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Abstract: This paper presents an innovative integrated sensor that combines GNSS and a low-cost ac-
celerometer for bridge health monitoring. GNSS and accelerometers are both significant and effective
sensors for structural monitoring, but they each have limitations. The sampling rate of GNSS data
is relatively low, making it challenging to capture high-frequency vibrations, while accelerometers
struggle with low-frequency signals and are susceptible to environmental changes. Additionally,
GNSS receivers and accelerometers are often installed separately, leading to challenges in data fusion
processing due to differing temporal and geospatial references. The proposed integrated sensor
addresses these issues by synchronizing GNSS and an accelerometer’s time and geospatial coordinate
reference. This allows for a more accurate and reliable deformation and vibration measurement for
bridge monitoring. The performance of the new sensor was assessed using a high-quality/cost Leica
GM30 GNSS receiver and a Sherborne A545 accelerometer. Experiments conducted on the Wilford
suspension bridge demonstrate the effectiveness of this innovative integrated sensor in measuring
deformation and vibration for bridge health monitoring. The limitation of the low-cost MEMS
(Micro Electromechanical System) accelerometer for the weak motion frequency detection is also
pointed out.

Keywords: integrated sensor; GNSS and accelerometer; bridge health monitoring; time synchronization;
geospatial references

1. Introduction

Due to the advantages of the real-time 3D absolute displacements of monitoring,
continuous autonomous operation, and reliable performance in various weather and
visibility conditions, GNSS sensors have proven to be effective for deformation monitoring
in structures such as tall buildings, dams, and bridges [1–4]. Compared to traditional
monitoring methods, GNSS overcome many limitations, as they can easily identify low-
frequency structural vibration responses. They have been widely used in bridge structural
health monitoring over the past decade [5–8]. However, noise, such as the multipath
effects and random errors, can cause true dynamic displacements to be obscured, limiting
the effectiveness of GNSS vibration monitoring in modal parameter identification [9,10].
Therefore, data processing methods should be employed to eliminate GNSS measurement
errors before extracting structural dynamic characteristics.
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Generally, there are five GNSS positioning models for the structural deformation
model, which can be summarized as follows:

(1) Static differential positioning model: This model refers to technology based on the
difference method between stations to eliminate atmospheric and other related errors
after accumulating a certain amount of GNSS observation data for a certain period;

(2) Real-time kinematic (RTK) positioning model: The RTK model is a positioning technol-
ogy that involves a monitoring station continuously receiving corrections of satellite
signals and other related errors from a reference station based on their known posi-
tions and then obtains a high-precision location in real time;

(3) Network RTK (NRTK) positioning model: The NRTK model is based on RTK technol-
ogy and utilizes multiple GNSS reference stations around the monitoring station to
model satellite signals and other related errors to obtain accurate positioning results;

(4) Precision point positioning (PPP) positioning model: The PPP model is a method used
to directly obtain high-precision absolute coordinates of monitoring points based on
extra positioning data such as precision orbit and clock deviation, which means that
this method does not require reference stations;

(5) PPP–RTK positioning model: The PPP–RTK model combines PPP and RTK tech-
nologies, using a small amount of reference station data on the server to model
distance-related errors and broadcast them. The user can determine locations in the
PPP model within a large area around the reference station.

The accuracy of the above positioning models is listed in Table 1 [11].

Table 1. The accuracy of the different GNSS positioning models.

Positioning Model Response Time Plane Accuracy/mm Elevation
Accuracy/mm

Static differential Near real time ±(0.5 ∼ 1) ±(1 ∼ 3)
RTK Real time ±(5 ∼ 10) ±(10 ∼ 20)

NRTK Real time ±(20 ∼ 30) ±(30 ∼ 40)
PPP Real time ±(30 ∼ 50) ±(50 ∼ 100)

PPP–RTK Real time ±(30 ∼ 50) ±(50 ∼ 100)

