the prediction results: For any coarse-level matching prediction
(
∼
a ,

∼
b
)

∈ Mc, local corresponding windows of size w × w (w = 5) are cropped from the fine
feature maps â,b̂. Second, a smaller LoFTR module then transforms the cropped
features within each window, yielding two transformed local feature maps, F̂A

tr (â)
and F̂B

tr

(
b̂
)

, centered at â and b̂, respectively. Third, we correlate the center vector

of F̂A
tr (â) with all vectors in F̂B

tr

(
b̂
)

and thus produce a heatmap that represents the

matching probability of each pixel in the neighborhood of â with b̂, and the location b̂′

is obtained by calculating the expectation of the probability distribution. Finally, all
coarse-level matches are refined within the local windows of the fine level, resulting
in the fine-level matching predictions Mf for IA and IB

′.
(5) Outputting the final result: Finally, the coordinates of the fine-level matching points

on IB
′ are normalized to the original coordinate system of the right image IB using

Equation (3), representing the final result of weak texture feature-enhanced matching.

3. Results
3.1. Experimental Environment

In the experiment, we used RTX2080ti GPU, 9-9900K processor, 64 GB RAM, and
Ubuntu18.04 operating system. The software platform is PyCharm (v 2023.3.2). The
training dataset of weak texture feature based on LoFTR is adopted from the open-source
MegaDepth dataset. During the training process, the Transformer loop count N is set to
four, the LoFTR module feature transformation count Nf is set to one, and the window size
w for extracting patches from the fine-level feature map is set to five. The threshold θC for
coarse-level matching prediction is set to 0.2. The training is completed after 30 iterations
using the gradient descent algorithm.

3.2. Evaluation Metrics

(1) Number of correct matching points, kε0 : Fifteen pairs of uniformly distributed cor-
responding points are manually selected from the stereo images. The fundamental
matrix F0 is estimated using the least-squares method and considered as the ground
truth. Using the well-known fundamental matrix F0, the error of any matching point
is calculated using Equation (4). A threshold ε0 (set to 3.0) is set and imposed for
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the error. If the error was less than ε0, the pair of points is a correct pair of matching
points and is included in the count of correct matching points, kε0 :

εi =

√(
xi

′T F0xi

)2
/((F0xi)

2
1 + (F0xi)

2
2. (4)

(2) Match correct rate, α: This is defined by α = kε0 /k, where k denotes the total number
of matching points.

(3) Matching root-mean-squared error (RMSE) εRMSE (pixel). This is calculated using
Equation (5):

εRMSE =

√
1
k ∑k

i=1 εi
2, (5)

where k represents the total number of matches and εi is calculated using Equation (4).
(4) Matching spatial distribution quality, D̂: References [26,27] generated Delaunay trian-

gulation based on the matching points. They evaluated the spatial distribution quality
of the matching points by considering the areas and shapes of each triangle, as well
as the global and local distribution of the matching points. This is calculated using
Equation (6):

D = DA × DS =

√
∑n

i=1((Ai/A)−1)
n−1 ×

√
∑n

i=1(Si−1)
n−1 , A = ∑n

i=1 Ai
n , Si =

3max(Ji)
π

D̂ = D
DG

, DG = (∑n
i=1 Ai)/AI

, (6)

where n represents the total number of generated triangles; Ai and max(Ji) represent
the area and maximum arc of the i-th triangle, respectively; A represents the average
area of the triangles; DA represents the uniformity of the areas of each triangle; and
DS represents the uniformity of the internal angles of the triangles. The lower the D
value, the higher the geometric uniformity of the local triangles. Ai represents the area
of the image and DG represents the coverage of matching points in the global image.
A higher DG value indicates a wider spatial distribution of matching points in the
image. Therefore, this model can fully reflect the quality of the matching point spatial
distribution, and the quality of the matching point spatial distribution increases with
decreasing D̂.

3.3. Experimental Methods and Data

To fully validate the advantages of our proposed method, we used six methods for
comparative testing. (1) DFM: This method achieves high accuracy by performing coarse-
to-fine matching of images at different hierarchical levels of features. (2) AffNet: This
method uses an affine-invariant estimation network to learn affine parameters. It enhances
the distinctiveness between descriptors using the HardNet loss function, making it suitable
for scenes with viewpoint changes. (3) SuperGlue: This method constructs an image
information aggregation model based on attention mechanisms. The loss function of the
model is established using graph neural networks. (4) LoFTR: This method combines
position encoding and attention mechanisms in the Transformer, generating a model
suitable for weak texture matching. (5) GlueStick: A GNN architecture is designed to
be able to combine the contextual information of all features to improve the accuracy of
the matching. (6) Our proposed method. To objectively evaluate these six methods, the
RANSAC algorithm is used to remove outliers, and the inlier coordinates for each method
are outputted. As shown in Figure 8, six groups of low-altitude large viewpoint building
scene images (a–f) are selected as the test data.
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3.4. Experimental Results and Analysis

Figures 9–14 show the matching results of six groups of data based on DFM, AffNet,
SuperGlue, LoFTR, GlueStick, and our proposed method, respectively. Table 1 presents the
quantitative experimental results of the six methods. Here, kε0 and α represent the number
of correctly matched points and the correct rate of matching, respectively. εRMSE represents
the RMSE of matching, and D̂ represents the quality of spatial distribution of matching
points. The optimal test results of each group of data in the table are represented in bold.