Accelerometers can work without external signals and have been deployed widely to
obtain vibration information for structural health monitoring. Mita and Yokoi proposed an
innovative design for an optical accelerometer that uses a Fiber Bragg grating element. A
prototype accelerometer was also designed and compared with a reference servo-type ac-
celerometer by a shake table test [12]. Accelerometers are also deployed for stayed-cable bridge
damage detection and localization [13]. To solve the data transmission issue, a high-sensitivity
wireless accelerometer was developed for structural health monitoring [14]. The high cost of
sensors is a significant obstacle to the widespread promotion of real-time online bridge health
monitoring systems. Therefore, finding sensors that can meet the requirements of structural
monitoring while maintaining low costs is an essential research topic. To reduce cost, self-
made MEMS accelerometer prototypes were developed and validated in the laboratory and on
an operational cable-stayed bridge [15]. A data-driven model for extensive wind turbine blade
monitoring was proposed using a single accelerometer and actuator [16]. Ponzo achieved
eigenfrequencies and the equivalent viscous damping factor using an accelerometer [17] and
demonstrated that force-balanced accelerometers detected the fundamental frequency of the
investigated bridge, which was less than 1 Hz [18]. However, accelerometers are likely to be
affected by environmental factors, such as temperature and humidity, and are sensitive to the
installation location and orientation [19,20].

GNSS have the strength to obtain stable and precise deformation data and low-
vibration information, while accelerometers are suited for high-vibration data, which
means that GNSS integrated with accelerometers have great potential for structural health
monitoring. Scholars have proposed many ideas for their combination [21–23]. Geng
revealed that GPS networks upgraded with strong-motion accelerometers can provide new
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information for an improved understanding of the earthquake rupture process [24]. Xiong
found that the results of a GNSS were close to those of accelerators and theoretical calcula-
tion results of finite element analysis as part of the Tianjin Fumin Bridge experiment [25].
Xin proposed a seismogeodetic instrument named Strong Motion Accelerographs with
GNSS 2000 (SMAG2000); it showed advantages when compared with a Trimble SG160-09
and SIO-GAP by designed experiments [26]. Low-cost MEMS accelerometers were adopted
to improve the performance of GNSS landslide monitoring [27]. The error of GNSS data
also can be detected by accelerometer data analysis [28].

The main reason for the difficulty in taking full advantage of the strengths of the combi-
nation of GNSS and accelerometers is the need for a unified time and geospatial reference,
leading to data processing problems [29]. GNSS receivers and accelerometers are always
installed in different locations with different coordinate systems. Most accelerometers do not
have a time stamp which also causes the issue of data fusion with GNSS data. This paper
introduces an innovative sensor integrated with GNSS and a low-cost accelerometer to solve
the previous problems. Dedicated experiments are also designed and conducted by data
analysis and compared with a known high-quality/cost GNSS receiver (Leica GM30) and
accelerometer (Sherborne A545); the innovated sensor meets the requirements of structural
health monitoring of a long-span bridge, which paves the path to utilizing the strengths of the
two sensors to obtain more accurate deformation and vibration information.

2. Innovative Sensor Introduction

The figure of the sensor is shown in Figure 1, and it integrates an antenna, GNSS
chip (Novatel OEM729), low-cost MEMS accelerometer, power, and other communication
devices in one box with a size of 146 mm × 146 mm × 76 mm.
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Figure 1. The appearance of the integrated sensor: (a) the side view of the sensor; (b) the button view
of the sensor; (c) the top view for the sensor.

A Novatel (OEM729) board was adopted to receive and process the GNSS signal and a
MEMS sensor from ANALOG DEVICES (ADXL355) was used to measure the acceleration
(Figure 2). The key parameters of the two sensors are listed in Tables 2 and 3.

Table 2. Novatel OEM729 multi-frequency GNSS receiver parameters.