Table 1. The contrast of test results using six methods. The best values are highlighted in bold.

Test Data Evaluation Metrics Ours DFM AffNet SuperGlue LoFTR GlueStick

(a)

kε0 /(Pair) 2751 1199 832 618 1695 336
a/(%) 0.80 0.61 0.41 0.61 0.58 0.58

εRMSE/(Pixel) 1.20 0.36 0.35 1.83 0.65 0.65
D̂ 56.9 59.2 87.2 64.9 59.2 33.7

(b)

kε0 /(Pair) 898 31 82 537 520 259
a/(%) 0.49 0.53 0.14 0.52 0.22 0.40

εRMSE/(Pixel) 0.35 0.18 0.37 0.39 0.38 0.81
D̂ 32.6 37.5 17.13 54.33 40.9 39.8

(c)

kε0 /(Pair) 2751 602 1100 618 1695 393
a/(%) 0.68 0.34 0.33 0.61 0.58 0.47

εRMSE/(Pixel) 0.99 0.35 0.37 1.24 2.07 0.71
D̂ 45.5 27.7 45.9 23.3 46.5 32.6

(d)

kε0 /(Pair) 2254 237 296 330 1291 241
a/(%) 0.82 0.40 0.20 0.50 0.60 0.52

εRMSE/(Pixel) 0.86 0.35 0.36 2.9 0.57 0.67
D̂ 41.1 32.0 28.2 26.8 43.3 24.4

(e)

kε0 /(Pair) 1530 56 125 196 1015 179
a/(%) 0.64 0.43 0.22 0.24 0.46 0.48

εRMSE/(Pixel) 0.99 0.32 0.36 1.88 1.06 0.69
D̂ 40.1 24.1 18.8 23.5 43.3 23.0

(f)

kε0 /(Pair) 2059 915 974 273 1034 226
a/(%) 0.69 0.46 0.42 0.39 0.47 0.44

εRMSE/(Pixel) 0.49 0.37 0.35 1.88 1.46 0.75
D̂ 27.5 83.3 28.2 32.5 43.3 34.6
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4. Discussion

(1) The proposed method has significant advantages in terms of the number of cor-
rectly matched points. Table 1 presents the quantitative experimental results for
six groups of large viewpoint stereo images in architectural scenes that show the
highest number of correctly matched points obtained using the proposed method.
As shown in Figures 9–14, our proposed method can achieve accurate and dense
matching results in each group of images, especially for matching a large number
of corresponding points on the top and facades of buildings, which provides suffi-
cient tie points for image orientation and three-dimensional (3D) reconstruction.
The reasons are twofold. First, the multiplane segmentation and corresponding
plane matching method proposed in this paper can transform the matching of
complex 3D scenes into simple plane scene matching. Second, the LoFTR texture
enhancement strategy introduced in this paper effectively improves the problem
of weak texture on the top and facades of buildings, leading to accurate and dense
matching results.

(2) According to the above experimental results, DFM has advantages in accuracy, but its
effect on affine changes is poor. Compared with DFM, SuperGlue is more capable of
handling large viewpoint affine transformations and single-texture regions; however,
the number of matching points is much less than that obtained using our method.
The LoFTR algorithm, which is based on the SuperGlue method, uses Transformer
positional encoding and attention mechanisms to significantly enhance the texture
features of building facades. GlueStick has not improved or even decreased in quantity
compared to SuperGlue, but has improved in spatial distribution quality and matching
accuracy. However, obtaining a sufficient number of matching points due to the
influence of image distortion is challenging.

(3) Our method also demonstrates some advantages in terms of matching accuracy and
precision. Table 1 shows that our method achieves high matching correctness rates for
most of the test data (a, b, d–f), and sub-pixel matching precision for test data (b–f).
The reasons behind this are as follows. First, our method performs individual match-
ing for each planar scene and utilizes strict homography geometric transformations
for distortion correction and constrained matching, effectively ensuring matching
correctness and precision. Second, during the quasi-dense matching process, the
proposed method first conducts coarse-level matching prediction and then refines the
matches at a finer level, ensuring the accurate positioning of matching points.

(4) The proposed method exhibits good spatial distribution quality for the matching
points. Figures 9–14 show that the distribution area of the matching points of our
method in image space has significantly improved. Table 1 demonstrates that our
method outperforms DFM and LoFTR algorithms in terms of the spatial distribution
quality of matching points. Our method has good spatial distribution quality for
matching points.

5. Conclusions

In this study, we propose a matching algorithm that combines image semantic seg-
mentation and local feature enhancement networks for stereo images in complex scenes
with significant viewpoint changes. The proposed algorithm first employs an automatic
semantic segmentation method to extract the planes of different scenes. The LoFTR strategy
is then used to enhance the weak texture features of each local plane, enabling accurate and
dense feature matching. The experimental results demonstrate that the proposed method
has advantages in terms of the number of correctly matched points, matching accuracy,
matching precision, and spatial distribution quality of matched points. It is suitable for the
dense matching of wide-baseline oblique stereo images. In future work, we plan to inte-
grate a line feature matching algorithm to achieve more complementary feature matching
along building structure edges. This can be applied to the fine-scale 3D reconstruction of
urban building scenes.
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