Parameter Item Comments

Signal Tracking

GPS L1 C/A, L1C, L2C, L2P, L5
GLONASS L1, L2, L3, L5

Galileo E1, E5 AltBOC, E5a, E5b, E6
BeiDou B1l, B1C, B2a, B2b, B2l, B3l

SBAS/QZSS L1 C/A, L1C, L2C, L5, LEX

Horizontal Position
(Accuracy—RMS)

Single Point L1 1.5 m
Single Point L1/L2 1.2 m

SBAS 60 cm
DGPS (code) 40 cm

RTK 1 cm + 1 ppm
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Figure 2. The main measurement unit of the sensor. (a) GNSS chip—Novatel (OEM729) board;
(b) MEMS accelerometer—ADXL355.

Table 3. ADXL355 accelerometer parameters.

Parameter Test Condition/Comments Typical Value Unit

Zero Offset ±2 g (X, Y, and Z) ±25 mg
Sensitivity ±2 g (X, Y, and Z) 400 mV/g

Sensitivity Change Due
to Temperature −40 ◦C to +125 ◦C ±0.01 %/◦C

Nonlinearity ±2 g 0.1 %
Noise (Spectral

Density) ±2 g (X, Y, and Z) 22.5 µg/
√

Hz

It should be noted that generally, low-cost MEMS accelerometers have higher levels
of noise compared to other analogue signal accelerometers. The difference may not be
significant when measuring vibration frequencies of high dynamic structures. However,
the limitation becomes more apparent when measuring relatively stationary objects. This
point was also demonstrated in subsequent experiments.

3. Sensor Experiment and Assessment
3.1. Experiment Introduction

To evaluate the performance of the new sensor more accurately, the Wilford suspension
bridge was chosen as the test bed (Figure 3). Figure 4 demonstrates the location of all
the sensors.
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Figure 4. The installation diagram of the sensors for the Wilford Suspension Bridge.

A high-cost, high-quality GNSS receiver (Leica GM30) was adopted and installed on
the bridge’s north side for the positioning accuracy assessment. The innovative integrated
sensor was installed near the Leica receiver (Figure 5). The key positioning parameters of
the Leica GM30 are listed in Table 4.
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Table 4. Key positioning parameters of Leica GM30.

RTK Positioning Modes Reference Station
(Smoothed)

Monitoring
(Instantaneous)

Network RTK
(Instantaneous)

Single baseline (<30 km) Hz: 6 mm + 1 ppm
V: 10 mm + 1 ppm

Hz: 8 mm + 1 ppm
V: 15 mm + 1 ppm

Hz: 8 mm + 1 ppm
V: 15 mm + 1 ppm

Network RTK Hz: 6 mm + 1 ppm
V: 10 mm + 1 ppm

Hz: 8 mm + 1 ppm
V: 15 mm + 1 ppm

Hz: 8 mm + 1 ppm
V: 15 mm + 1 ppm
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For the accelerometer assessment, a high-quality/cost accelerometer (Sherborne A545)
was employed as a compared device, whose key parameters are listed in Table 5. Figure 6
demonstrates the location of the sensors and they were installed on the south side of
the bridge.

Table 5. Key parameters of the accelerometer with temperature at 25 ◦C (Sherborne A545).

Parameter Value

Zero Offset ≤±2 mV
Nonlinearity ≤±0.5% FRO

Hysteresis ≤0.02% FRO
Resolution ≤0.0005% FRO

Damping Ratio 0.7 (±0.2)
Noise Output 10 µV (rms) max
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A Viva SmartStation with integrated GNSS from Leica was installed on the riverside
as the base station (Figure 7). The total station was designed as an auxiliary device to assess
the positioning accuracy of the integrated sensor. However, because of the low sampling
rate and unstable data, a Leica receiver was finally taken as the compared sensor to assess
the performance of positioning accuracy.

3.2. Time Synchronization and Geospatial Reference of Accelerometer

The difficulty in applying integrated acceleration and GNSS sensors to structural
health monitoring lies in the unification of time and geospatial references. Normally, the
data output by an accelerometer has no timestamp while GNSS data have high-precision
timestamps. GNSS measurements are based on a geodetic coordinate system, while ac-
celerometer results are based on the orientation in which the accelerometer is mounted. To
solve the above problems, we designed an innovative sensor which realizes the data fusion
of the implemented accelerometer and GNSS through hardware integration.

A PPS (pulse per second) is an electrical signal that the GNSS chip can accurately
generate once per second, and the new sensor adopts this feature to synchronize the
accelerometer data’s time with the GNSS time every second.
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For the geospatial reference of the accelerometer data, the new sensor mounts the
accelerometer with the X axis pointing towards the panel containing the button, the Y
axis pointing perpendicular to the X axis, and the Z axis pointing vertically up (Figure 8).
Therefore, the axial direction of the sensor needs to be parallel or vertical to the structural
axis when installing it in the operational environment.
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3.3. Data Processing and Analysis

All data should be analyzed on a unified geospatial reference which is the bridge
coordinate system as shown in Figure 4. Figure 9 shows the flowchart of the procedure to
process the data. Leica Geo Office (V7) was adopted to process the GNSS data collected
from the Leica GM30 and the innovative sensor with RTK mode. MATLAB (R2016a)
with developed code was employed to process the accelerometer data and assess the
performance of the new sessor.

Figure 10 shows the time series of the two GNSS receivers’ positioning data which
match very well with slight fluctuations. The displacement is small in the direction of the
longitudinal axis of the bridge, while Y and Z directions are susceptible to traffic and wind
loading with significant displacement. Figure 11 demonstrates the residual distribution
between the two GNSS sensors. There is no apparent systematic deviation between them
which indicates the great performance of the positioning accuracy for the innovative sensor.
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Figure 12 shows the comparison of natural frequencies estimated by GNSS data from
the innovative sensor and the Leica GM30 GNSS receiver. The agreements can be found
in the x, y, and z directions. However, because of the low sampling rate and sensitivity
limitation of GNSS, only one frequency source was extracted in the y and zdirections, and
there was no apparent frequency detected in the xdirection.
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To further analyze and assess the low-cost accelerometer data, high-order digital
Butterworth filters were employed to process the GNSS and MEMS accelerometer data.
The sampling frequency of the GNSS data is 10Hz, and that of the accelerometer data is
100 Hz. The normalized cutoff frequency for GNSS data is (0.1/10) Hz with the second
order for the Butterworth filter, while the number is (0.8/100) Hz with the fifth order for
the accelerometer data.

Figure 13 demonstrates the time series of the data from Leica GMS30, GNSS, and ac-
celerometer data from the innovative sensor, which were filtered, detrended, and smoothed.
It can be seen that the deformation matched well in y and z directions during the moment
the bridge exhibited a significant dynamic response caused by human-induced excitation.
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The low-cost MEMS accelerometer’s performance assessment is the key to this inno-
vative sensor. The high-cost, high-quality Sherborne A545 accelerometer was applied for
comparison. Figure 14 shows a comparison of the 20 min time histories of acceleration
measured by the innovative sensor against those measured by the Sherborne A545. Unlike
the x acceleration, good agreement in the y and z accelerations can be seen in Figure 14b,c.
These agreements became very noticeable when the bridge exhibited a large dynamic re-
sponse caused by human-induced excitation, which is illustrated in Figure 15b,c, showing
a 20 s time series of acceleration along the y and z axes. This observation is expected since
the large dynamic response of the bridge reduces the random effects of noise on the time
histories of acceleration. The significant difference in the x-direction acceleration may be
caused by the mechanical fitting of the innovative sensor. On site, the Sherborne A545 was
installed at about 20 cm higher than the innovative sensor; this is thought to also have
caused small offsets in the time histories of the y and z accelerations.

The agreement in the time histories of acceleration measured by the two sensors
is visualized by the scatter plots in Figure 16 and quantitatively assessed by Pearson
correlation coefficients and the R-squared values (based on a first-order linear fitting).
As can be inferred from Table 6, 20 s time histories of y and z acceleration show higher
correlation coefficients and R-squared values, indicating better agreement.
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Table 6. Summary of the Pearson correlation coefficients and R-squared values.

Axis
Pearson Correlation Coefficients R-Squared Values

20 min Data 20 s Data 20 min Data 20 s Data

X −0.0098 −0.19 0.000092 0.0038
Y 0.73 0.91 0.54 0.84
Z 0.92 0.98 0.84 0.95

Comparing the estimated PSDs of acceleration measured by the two sensors, Figure 17
shows good agreement regarding the locations of spectral peaks of frequencies lower than
10 Hz, which are the measurements of the natural frequencies at the mid-span of the bridge.
The frequencies collected from the x, y, and z directions at the mid-span are listed in Table 7
and there is no significant difference in extracted frequencies between the two types of
accelerometers. It should be noted that the experiment only measured the frequency at
the mid-span to assess the performance of the low-cost MEMS accelerometer and did not
obtain the mode shapes of the structure.
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Table 7. Comparison of mid-span natural frequencies estimated by the innovative sensor and
Sherborne A545 accelerometers.

Sherborne A545 Innovative Sensor Difference (%)

1.369 1.364 0.37%
1.675 1.680 0.30%
2.324 2.315 0.39%
2.417 2.408 0.37%
2.873 2.861 0.42%
4.567 4.555 0.26%
5.283 5.233 0.95%
5.583 5.542 0.73%
7.805 7.775 0.38%
9.354 9.323 0.33%
11.14 11.1 0.36%
11.71 11.65 0.51%

There are obviously mismatched spectral peaks for frequencies higher than 10 Hz,
especially for the x direction with weak motion. This demonstrates the limitations of the
MEMS accelerometer, which has higher sensitivity and higher noise levels compared with
the high-cost one. It can also be determined from Figure 14a that there is a significant
data fluctuation in the weak motion in the x direction; however, the data’s consistency is
relatively good in the y and z directions with high levels of vibration.

4. Discussion and Conclusions

This paper introduced an innovative sensor integrated with a GNSS chip and low-
cost MEMS accelerometer. The delicate experiments considered were performed to assess
the sensor’s performance. The high-quality Leica GM30 GNSS receiver and Sherborne
A545 accelerometer were employed as compared devices. A suspension bridge in normal
operation was adopted as the test bed.

For the GNSS performance assessment, the time series of the data and residuals
distributions were analyzed and demonstrated. The results show no apparent systematic
deviation between the data of the Leica GM30 and the innovative sensor. The agreement
of the double-integrated accelerometer and GNSS data during the significant response
also underlines the correctness of the time synchronization and geospatial reference of the
low-cost MEMS accelerometer built into the innovative sensor.

For the accelerometer’s performance assessment, the agreement in time histories of
acceleration measured by the two sensors is visualized by scatter plots and quantitatively
assessed by Pearson correlation coefficients and R-squared values (based on a first-order
linear fitting). Twenty-second time histories of y- and z-direction accelerations show higher
agreement. The estimated PSDs were also calculated and compared by two sensors which
showed a slight difference of less than 1% of the natural frequencies of the Wilford suspen-
sion bridge. However, the higher noise levels of low-cost MEMS accelerometers reduce
their performance, making them less suitable for monitoring weak-motion structures.

Our innovative sensor was installed and is running well on the Forth Road Bridge in
the UK and the Husutong Yangtze River Bridge, the Zhixi Yangtze River Bridge, etc., in
China. To take full advantage of this sensor, some research was carried out by our team, such
as using accelerometer data to detect GNSS gross errors and improve GNSS positioning
accuracy [28]. It also should be pointed out that less research has been conducted on the
stability of the low-cost MEMS accelerometer in an operational environment compared
with the high-quality accelerometer. In future work, the team will continue to carry out
more research about the complementarity between accelerometers and GNSS to improve
positioning accuracy and reliability and reduce the structural health monitoring cost.
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5. Patents

Patent application for this innovative integrated sensor has started with publica-
tion/announcement number CN113670183A.
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